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A RAMSEY-TYPE THEOREM AND ITS APPLICATION TO
RELATIVES OF HELLY’'S THEOREM

by
A. QYARFAS (Budapest)

Introduetion

- We say that H is a forbidden graph in the set of graphs @ if no G €D
contains a spanned subgraph isomorphic to H.

Forbidden graphs play an important role in many problems of graph
theory (interval-graphs, comparability graphs, perfect graphs, etc.). They relate
closely to the “covering number” «(@) of a graph @ («(G) denotes the smallest
integer £ for which G’s vertices can be covered with k complete subgraphs of
&). Clearly «(@) = @(@) where ¢(G) denotes the maximal number of G’s pair-
wise independent vertices. Generally «(G) > ¢(@), moreover «(GF) can be ar-
bitrary large if ¢(@) > 2 is fixed ([1]). The graphs for which «(@) =¢(G) are
investigated in many papers. According to a theorem of HaINAL and SURANYI
a(@) = (@) if G€§, where the n-gons (n = 4,5, ...) are forbidden graphs
in G ([2]). - -

If we take the assumption that for some % the complete k-graph is for--
bidden in the set of graphs §, then «(¢) << ¢’ where C depends only on % and
#(@) but does not depend on the number of G’s vertices (G € §). This can be
derived at once from the following special case of a well-known theorem of
Rawmsey ([8], n = 2, bk, =k, ky = ¢(G) + 1):

TrEOREM (Ramsey). For every system of natural numbers ki, ky, . . ., ky
there exists a natural number N with the properly: if we split the edges of a
complete k-tuple G, info n classes and Gy, contains no complete ki-tuple the edges
of which are in the i-th class, then k < N.

Let G, be a complete graph the edges of which are divided into » classes.
Equivalently we can say that the edges of ¢, are coloured with » colours. We
define «(@,) as the smallest number ¢ for which V(G,) can be covered with ¢
complete one-coloured subgraphs of G,,. It is easy to see that if ¢, contains
no complete k;-graph, the edges of which are coloured with the i-th colour,
then the statement £ << N in Ramsey’s theorem is equivalent with «(G,) < C,
where C' depends only on %, ks, - .., k%, Theorem 1 provides more general
conditions for the boundedness of «(&,). In Ramsey’s theorem the forbidden
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subgraphs are complete graphs, and we replace them by a more general class
Q of graphs defined in§1. It is worth to mention that the class Q includes all
the forbidden graphs for which we can state that «((,) is bounded.

We note that an edge of &, can be coloured with more than one colour.
This is an essential and natural assumption since the forbidden graphs are not
the complete graphs only.

In § 2 we formulate. a geometrical consequence of Theorem 1 which
can be considered as a Helly-type theorem. It arose in connection with a
problem of T. Garra1 and this problem was the starting point of the investi-
gations of the present paper.

§1
Let G = (V(@); E(#) be a graph. (Here, and in what follows every
graph is undirected, loops and multiple edges are not permitted.) The graph
H = (V(H); E(H)) is said to be a subgraph of G if V(H)C V(@) and
(z,y) € E(H)if and only if (x, y) € E(G) that is H is considered as a subgraph

of @ if and only if H is “spanned’ by some subset of V(G). To indicate that
H is a subgraph of G we use the symbol H C G.

Let C = {cy, ¢y, . . ., Cn} be aset, the elements of C will be called colours.
We say that a graph @ is coloured with the colours ¢, ¢y, . . ., ¢, if we have a
function € on B(G) to the set of non-empty subsets of C'. In other words we can
say that every edge of G is coloured with at least one colour chosen from the
set C'. The value of the function @ at the edge (z, ¥) will be denoted by @ (z, y),
that is € (z, y) denotes the colours with which the edge (z, y) is coloured. If
G is a coloured graph and @’ C @ then G’ can be considered also as a coloured
graph. - ‘

If the graph G is coloured with ¢, ¢y, ..., ¢, then G(c¢,) denotes the
graph the vertex set of which is V(&) and (z, y) € E(G (¢;)) if and only i
¢;€C(z, y). The set of complete graphs coloured with n colours is denoted by &{,

Let @ be a graph coloured with ¢y, ¢,, . . ., ¢,. We say that @ is covered’
with the complete graphs Gy, G,, ..., G, if V(G) = .6 V(&) and for all j

j=1
there exists an i so that G(c;) is a complete graph. (&) will denote the smallest
integer k for which @ can be covered with & complete graphs.

Now we define a family Q of graphs as follows: let £, 7 be non-negative
integers, at least one of them differs from 0. The graph @ is defined in the
following way: | V(Qr) | =2k + 1 and the complement of Q' contains &
edgeé no two of them have a common endpoint. The graphs @} (the complete
I-tuple) and @), will be denoted shortly by Q' and Q. The set of graphs in the
form Qf will be denoted by Q. Some members of @ can be seen in the following
figure. ’
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- Ot
Q1=Q1 Q3=Q2

-

Fig. 1

An important property of Q is that if 4€Q and B C 4 then BeQ
(B == 0). Now we can formulate Theorem 1 and Theorem 2,

TuroreM 1. For every system of graphs G, Gy, . . ., G, € Q there exists an
oy = ao(Gy, Gy, « . ., Gy) with the property: if the complete graph G is coloured
with ¢, ¢y, - . o, Cq ond (@) > a, then for some 3 (1 < i <Z n) G(c¢;) has a sub-

graph isomorphic to G.

ReEmark 1. It is worth to mention that Theorem 1 is the best possible
in the following sense: if for some family & of graphs Theorem 1 holds then
R C Q. We prove that at the end of the paper.

ReMArK 2. If we want to formulate a theorem on the analogy of Theorem
1 for k-graphs then the family @ will be smaller: in case of k-graphs it contains
only the complete graphs and the empty graph of k points. (This shows that
Ramsey’s theorem can not be stated in case of k-graphs.)

- CororrarY (Ramsey’s theorem [3]). For every system of natural numbers
kyy by oo, ky there exists an ng = nglky, ko - -+ s kn) with the property: if the
complete graph G is coloured with ¢y, ¢y, . . ., ¢y and | V(Q)| > n, then for some i
G(c;). contains o complete kei-graph.

ProOF. If G,= % in Theorem 1 then the number 1y =@, . . ., Q™) X

X max k; has the required property.
1<i<n

The set of vertices H C V(@) is said to be independent if for all z, y € H
(w, y) ¢ E(@). Theorem 1 can be stated in the following form:

THEOREM 2. For every system of graphs G, Gy, . .. ' G, € Q and for every
notural number t there exists a natural number ay = oy(Gy, Gy, - . ., Gy, 1) with
the property: if G is a graph coloured with ¢, ¢y, ..., ¢y and no t + 1 vertices

of G are independent, moreover o(@) > o, then for some i (1 < i < n) G(¢;) con-
tains the graph G;.

11
Proor. If we colour every edge of s complement with ¢,,, we can apply
Theorem 1 with G, ,, =@Q'* ' and it is obvious that the numbel og(Gys - oo, Oy 1) =
= Log(Gy, Gy, . . o, Gy, Q1Y) has the required property.
It is worth to mention the special case, when n = 1.

CoROLLARY 1. Let H € & and t be a natural number. There exists o natural
number ny = ny(H, t) with the property: if G is a graph which does nol confain
H and no t + 1 vertices of G are independent, then o(G) << n,.

6 Periodica Mat. 3 (3—4)
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Finally we formulate Corollary 1 in the following form:

COROLLARY 2. Let r, s be natural nwmbers, s > 2. There exists a natural
number ny = ny(r, 8) so that if a graph G contains no complete r-tuple and
the complement of G contains no Q, then (@) << ny, where y(G) denotes the chro-
matic number of G. '

§ 2

Let ol be a family of subsets of a set B. We will denote by y(efl) the smal-
lest integer £ for which the following assertion holds: if we have an arbitrary
finite system & C of any two members of it having non-empty intersection
then & can be split into £ (or fewer) subfamilies each having non-empty in-
tersection. Let y(cfl) = oo if no such a k exists. We can say that y(cf) is the
smallest number of needles required to pierce all members of any finite family
of pairwise intersecting sets in of (cf. [4], p.128).

The following problem was posed by T. Garrvar: Let B, &,, ..., H,
denote 7 pairwise disjoint copies of the real line R*. An n-interval is a set which
is expressible as the union of » closed intervals of B, E,, . . ., E, respectively.

The set of n-intervals is denoted by J,. The problem is: to flnd the numbers
y&) (=1, 2, ...).

GALLAT’s problem can be formulated in an other form which is a new
variant of the problems concerning the exwtence of common -transversals
(cf. [4], p.129—132).

We call an n—1 dlmensmnal hyperplane 4 of R" a p-transversal if A4 is
" perpendicular to a coordinate axis. §" will denote the family of parallelotopes
in R" with edges parallel to the coordinate axes. It is easy to see that y(8,) is
the smallest integer % for which the following assertion holds: if § C §" is an
arbitrary finite family any two members of which admit a common p-trans-
versal then & can be split into £ (or fewer) subfamilies each of them admits a
common p-transversal.

Clearly p(8,) = 1 (Helly’s theorem) and the results y(8,) = 2, y(J;) = 4
are proved in [5]. It seems to be difficult to find y(3,) for n > 4.

Now we introduce the sum of general families. Let Z,, B,, ..., B, be
pairwise disjoint sets and oﬂl, A, ..., o, be families of subsets of B, B,, ..., E,
respectively. Let H = U B; and A = {A CH: A4 = U Ay, A; €A}, The

i=1

family ofl is said to be the sum of the families ofl,, QJZZ, ..., A, and it is
n .
" denoted: by 2 of;. Because of the disjointness of the sets H,, B,, ..., B,
=1 .

- n
two members of >'of; have common points if and only if for at least one 4
=1
(1 < v < ») the i-th “components” have common points.
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A graph G is called forbidden in the family of if G’s vertices can not be
represented by oU's members, thatis V(G) can not be injected to o so that the
images of x, y € V(G) are intersecting if and only if (z, y) € B(@). Using the
well-known notion of the intersection graphs, we can say that @ is forbidden
in of if & is not an intersection graph Of oA.

Now we can obtain a sufficient condltlon fory 2 of;) < oo from Theorem 1
i=1
(apart from some trivial cases it is easy to see that y(ofl;) < oo (1=1,2,..., n)

. n
is a necessary condition for the finiteness of y( > of;)).
i=1

THEOREM 3. Let Qi€ Q be a forbidden graph in oR; and p(fy) < oo
(1< i < n) then p( > RAy) < oo
' - i=1

n
Proor. Let &§ C X ofl; be an arbitrary finite system any two members
i= 1
of it having non-empty intersection. The elements of & can be set into an

one-to-one correspondence to the points of a graph . Two points a,b € V(&)
are connected with an edge coloured with ¢ if and only if the correspond-

ing elements 4, B of Zn' oA; have common points in their i-th component. So

i=1 ‘ :
G € K, and Theorem 1 guarantees that G can be covered with o, complete
graphs and since y(of;) <7 oo the proof is complete.

A family of sets is said to be t-independent if the maximal number of
its pairwise disjoint sets is £. Clearly the l-independence means that any two
sets have non-empty intersection. We denote by y(cf) the smallest integer &
for which any finite {-independent family & C of can be split into £ (or fewer)
subfamilies each of them having non-empty intersection. It is obvious that
(1) = y(o). Now Theorem 2 leads to a generalization of Theorem 3:

TEEOREM 4. If Qkie& is a forbidden graph in o and p(f;) < oo
(t=1,2,..., n)then y,( > A;) < oo for every natural number f.
=1

Now we describe families for which Theorem 3 and Theorem 4 can be
applied.

(i) Let & be the family of all closed intervals of the real line B, p(d) =1
and it is easy to see that the graph @, is forbidden in J (cf. [6]). (If A, = Ay =
= ...=of, = J then y(Z A;) = 14(8,) < oo from Theorem 4.)

(ii) We denote by " (as above) the family of parallelotopes in R™

with edges parallel to the coordinate axes. It can be seen that the graph
Qm+ 1 is forbidden in §" but @, is not (cf. [7]). (&™) = 1 is obvious.

6
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(iii) Let 7' be a tree (connected graph without circuit) and the family of
the subtrees of 7' will be denoted by &. It is easy to prove that y(F) =1 and
the graph ¢, is forbidden in &

(iv) Let K be a convex polygon in R2. The family of all polygons which
can be obtained as the image of K under a positive homothety will be denoted
by #(K). It is well-known that »(¥(K)) << oo ([4]). We prove that for some
k = k(K) the graph @, is forbidden in ¥(K). In the proof we use the following
simple

Prorosition. If K, and K, are two convex polygonsin R2and K; N K,— @
then K and K, can be separated by a line L which is parallel to an edge of K; or
fo an edge of K, ([87).

Let us denote by dy, ds, . . ., d, the directions determined by the edges
of K. We assert that the graph ¢, ., is forbidden in ¥(K). Assume, on the con-
trary that there exist elements A4, 4,, ..., 4,41, By, By, ..., By1y in H(K)
for which 4, NB;=¢ (¢i=1,2, ...,r+1) and 4, NB;=0 (i==}).
Let AT and BT denote the projections of A; and B; to the line ¢,,, where ey,
is perpendicular to the direction d,,. Since 4; N B; = & therefore the proposition
guarantees that for all i there exists an m(i) for which A7? N BI'® = @. This
implies the existence of an ¢ and of a j (i = j) for which m(i) = m(j) = m,,
that is A7 N B = @, A7 N Bl =@ but AT N A7, AT 0 B, B N A",
B Bj*% are obviously nonempty sets, and this is a contradiction
since the graph @), is forbidden in & (cf. (i)). We note that if € denotes the
set of circles of radius 1 in the plane then @y, is not forbidden in €. This can be
seen from the following example: let the centres of the 2k circles be the verti-
ces of a regular 2k-gon inscribed to a circle of radius 1 —e& (eis a sufficiently
small positive number).

(v) Let € be a family of lines in R?, no three of them lying in a plane.
It is well-known that y(€) = 1 and the graph ¢ is obviously forbidden in §.

(vi) Let oR,; be a family of subsets of the set B, (i =1, ..., s). The
family ol = {4 C X B : 4= X A; A; €} is said to be the Cartesian
product of the f&ml]les A, and 1t is denoted by X oA;. It is easy to prove

i=1

that if y(of;) < oo and some graph G € Q is forbidden in ofl; (t = 1, 2, ,8)

then the family X ofl; inherits these properties. So starting from the exam-
i=1

ples previously given, we can obtain further examples of families which

satisfy the assumptions of Theorem 3 and Theorem 4.

Theorem 4 (and so Theorem 3) does not provide necessary condition for

n
yi (X ofl;) < oo. This is shown by the following example. Let d(s) denote the

i=1
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family of all non-empty subsets of R! which are the union of s or fewer closed
intervals. J. LEngL and I proved that y (8(s)) <C oo ([5]). On the other hand
it is easy to see that no member of Q is forbidden in J(s) if s = 2, but

n

ye (D 8(s))) < oo forall s, s,, . . ., Sy £

i=1

Now we turn to the proof of Theorem 1. It is sufficient to prove Theorem
1 in case of Gy, G,, . . ., G4 € {Q};_, since for every graph G € Q there exists
an integer k so that G C @, (actually Q% C Qi41). Therefore we may assume
that ¢4 = Qi ..., Gn = Q.

We prove by induction on %y, ks, . . . , k. If k; = 1 for some 4 then Theo-
rem 1 holds for o (k, ke, ..., k,) = 1.

Let us suppose that Theorem 1 holds for the systems @, Qu,, - - ., @, _,
Qk v Q- @i, (ki =2, 1 < i < n) that is there exists the number
g = otg (@, - - - @, Qs Qic; s - - - » Q) for all4 (1 < ¢ < n). The proof is
based on the existence of certain types of subgraphs in G.

Let C be a set of colours. We define the C-property for coloured graphs
in the following way:

(i) If O = {c} then the graph H enjoys the C-property if V(H) = {p, ¢}
and ¢ ¢ C(p, q).

(i) Let C = {¢;, ¢, .. . Cmy Cmy1}- We say that the coloured graph H
enjoys the C-property if there exists an xy € V(H) so that the graph H — zy

m+1

can be written in the form |J 7', where the graph T enJoys the C — {c,}

i=1
property and c; § C{xy, y) if y € V(T;).
It is clear from the definition that if H enjoys the C-property then
|V(H)| < K, where K is a constant depending only on |C|. Now we formu-
late a simple lemma concerning the C-property. '

Levma. Let G = H U {y} be a coloured graph, the edges between H and
{y} are colourel withc, ..., ¢, and assume that H enjoys the C-property
(C ={cy.....cn}). Then for some ¢; and p, g€V (H) Lcj € Cy, p)NCly,q)
and ¢; ¢ C(p,q) . '

Proor. We prove the lemma by induction on |C|. If |C'| = 1 the lem-
ma obviously true. Assume the lemma to be true for |G| =n — 1 and let
H=2yU U Ti and ¢ €Cly, xy). If ¢; €Cly,q) for some ¢ € V(T¢,) then

i=1 ,
¢;» » = ¥u, q have the desired property. So we can assume that ¢; ¢ Cly, ¢)
for all g € V(T',). Now we can apply the inductive hypothesis for the graph
G =T, U {J} and the lemma follows.

We continue the proof of Theorem 1. Let G be a graph coloured with
¢y, €y + - -5 Cp and suppose that @, & G(c;). We investigate two cases.
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1. G contains a subgraph H enjoying the C-property, where ¢ =
= {¢;,Cs. - ., Cn}. Let p,q € V(H). We define the graph A4,, as the subgraph
of G spanned by the set

{ye V(@) — V(H): ¢;€Cly, ») NCy,q), ¢; § Cp,q)} .

" The graph A4, p,q €an be covered with oy (or fewer) complete graphs by the
inductive hypothes1s since qu (¢cj) does not contain Qk for j=<i and 4, (c,)
does not contain @y ;. (If @4, C Ap ¢(c;) then the subgraph of @& spanned
by the set V(Qy_.) U {p U q} would contain @.) Moreover, the lemma
. induces that (U V(d4p,) = V(@) — V(H) and as it has been already men-

1<i<n
D€ V(H)

tloned | V(H ] ), so the number of the different A5 a8 is at

most n

Kn )) Therefore the covering of @ G= U {p}w U 4b,
pie V(H) 1<i<n
' p,q€ V(H)
max &) = N, complete graphs.
i

consists of at most K(n) + n (K;n)

2. We assume that @ contains no subgraph with the C-property. In
this case the existence of ay(k,, k5, . . ., £,) can be proved by induction on n.
Thie case n = 1'is trivial. Suppose that the assertion is true for n— 1, we define
L, as follows: '

L, = {x EV(G): {yeV(@): ¢; ¢C(z,y)} contains no subgraph with the
C — {¢;}-property}.
Clearly U Le, = V(@) since G contains no subgraph with the C-property.

We may assume thafc there exist p,, p, € L, for which 0; ¢ €(p,, pz) We divide
L, into three parts:

X: = {z€ Ly ¢, § Cpya)}, Xo={w € Le, : ;6 Cpy, )}, Vo, = L, — (X1, U X2).

The graph spanned by Y. can be covered with o, complete graphs by
the inductive hypothesis concerning k;, &y, ..., k,. Now we consider the
graphs spanned by the sets X, and X7. In consequence of the definition of
L., neither of them contains subgraphs with the ¢ — {c¢;} property. So we

can apply the inductive hypothesis congerning »n since |C — {¢;}| =n — 1.
We conclude that «(G) << N, where N, depends only on the «;-s and #.
So we can define oy = (@, @i, - - -, @k) = max (N, N,) and the

proof of Theorem 1 is complete.

Finally we prove the assertion stated in the first remark after Theorem 1-
Let & be. a set for. which Theorem 1 holds, and assume that &—-Q > g.
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et HeR — Q. In the complement of H there exists two edges with common
endpoints. Thus H contains at least one of the graphs shown in the following
figure:

//p\\ //,Q\\

, N / N
AR - I 2o
H1 H2

Fig. 2

We prove that Theorem 1 does not hold if » = 2 and G4y = G, = H,.
Let us define the graph G4 €3, in the following way: V(&%) = {a;} =1
The edge connecting the points a;; and @, is coloured with ¢, if ¢ 54 m and
coloured with ¢, if j = n. It is easy to see that Gy, (¢;) (¢ = 1,2) does not con-
tain H, and «(G;) = k. '

*We prove that Theorem does not hold if » = 2 and @, = G, = H,. We
define the graph G4 ¢ &, in the following way: let S, be a graph containing
no triangles and the chromatic number of which is k. (Such graph exists, cf.,
for example, [1].) Let \Ski = ny, and 4 be a copy of S;. Let us replace the
vertices of 4 by By, B,, ..., B, where B; is a copy of 8. All edges between
B; and B; are coloured with ¢, if the corresponding vertices of 4 are connected
by an edge. The edges of B; are coloured with ¢, and the remaining pairs of
points are connected with edges coloured with both ¢, and c,. The graph Gy
obtained in this way enjoys the property: Gy (c;) does not contain H, (i = 1, 2),
a(Gy) =k .

So we got a obntradictioq since H contains at least one of the graphs
H,, H,.

The author wish to thank to professor T. Garraz for his helpful sugges-
tions in the preparation.of this paper.
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