Periodica Mathematica Hungarica Vol. 3 (3-4), (1973), pp. 261-270.

# A RAMSEY-TYPE THEOREM AND ITS APPLICATION TO RELATIVES OF HELLY'S THEOREM

by

A. GYÁRFÁS (Budapest)

# Introduction

We say that H is a forbidden graph in the set of graphs  $\mathfrak{D}$  if no  $G \in \mathfrak{D}$  contains a spanned subgraph isomorphic to H.

Forbidden graphs play an important role in many problems of graph theory (interval-graphs, comparability graphs, perfect graphs, etc.). They relate closely to the "covering number"  $\alpha(G)$  of a graph  $G(\alpha(G)$  denotes the smallest integer k for which G's vertices can be covered with k complete subgraphs of G). Clearly  $\alpha(G) \ge \varphi(G)$  where  $\varphi(G)$  denotes the maximal number of G's pairwise independent vertices. Generally  $\alpha(G) > \varphi(G)$ , moreover  $\alpha(G)$  can be arbitrary large if  $\varphi(G) \ge 2$  is fixed ([1]). The graphs for which  $\alpha(G) = \varphi(G)$  are investigated in many papers. According to a theorem of HAJNAL and SURÁNYI  $\alpha(G) = \varphi(G)$  if  $G \in \mathcal{C}$ , where the n-gons (n = 4, 5, ...) are forbidden graphs in  $\mathcal{G}$  ([2]).

If we take the assumption that for some k the complete k-graph is forbidden in the set of graphs  $\mathcal{G}$ , then  $\alpha(G) \leq C$  where C depends only on k and  $\varphi(G)$  but does not depend on the number of G's vertices ( $G \in \mathcal{G}$ ). This can be derived at once from the following special case of a well-known theorem of RAMSEY ([3], n = 2,  $k_1 = k$ ,  $k_2 = \varphi(G) + 1$ ):

**THEOREM** (Ramsey). For every system of natural numbers  $k_1, k_2, \ldots, k_n$  there exists a natural number N with the property: if we split the edges of a complete k-tuple  $G_n$  into n classes and  $G_n$  contains no complete  $k_i$ -tuple the edges of which are in the *i*-th class, then  $k \leq N$ .

Let  $G_n$  be a complete graph the edges of which are divided into n classes. Equivalently we can say that the edges of  $G_n$  are coloured with n colours. We define  $\alpha(G_n)$  as the smallest number t for which  $V(G_n)$  can be covered with t complete one-coloured subgraphs of  $G_n$ . It is easy to see that if  $G_n$  contains no complete  $k_i$ -graph, the edges of which are coloured with the *i*-th colour, then the statement  $k \leq N$  in Ramsey's theorem is equivalent with  $\alpha(G_n) \leq C$ , where C depends only on  $k_1, k_2, \ldots, k_n$ . Theorem 1 provides more general conditions for the boundedness of  $\alpha(G_n)$ . In Ramsey's theorem the forbidden subgraphs are complete graphs, and we replace them by a more general class  $\mathbb{Q}$  of graphs defined in § 1. It is worth to mention that the class  $\mathbb{Q}$  includes all the forbidden graphs for which we can state that  $\alpha(G_n)$  is bounded.

We note that an edge of  $G_n$  can be coloured with more than one colour. This is an essential and natural assumption since the forbidden graphs are not the complete graphs only.

In § 2 we formulate a geometrical consequence of Theorem 1 which can be considered as a Helly-type theorem. It arose in connection with a problem of T. GAILAI and this problem was the starting point of the investigations of the present paper.

# **§ 1**

Let G = (V(G); E(G)) be a graph. (Here, and in what follows every graph is undirected, loops and multiple edges are not permitted.) The graph H = (V(H); E(H)) is said to be a subgraph of G if  $V(H) \subset V(G)$  and  $(x, y) \in E(H)$  if and only if  $(x, y) \in E(G)$  that is H is considered as a subgraph of G if and only if H is "spanned" by some subset of V(G). To indicate that H is a subgraph of G we use the symbol  $H \subset G$ .

Let  $C = \{c_1, c_2, \ldots, c_n\}$  be a set, the elements of C will be called colours. We say that a graph G is coloured with the colours  $c_1, c_2, \ldots, c_n$  if we have a function  $\mathcal{C}$  on E(G) to the set of non-empty subsets of C. In other words we can say that every edge of G is coloured with at least one colour chosen from the set C. The value of the function  $\mathcal{C}$  at the edge (x, y) will be denoted by  $\mathcal{C}(x, y)$ , that is  $\mathcal{C}(x, y)$  denotes the colours with which the edge (x, y) is coloured. If G is a coloured graph and  $G' \subset G$  then G' can be considered also as a coloured graph.

If the graph G is coloured with  $c_1, c_2, \ldots, c_n$  then  $G(c_i)$  denotes the graph the vertex set of which is V(G) and  $(x, y) \in E(G(c_i))$  if and only  $i_f c_i \in \mathcal{C}(x, y)$ . The set of complete graphs coloured with n colours is denoted by  $\mathcal{K}_n$ 

Let G be a graph coloured with  $c_1, c_2, \ldots, c_n$ . We say that G is covered with the complete graphs  $G_1, G_2, \ldots, G_p$  if  $V(G) = \bigcup_{j=1}^p V(G_j)$  and for all j there exists an i so that  $G_j(c_i)$  is a complete graph.  $\alpha(G)$  will denote the smallest integer k for which G can be covered with k complete graphs.

Now we define a family  $\mathfrak{Q}$  of graphs as follows: let k, l be non-negative integers, at least one of them differs from 0. The graph  $Q_k^l$  is defined in the following way:  $|V(Q_k^l)| = 2k + l$  and the complement of  $Q_k^l$  contains k edges no two of them have a common endpoint. The graphs  $Q_0^l$  (the complete *l*-tuple) and  $Q_k^0$  will be denoted shortly by  $Q^l$  and  $Q_k$ . The set of graphs in the form  $Q_l^k$  will be denoted by  $\mathfrak{Q}$ . Some members of  $\mathfrak{Q}$  can be seen in the following figure.



An important property of  $\mathfrak{Q}$  is that if  $A \in \mathfrak{Q}$  and  $B \subset A$  then  $B \in \mathfrak{Q}$  $(B \neq \emptyset)$ . Now we can formulate Theorem 1 and Theorem 2.

THEOREM 1. For every system of graphs  $G_1, G_2, \ldots, G_n \in \mathbb{Q}$  there exists an  $\alpha_0 = \alpha_0(G_1, G_2, \ldots, G_n)$  with the property: if the complete graph G is coloured with  $c_1, c_2, \ldots, c_n$  and  $\alpha(G) > \alpha_0$  then for some i  $(1 \leq i \leq n) G(c_i)$  has a subgraph isomorphic to  $G_i$ .

REMARK 1. It is worth to mention that Theorem 1 is the best possible in the following sense: if for some family  $\mathcal{R}$  of graphs Theorem 1 holds then  $\mathcal{R} \subset \mathcal{Q}$ . We prove that at the end of the paper.

REMARK 2. If we want to formulate a theorem on the analogy of Theorem 1 for k-graphs then the family  $\mathbb{Q}$  will be smaller: in case of k-graphs it contains only the complete graphs and the empty graph of k points. (This shows that Ramsey's theorem can not be stated in case of k-graphs.)

COROLLARY (Ramsey's theorem [3]). For every system of natural numbers  $k_1, k_2, \ldots, k_n$  there exists an  $n_0 = n_0(k_1, k_2, \ldots, k_n)$  with the property: if the complete graph G is coloured with  $c_1, c_2, \ldots, c_n$  and  $|V(G)| > n_0$  then for some i  $G(c_1)$  contains a complete  $k_i$ -graph.

PROOF. If  $G_i = Q^{k_i}$  in Theorem 1 then the number  $n_0 = \alpha_0(Q^{k_1}, \ldots, Q^{k_m}) \times \max_{1 \leq i \leq n} k_i$  has the required property.

The set of vertices  $H \subseteq V(G)$  is said to be independent if for all  $x, y \in H$  $(x, y) \notin E(G)$ . Theorem 1 can be stated in the following form:

THEOREM 2. For every system of graphs  $G_1, G_2, \ldots, G_n \in \mathbb{Q}$  and for every natural number t there exists a natural number  $\alpha_0 = \alpha_0(G_1, G_2, \ldots, G_n, t)$  with the property: if G is a graph coloured with  $c_1, c_2, \ldots, c_n$  and no t + 1 vertices of G are independent, moreover  $\alpha(G) > \alpha_0$  then for some i  $(1 \leq i \leq n) G(c_i)$  contains the graph  $G_i$ .

PROOF. If we colour every edge of G's complement with  $c_{n+1}$  we can apply Theorem 1 with  $G_{n+1} = Q^{t+1}$  and it is obvious that the number  $\alpha_0(G_1, \ldots, G_n, t) = t \cdot \alpha_0(G_1, G_2, \ldots, G_n, Q^{t+1})$  has the required property.

It is worth to mention the special case, when n = 1.

COBOLLARY 1. Let  $H \in \mathbb{Q}$  and t be a natural number. There exists a natural number  $n_0 = n_0(H, t)$  with the property: if G is a graph which does not contain H and no t + 1 vertices of G are independent, then  $\alpha(G) \leq n_0$ .

6 Periodica Mat. 3 (3-4)

### GYÁR FÁS: A RAMSEY-TYPE THEOREM

Finally we formulate Corollary 1 in the following form:

COROLLARY 2. Let r, s be natural numbers,  $s \ge 2$ . There exists a natural number  $n_0 = n_0(r, s)$  so that if a graph G contains no complete r-tuple and the complement of G contains no  $Q_s$  then  $\chi(G) \le n_0$ , where  $\chi(G)$  denotes the chromatic number of G.

# § 2

Let  $\mathcal{A}$  be a family of subsets of a set E. We will denote by  $\gamma(\mathcal{A})$  the smallest integer k for which the following assertion holds: if we have an arbitrary finite system  $\mathcal{F} \subset \mathcal{A}$  any two members of it having non-empty intersection then  $\mathcal{F}$  can be split into k (or fewer) subfamilies each having non-empty intersection. Let  $\gamma(\mathcal{A}) = \infty$  if no such a k exists. We can say that  $\gamma(\mathcal{A})$  is the smallest number of needles required to pierce all members of any finite family of pairwise intersecting sets in  $\mathcal{A}$  (cf. [4], p.128).

The following problem was posed by T. GALLAI: Let  $E_1, E_2, \ldots, E_n$ denote *n* pairwise disjoint copies of the real line  $\mathbb{R}^1$ . An *n*-interval is a set which is expressible as the union of *n* closed intervals of  $E_1, E_2, \ldots, E_n$  respectively. The set of *n*-intervals is denoted by  $\mathfrak{I}_n$ . The problem is: to find the numbers  $\gamma(\mathfrak{I}_n)$   $(n = 1, 2, \ldots)$ .

GALLAI's problem can be formulated in an other form which is a new variant of the problems concerning the existence of common transversals (cf. [4], p.129-132).

We call an n-1 dimensional hyperplane A of  $\mathbb{R}^n$  a p-transversal if A is perpendicular to a coordinate axis.  $\mathfrak{S}^n$  will denote the family of parallelotopes in  $\mathbb{R}^n$  with edges parallel to the coordinate axes. It is easy to see that  $\gamma(\mathfrak{I}_n)$  is the smallest integer k for which the following assertion holds: if  $\mathfrak{F} \subset \mathfrak{S}^n$  is an arbitrary finite family any two members of which admit a common p-transversal then  $\mathfrak{F}$  can be split into k (or fewer) subfamilies each of them admits a common p-transversal.

Clearly  $\gamma(\mathfrak{J}_1) = 1$  (Helly's theorem) and the results  $\gamma(\mathfrak{J}_2) = 2$ ,  $\gamma(\mathfrak{J}_3) = 4$  are proved in [5]. It seems to be difficult to find  $\gamma(\mathfrak{J}_n)$  for  $n \geq 4$ .

Now we introduce the sum of general families. Let  $E_1, E_2, \ldots, E_n$  be pairwise disjoint sets and  $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_n$  be families of subsets of  $E_1, E_2, \ldots, E_n$  respectively. Let  $E = \bigcup_{i=1}^n E_i$  and  $\mathcal{A} = \{A \subset E : A_i = \bigcup_{i=1}^n A_i, A_i \in \mathcal{A}_i\}$ . The family  $\mathcal{A}$  is said to be the sum of the families  $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_n$  and it is denoted by  $\sum_{i=1}^n \mathcal{A}_i$ . Because of the disjointness of the sets  $E_1, E_2, \ldots, E_n$ , two members of  $\sum_{i=1}^n \mathcal{A}_i$  have common points if and only if for at least one i  $(1 \leq i \leq n)$  the *i*-th "components" have common points.

A graph G is called forbidden in the family  $\mathcal{A}$  if G's vertices can not be represented by  $\mathcal{A}$ 's members, that is V(G) can not be injected to  $\mathcal{A}$  so that the images of  $x, y \in V(G)$  are intersecting if and only if  $(x, y) \in E(G)$ . Using the well-known notion of the intersection graphs, we can say that G is forbidden in  $\mathcal{A}$  if G is not an intersection graph of  $\mathcal{A}$ .

Now we can obtain a sufficient condition for  $\gamma(\sum_{i=1}^{n} \mathscr{H}_{i}) < \infty$  from Theorem 1 (apart from some trivial cases it is easy to see that  $\gamma(\mathscr{H}_{i}) < \infty$  (i = 1, 2, ..., n)is a necessary condition for the finiteness of  $\gamma(\sum_{i=1}^{n} \mathscr{H}_{i})$ ).

THEOREM 3. Let  $Q_{k_i}^{l_i} \in \mathbb{Q}$  be a forbidden graph in  $\mathcal{A}_i$  and  $\gamma(\mathcal{A}_i) < \infty$  $(1 \leq i \leq n)$  then  $\gamma(\sum_{i=1}^n \mathcal{A}_i) < \infty$ .

PROOF. Let  $\mathscr{F} \subset \sum_{i=1}^{n} \mathscr{K}_{i}$  be an arbitrary finite system any two members of it having non-empty intersection. The elements of  $\mathscr{F}$  can be set into an one-to-one correspondence to the points of a graph G. Two points  $a, b \in V(G)$ are connected with an edge coloured with i if and only if the corresponding elements A, B of  $\sum_{i=1}^{n} \mathscr{K}_{i}$  have common points in their *i*-th component. So  $G \in \mathscr{K}_{n}$  and Theorem 1 guarantees that G can be covered with  $\alpha_{0}$  complete graphs and since  $\gamma(\mathscr{K}_{i}) < \infty$  the proof is complete.

A family of sets is said to be *t*-independent if the maximal number of its pairwise disjoint sets is *t*. Clearly the 1-independence means that any two sets have non-empty intersection. We denote by  $\gamma_t(\mathcal{A})$  the smallest integer *k* for which any finite *t*-independent family  $\mathcal{F} \subset \mathcal{A}$  can be split into *k* (or fewer) subfamilies each of them having non-empty intersection. It is obvious that  $\gamma_1(\mathcal{A}) = \gamma(\mathcal{A})$ . Now Theorem 2 leads to a generalization of Theorem 3:

THEOREM 4. If  $Q_{k_i}^{l_i} \in \mathfrak{Q}$  is a forbidden graph in  $\mathfrak{K}_i$  and  $\gamma(\mathfrak{K}_i) < \infty$  $(i = 1, 2, \ldots, n)$  then  $\gamma_t(\sum_{i=1}^n \mathfrak{K}_i) < \infty$  for every natural number t.

Now we describe families for which Theorem 3 and Theorem 4 can be applied.

(i) Let  $\mathfrak{I}$  be the family of all closed intervals of the real line  $\mathbb{R}^1$ .  $\gamma(\mathfrak{I}) = 1$ and it is easy to see that the graph  $Q_2$  is forbidden in  $\mathfrak{I}$  (cf. [6]). (If  $\mathscr{A}_1 = \mathscr{A}_2 =$  $= \ldots = \mathscr{A}_n = \mathfrak{I}$  then  $\gamma_i(\Sigma \, \mathscr{A}_i) = \gamma_i(\mathfrak{I}_n) < \infty$  from Theorem 4.)

(ii) We denote by  $\mathfrak{F}^m$  (as above) the family of parallelotopes in  $\mathbb{R}^m$  with edges parallel to the coordinate axes. It can be seen that the graph  $Q_{m+1}$  is forbidden in  $\mathfrak{F}^m$  but  $Q_m$  is not (cf. [7]).  $\gamma(\mathfrak{F}^m) = 1$  is obvious.

#### GYÁRFÁS: A RAMSEY-TYPE THEOREM

(iii) Let T be a tree (connected graph without circuit) and the family of the subtrees of T will be denoted by  $\mathcal{F}$ . It is easy to prove that  $\gamma(\mathcal{F}) = 1$  and the graph  $Q_2$  is forbidden in  $\mathcal{F}$ .

(iv) Let K be a convex polygon in  $\mathbb{R}^2$ . The family of all polygons which can be obtained as the image of K under a positive homothety will be denoted by  $\mathcal{H}(K)$ . It is well-known that  $\gamma(\mathcal{H}(K)) < \infty$  ([4]). We prove that for some k = k(K) the graph  $Q_k$  is forbidden in  $\mathcal{H}(K)$ . In the proof we use the following simple

**PROPOSITION.** If  $K_1$  and  $K_2$  are two convex polygons in  $\mathbb{R}^2$  and  $K_1 \cap K_2 = \emptyset$ then  $K_1$  and  $K_2$  can be separated by a line L which is parallel to an edge of  $K_1$  or to an edge of  $K_2$  ([8]).

Let us denote by  $d_1, d_2, \ldots, d_r$  the directions determined by the edges of K. We assert that the graph  $Q_{r+1}$  is forbidden in  $\mathcal{H}(K)$ . Assume, on the contrary that there exist elements  $A_1, A_2, \ldots, A_{r+1}, B_1, B_2, \ldots, B_{r+1}$  in  $\mathcal{H}(K)$ for which  $A_i \cap B_i = \emptyset$   $(i = 1, 2, \ldots, r+1)$  and  $A_i \cap B_j \neq \emptyset$   $(i \neq j)$ . Let  $A_i^m$  and  $B_i^m$  denote the projections of  $A_i$  and  $B_i$  to the line  $e_m$ , where  $e_m$ is perpendicular to the direction  $d_m$ . Since  $A_i \cap B_i = \emptyset$  therefore the proposition guarantees that for all *i* there exists an m(i) for which  $A_i^{m(i)} \cap B_i^{m(i)} = \emptyset$ . This implies the existence of an *i* and of a *j*  $(i \neq j)$  for which  $m(i) = m(j) = m_0$ , that is  $A_i^{m_0} \cap B_i^{m_0} = \emptyset$ ,  $A_j^{m_0} \cap B_j^{m_0} = \emptyset$  but  $A_i^{m_0} \cap A_j^{m_0}, A_i^{m_0} \cap B_j^{m_0}, B_i^{m_0} \cap A_j^{m_0},$  $B_i^{m_0} \cap B_j^{m_0}$  are obviously nonempty sets, and this is a contradiction since the graph  $Q_2$  is forbidden in  $\vartheta$  (cf. (i)). We note that if  $\mathcal{C}$  denotes the set of circles of radius 1 in the plane then  $Q_k$  is not forbidden in  $\mathcal{C}$ . This can be seen from the following example: let the centres of the 2k circles be the vertices of a regular 2k-gon inscribed to a circle of radius  $1 - \varepsilon$  ( $\varepsilon$  is a sufficiently small positive number).

(v) Let  $\mathfrak{L}$  be a family of lines in  $\mathbb{R}^3$ , no three of them lying in a plane. It is well-known that  $\gamma(\mathfrak{L}) = 1$  and the graph  $Q_1^2$  is obviously forbidden in  $\mathfrak{L}$ .

(vi) Let  $\mathscr{K}_i$  be a family of subsets of the set  $E_i$   $(i = 1, \ldots, s)$ . The family  $\mathscr{K} = \{A \subset \bigvee_{i=1}^s E_i : A = \bigvee_{i=1}^s A_i, A_i \in \mathscr{K}_i\}$  is said to be the Cartesian product of the families  $\mathscr{K}_i$  and it is denoted by  $\bigvee_{i=1}^s \mathscr{K}_i$ . It is easy to prove that if  $\gamma(\mathscr{K}_i) < \infty$  and some graph  $G \in \mathbb{Q}$  is forbidden in  $\mathscr{K}_i$   $(i = 1, 2, \ldots, s)$  then the family  $\bigvee_{i=1}^s \mathscr{K}_i$  inherits these properties. So starting from the examples previously given, we can obtain further examples of families which satisfy the assumptions of Theorem 3 and Theorem 4.

Theorem 4 (and so Theorem 3) does not provide necessary condition for  $\gamma_i (\sum_{i=1}^n \mathcal{H}_i) < \infty$ . This is shown by the following example. Let  $\mathfrak{I}(s)$  denote the

family of all non-empty subsets of  $\mathbb{R}^1$  which are the union of s or fewer closed intervals. J. LEHEL and I proved that  $\gamma(\mathfrak{I}(s)) < \infty([5])$ . On the other hand it is easy to see that no member of  $\mathfrak{Q}$  is forbidden in  $\mathfrak{I}(s)$  if  $s \geq 2$ , but  $\gamma_t\left(\sum_{i=1}^n \mathfrak{I}(s_i)\right) < \infty$  for all  $s_1, s_2, \ldots, s_n, t$ .

Now we turn to the proof of Theorem 1. It is sufficient to prove Theorem 1 in case of  $G_1, G_2, \ldots, G_n \in \{Q_k\}_{k=1}^{\infty}$  since for every graph  $G \in \mathbb{Q}$  there exists an integer k so that  $G \subset Q_k$  (actually  $Q_k^l \subset Q_{k+l}$ ). Therefore we may assume that  $G_1 = Q_{k_1}, \ldots, G_n = Q_{k_n}$ .

We prove by induction on  $k_1, k_2, \ldots, k_n$ . If  $k_i = 1$  for some *i* then Theorem 1 holds for  $\alpha_0(k_1, k_2, \ldots, k_n) = 1$ .

Let us suppose that Theorem 1 holds for the systems  $Q_{k_1}, Q_{k_2}, \ldots, Q_{k_{i-1}}$  $Q_{k_{i-1}}, Q_{k_{i+1}}, \ldots, Q_{k_n}$   $(k_i \ge 2, 1 \le i \le n)$  that is there exists the number  $\alpha_0^i = \alpha_0^i (Q_{k_1}, \ldots, Q_{k_{i-1}}, Q_{k_{i-1}}, Q_{k_{i+1}}, \ldots, Q_{k_n})$  for all  $i \ (1 \le i \le n)$ . The proof is based on the existence of certain types of subgraphs in G.

Let C be a set of colours. We define the C-property for coloured graphs in the following way:

(i) If  $C = \{c\}$  then the graph H enjoys the C-property if  $V(H) = \{p, q\}$ and  $c \notin \mathcal{C}(p,q)$ .

(ii) Let  $C = \{c_1, c_2, \ldots, c_m, c_{m+1}\}$ . We say that the coloured graph H enjoys the C-property if there exists an  $x_H \in V(H)$  so that the graph  $H - x_H$  can be written in the form  $\bigcup_{i=1}^{m+1} T_i$ , where the graph  $T_i$  enjoys the  $C - \{c_i\}$ -property and  $c_i \notin \mathcal{C}(x_H, y)$  if  $y \in V(T_i)$ .

It is clear from the definition that if H enjoys the C-property then  $|V(H)| \leq K$ , where K is a constant depending only on |C|. Now we formulate a simple lemma concerning the C-property.

LEMMA. Let  $G = H \cup \{y\}$  be a coloured graph, the edges between H and  $\{y\}$  are coloured with  $c_1, \ldots, c_n$  and assume that H enjoys the C-property  $(C = \{c_1, \ldots, c_n\})$ . Then for some  $c_j$  and  $p, q \in V(H)$   $c_j \in \mathcal{C}(y, p) \cap \mathcal{C}(y, q)$  and  $c_j \notin \mathcal{C}(p, q)$ .

PROOF. We prove the lemma by induction on |C|. If |C| = 1 the lemma obviously true. Assume the lemma to be true for |C| = n - 1 and let  $H = x_H \cup \bigcup_{i=1}^n T_i$  and  $c_{i_o} \in \mathcal{C}(y, x_H)$ . If  $c_{i_o} \in \mathcal{C}(y, q)$  for some  $q \in V(T_{c_{i_o}})$  then  $c_{i_o}, p = x_H, q$  have the desired property. So we can assume that  $c_{i_o} \notin \mathcal{C}(y, q)$  for all  $q \in V(T_{c_{i_o}})$ . Now we can apply the inductive hypothesis for the graph  $G' = T_{c_{i_o}} \cup \{y\}$  and the lemma follows.

We continue the proof of Theorem 1. Let G be a graph coloured with  $c_1, c_2, \ldots, c_n$  and suppose that  $Q_{k_i} \not\subseteq G(c_i)$ . We investigate two cases.

1. G contains a subgraph H enjoying the C-property, where  $C = \{c_1, c_2, \ldots, c_n\}$ . Let  $p, q \in V(H)$ . We define the graph  $A_{p,q}^i$  as the subgraph of G spanned by the set

$$\{y \in V(G) - V(H): c_i \in \mathcal{C}(y, p) \cap \mathcal{C}(y, q), c_i \notin \mathcal{C}(p, q)\}$$

The graph  $A_{p,q}^{i}$  can be covered with  $\alpha_{0}^{i}$  (or fewer) complete graphs by the inductive hypothesis since  $A_{p,q}^{i}(c_{j})$  does not contain  $Q_{k_{i}}$  for  $j \neq i$  and  $A_{p,q}^{i}(c_{i})$  does not contain  $Q_{k_{i}-1}$ . (If  $Q_{k_{i}-1} \subset A_{p,q}^{i}(c_{i})$  then the subgraph of G spanned by the set  $V(Q_{k_{i}-1}) \cup \{p \cup q\}$  would contain  $Q_{k_{i}}$ .) Moreover, the lemma induces that  $\bigcup \quad V(A_{p,q}^{i}) = V(G) - V(H)$  and as it has been already men- $p_{q,q \in V(H)}^{1 \leq i \leq n}$  tioned  $|V(H)| \leq K(n)$ , so the number of the different  $A_{p,q}^{i}$ -s is at most  $n\binom{K(n)}{2}$ . Therefore the covering of  $G = \bigcup_{p_{j} \in V(H)} \{p_{j}\} \cup \bigcup_{\substack{1 \leq i \leq n \\ p,q \in V(H)}} A_{p,q}^{i}$  consists of at most  $K(n) + n\binom{K(n)}{2} \max \alpha_{0}^{i} = N_{1}$  complete graphs.

2. We assume that G contains no subgraph with the *C*-property. In this case the existence of  $\alpha_0(k_1, k_2, \ldots, k_n)$  can be proved by induction on n. The case n = 1 is trivial. Suppose that the assertion is true for n-1, we define  $L_{c_i}$  as follows:

 $L_{c_i} = \{x \in V(G): \{y \in V(G): c_i \notin \mathcal{C}(x, y)\} \text{ contains no subgraph with the } C - \{c_i\}\text{-property}\}.$ 

Clearly  $\bigcup_{i=1}^{n} L_{c_i} = V(G)$  since G contains no subgraph with the C-property. We may assume that there exist  $p_1, p_2 \in L_{c_i}$  for which  $C_i \notin \mathcal{C}(p_1, p_2)$ . We divide  $L_{c_i}$  into three parts:

$$X_{c_i}^1 = \{x \in L_{c_i} : c_i \notin \mathcal{C}(p_1, x)\}, X_{c_i}^2 = \{x \in L_{c_i} : c_i \notin \mathcal{C}(p_2, x)\}, Y_{c_i} = L_{c_i} - (X_{c_i}^1 \cup X_{c_i}^2) \in X_{c_i}^2 \}$$

The graph spanned by  $Y_{c_i}$  can be covered with  $\alpha_0^i$  complete graphs by the inductive hypothesis concerning  $k_1, k_2, \ldots, k_n$ . Now we consider the graphs spanned by the sets  $X_{c_i}^1$  and  $X_{c_i}^2$ . In consequence of the definition of  $L_{c_i}$  neither of them contains subgraphs with the  $C - \{c_i\}$  property. So we can apply the inductive hypothesis concerning n since  $|C - \{c_i\}| = n - 1$ . We conclude that  $\alpha(G) \leq N_2$  where  $N_2$  depends only on the  $\alpha_0^i$  s and n.

So we can define  $\alpha_0 = \alpha_0(Q_{k_1}, Q_{k_2}, \ldots, Q_{k_n}) = \max(N_1, N_2)$  and the proof of Theorem 1 is complete.

Finally we prove the assertion stated in the first remark after Theorem 1. Let  $\mathfrak{A}$  be a set for which Theorem 1 holds, and assume that  $\mathfrak{A} - \mathfrak{Q} \neq \emptyset$ . Let  $H \in \mathcal{R} - \mathcal{Q}$ . In the complement of H there exists two edges with common endpoints. Thus H contains at least one of the graphs shown in the following figure:



We prove that Theorem 1 does not hold if n = 2 and  $G_1 = G_2 = H_1$ . Let us define the graph  $G'_k \in \mathscr{K}_2$  in the following way:  $V(G'_k) = \{a_{i,j}\}_{i,j=1}^k$ . The edge connecting the points  $a_{ij}$  and  $a_{mn}$  is coloured with  $c_1$  if  $i \neq m$  and coloured with  $c_2$  if  $j \neq n$ . It is easy to see that  $G'_k(c_i)$  (i = 1, 2) does not contain  $H_1$  and  $\alpha(G'_k) = k$ .

We prove that Theorem does not hold if n = 2 and  $G_1 = G_2 = H_2$ . We define the graph  $G_k^{"} \in \mathscr{K}_2$  in the following way: let  $S_k$  be a graph containing no triangles and the chromatic number of which is k. (Such graph exists, cf., for example, [1].) Let  $|S_k| = n_k$ , and A be a copy of  $S_k$ . Let us replace the vertices of A by  $B_1, B_2, \ldots, B_{n_k}$  where  $B_i$  is a copy of  $S_k$ . All edges between  $B_i$  and  $B_j$  are coloured with  $c_1$  if the corresponding vertices of A are connected by an edge. The edges of  $B_i$  are coloured with  $c_2$  and the remaining pairs of points are connected with edges coloured with both  $c_1$  and  $c_2$ . The graph  $G_k^{"}$  obtained in this way enjoys the property:  $G_k^{"}(c_i)$  does not contain  $H_2$  (i = 1, 2),  $\alpha(G_k^{"}) = k$ .

So we got a contradiction since H contains at least one of the graphs  $H_1$ ,  $H_2$ .

The author wish to thank to professor T. GALLAI for his helpful suggestions in the preparation of this paper.

#### GYÁRFÁS: A RAMSEY-TYPE PROBLEM

# REFERENCES

- [1] A. A. ZYKOV, On some properties of linear complexes, Mat. Sb. 24 (66) (1949), 163-188 (in Russian).
- [2] A. HAJNAL und J. SURÁNYI, Über die Auflösung von Graphen in vollständige Teilgraphen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 113-121.
  [3] F. P. RAMSEY, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929-
- 1930), 264-286.
- [4] L. W. DANZER, B. GRÜNBAUM and V. KLEE, Helly's theorem and its relatives, Proc. Sympos. Pure Math., Vol. VII, Providence, 1963, 101-180.
- [5] A. GYÁBFÁS and J. LEHEL, A Helly-type problem in trees, Combinatorial Theory and its Appl. (Colloq. Math. Soc. J. Bolyai 4), Amsterdam—London, 1970, 571–584.
- [6] C. G. LEKKERKERKER and J. C. BOLAND, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962-63), 45-64.
- [7] F. S. ROBERTS, On the boxicity and cubicity of a graph, Recent Progress in Combi-natorics (Proc. Third Waterloo Conf. on Combinatorics, 1968), New York, 1969, 301 - 310.
- [8] D. G. BOURGIN, Restricted separation of polyhedra, Portugaliae Math. 11 (1952), 133-136.

# (Received July 16, 1970)

MTA SZÁMÍTÁSTECHNIKAI KÖZPONTJA H-1250 BUDAPEST ÚRI U. 49. HUNGARY