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In our paper we present some results in connection with a

~ problem of T. GALLAIL

RpRyyesR will denote ¢ distinct parallel lines in the plane.

Cc
[+

Let I, be a closed interval of R, then the set A= (U L, issaidiobeac-
=1

interval, I, is the k-th component of A.

Let # ={A’} be an arbitrary finite family of c -intervals, any two
of them having common points. It is well known that in case ¢ =4 the set N A’
: Aesh
is non-empty, or which means the same, there exists a point p so that

pNA + ¢ (Ae#). (This is Helly’ s theorem in one-dimension, )

T. GALLAI has posed the problem for ¢ “intervals: to find the least
Cc
integer {(c) for which there is a set kaU Ry of 4(c) points that
=1
PAA"+¢ (A’ec%). We may assume that P consists of endpoints of the

components of A -s,

In the first part we prove the existence of, £L(c),(Theorem 1.) and
we show that £(2)=2,£(3)=4 (Theorem 2,and Theorem 4.) Theorem 2, was
proved by J. Surdnyi and L. Surényi, independent from us.
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Now we formulate the problem which we are dealing with in the
second pait: instead of distinct lines we suppose that R4;R,,..., R¢ coincide,
We define 4*(c) in this case on the analogy of &£(c). It is clear that L(c)e¥(c).
We will prove that £*(c) exists,'(Theorem 5.) and 4*(2) = 3(Theorem 6,)

Replacing the lines by trees (a tree is a connected graph without
circuits) and the intervals by subtrees, all the theorems mentioned above
remain true. In particular, if every tree is a path, our problem is equivalent
to the original one. This generalization was suggested by L. Lovdsz, who

proved Theorem 2. in this form.

For the sake of simplicity we only sketch the proofs for trees

unless they demand different methods as in case of Theorem 6,

I.

Without restriction of generality we may assume that the c-intervals

have no common endpoints,

A family of sets is said to be t-independent if the maximal number
of its pairwise disjoint sets is t. A family of pairwise intersecting sets is
clearly 1-independent, For t-independent c-intervals 44(c) is defined similar

to £(c). It is obvious that £,(c) = £(c). ?;t(‘i) =t according to a theorem of
Hajnal and Surdnyi. [1]

The existence of 44(c) follows from
THEOREM 1. £4(0)% LrCc-t) +t  where T=[(t+1) '-1]+ %

In the proof we use the following

. 14%° 29%° £qt°
LEMMA: let fc1={x3}j=1 , &v2={xj}j=1, vy Ry = {xj}j=1
be systems of pairwise disjoint c-intervals. Then we can choose from
g fy, o, Ry the c¢c-intervals XL N ijz ey X}; which are also pairwise
disjoint. ’

PROOF: we prove by induction on ¢.
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(i) In case of ¢ =1 we may assume the disjoint (1-)intervals to follow
one another from left to the right, Let us choose the index i,€{1,2, ot}
for which the right endpoint of XLJ is to the extreme left, We continue the
process by choosing an i, e {4,2,...,t}-{{,} for which the right endpoint of
X;Z is to the extreme left, and so on. This procedure obviously leads to an

' interval-system of the desired property,

't - Xiz x:3
i ———————
42 == =2 i

. .tC

(ii) Supposing the Lemma to be true for c-1, let {Xg}j_1

be a system of ¢ -intervals satisfying the assumptions of the Lemma.
(i=1,2,-..,%). We may suppose that for every L the first components of

X(,: ) X;_ 3oy X‘{';c follow one another from left to the right on R4. Let Yk‘L be

the convex hull of the union of the first components of sz_ﬂt““‘m »
i v
Xy g hp 00 X gemt - :
1 1
r \D : 3 [ Yi -
R1 D % hue & 4 ] h—a—r—-—J
1 % = X$ "
E v > Yi
1 4
- Xy Xy
Rq ' - =
s N 4 ) s
Xy L ¥
The intervals Y; are pairwise disjoint for all i, so because of (i)
we can choose the pairwise disjoint intervals Yj1 - ,th . We apply the
1 t
j‘:tc—1

inductive hypothesis for the last components of the system {XLV} N
V= JL- +

The t pairwise disjoint c-intervals with their first components are t pairwise

disjoint c-intervals, which completes the proof.

Proof of Theorem 1.: let {A’} be a t-independent system of c-

intervals, A" = IYUBY where I" is the first component of A” (B’ is a (c-1)-
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interval). We define a sequenee of points of R, ‘as follows: Py=-o and B. is
to the extreme right with the property: the system {B”: I°c(P_,,P )}

is [ce+1°7'24] -independent. ((a,b) and (a,b] mean open and half-closed
intervals). As a consequence of the definition of P., there exists an

I"c (P._4,» P.) so that the right endpoint of 1% is P., moreover the
system {B”: I’c (P._,,P.1} s ST -independent, so it contains a
pairwise disjoint subsystem X, ~oiy X(g41ye-t It follows from the Lemma

(applying to t+1 and.c-1)that P, , = +co . We decompose the system {Av}

into two parts:

44 .
{A} = U1{AV: I"C(P‘,_,',Pr)} U{A’: P,e1” for some s (12sst)}
o ,

It is clear that the system of (c-1)-intervals BY belonging to the A’-s of the
first part of the decomposition is sl g ] -independent and the theorem

follows. The simple consequence of this theorem is
THEOREM 2. L(2)=2

PROOF: because of 4(2)=4,(2)£4,(1)+1 =2 we only have to

prove £(2)22 which is obvious from the following simple example:

R, i » 1 —i

R, e i—- —r o md

We will prove that Theorem 2. also holds under more general
assumptions, For this purpose we need the notion of the interval-graph,
A finite graph G is called an interval-graph if its vertices are in an one-to-one
correspondence to an interval-system of the real line, and two vertices are
connected if and only if the corresponding intervals have common points,
A well-known property of interval-graphs is that they do not contain circuits
without chords. Let’s suppose that we have an one-to-one correspondence

between the vertices of a complete graph G and the members of a system -of
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pairwise intersecting 2-intervals. The edge between two vertices of G is
colourédwith red (with blue) if the corresponding 2-intervals meet each other

in their first (second) components. Clearly G is an interval-graph if we consider
only its edges of one cqloui. Now it is easy to see that Theorem 2. follows from

the following

THEOREM 3. Let G be a complete graph, and its edges E(G)
coloured with red -and blue. (An edge may be coloured with both colours,) Let
us suppose that G contains neither blue nor red circuits of length 4 and 5
without chords. Then V(G) = V(R) U V(B) where R and B complete red and
blue subgraphs. (We denote the set of H’s vertices by V(H)) .

. PROOF: by induction on the number of G’s vertices, For

[V(G)] =2 the theorem holds. Supposing that it is true for {|V(G)|=n, let G
be a graph of the desired property with {V(G)! = n+1. If peV(G) then
V(G-1p}) = V(R) U V(B) ., Let R, and B_ be the subgraphs of R and B with
which p is connected only with blue and red edges respectively. It is clear that
[V(Ry)) and [V(B.)| # O, otherwise we have nothing to prove. Let us
choose the decomposition of V (G;{p}) so that [V(B.)| + | V(Ry)| should be

minimal. Let us consider a qeV(B,). Because of the minimality there exists
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a red circuit without chords. Analogously we may suppose that in case of
weV(RY) ‘there exists a ve V(B.) such that (u,v) is not blue, Now it
follows that there is a circuit in G with points alternately to V(Ry) and V(B,)
and its edges are alternately blue and red. Let us consider the circuit C of
minimal lenght of such type. It is easy to see that C is of length 4, so p and
the points of C determine a circuit of length 5 without chords. This

contradiction proves the theorem.
THEOREM 4. £03) = 4

PROOF: the following example shows that £(3)24 :

Let & ={A’} be a system of 3-intervals, any two of them having
common points, A’ = I: v I‘; U I‘; » PeR, and QeR, are two points given

arbitrarily.

Let us decompose & as follows: & = &,,(P,Q) U #,,(P,Q)v
Ul (PR) Uk, (PQ) UB(P,Q) where

by(PQ) = {A: Ic(-w,P) I, c(-0,Q)}
P = { A IV c(-w,P) 1;c(Q,+w)}
Bp(P@) = { A IJc(P+o) I c(-0,Q)}
Bpp(PQ) = { A 1) C(Proo) I (@,+)}

B(PR) ={A: (IJuI}dn{rPa} + ¢}
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In the proof we often use the following simple proposition: let {XL}‘
and {Y;} be two systems of intervals, X; N Yj #¢ forall i and j, then NX;

or I’Wj is non-empty.

The third components of the 3-intervals from #£,(P,Q) and
#,,(P.Q) satisfy the assumptions of this proposition, so we conclude that one
of them has common points. The same reasoning can be applied to &,,(P,Q)
and &zq(P, ®). Because of the symmetry we may suppose that the two systems

are £,,(P,Q) and #,,(P,@) thatis (3 I3 #¢ and () I3 #¢.
Rk (P,Q) - Rer,PRQ)

We wish to emphasize that the two systems depend on P and Q which
is denoted shortly by {P,Q} — <11,42>. Now we want to define the points P*
and Q* so that {P¥* @*} — <#,12,21,22> holds. Let P¥*= {p,gi‘iﬁng
(The lines are considered as sets ordered in the usual way.) P* is the right
endpoint of one and only one interval, Let Q be an arbitrary point of R, for
which {P*Q} —<41,12>. It is clear from the definition of P* that if K p¥ p1)
contains no endpoints of I:—s, then {P)Q} — <11,12> is false, so for example
A"ek(q\?(P’,Q) I s empty. This means that if P¥ is the right endpoint of the |
component I:‘ then A" eﬁ:ﬂ(P),Q) and there exists an I°1‘ where A%e .&41(9’5@)

so that I‘a"n 13 = ¢. Thus ) I_;)’ +¢ that is { P* Q}-><11,12,22>.
Ave &21( p‘) Q)
o vq gp\* p’ - C Yy p¥ p’

R1 * ¢ — , ) Py @ -
R . ™ N 9 L8 9 q A

2T P 212(P*Q) R01(PQY &2 (PN L12(PTQ"
R #—1 ol —1 — [ 1: [ v, 3

3 V1 T T | WS |

25,(P%Q) , IWCH N
Q* is defined similarly: R¥= min Q ( Q¥ is the

. . . P Qi< 2,225
left endpoint of one and only one interval, )
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If A\Hejtw_(?’,Q*') then {P’,Q*} — <M,12,22> is false, so
there exists an APe %, (P*Q@*)  for which I;’ nih = ¢, that is
{P¥Q*} — <11,12,22,21)> .

It follows that ATe &, (P,Q*)  since Q*4 I,', so there is an
Aed,, (P,Q*) so that I? N I)S3 =¢. If [Q,Q¥) does not contain endpoints,
then {P*% Q'} — <11,42,22) is false because of the minimality of Q*. Let
Q@* be the left endpoint of the interval Iv; . In case of A2¢ %o (PXQ")  every
element of the set {Ig: Nek,p(P{Q)Y  meets Ii and I% , this also holds

v . o
for ]:32 which contradicts to the minimality of Q¥.

We conclude that A'%e #,,(P%Q")  so we can find an Aoe %,,(PEQ5)
so that I3NT32= ¢, Thus {P%Q*} —<M,12,2221> {T: Ned, (PQ1U&,,(PEQ*)]
and {I}: Ae&,, (P Q% U &MCP*,Q*)} are interval-systems of non-empty
intersection, so we can choose the points R and S from these intersections,

It is clear that for all A’, {P*Q% R,S}n A"+ ¢ which proves the theorem.
We close the first part with a note,

Let us suppose that & is a system of ¢ -intervals, any k of them
having common points, 4%(c) is defined in a similar manner as {(c) above.
It is easy to see that {K(c)=1 if kz2c. The following scheme shows the values

of %) known to us.

el 2 3 i 5
2| 2 4

31 2 3

b1 2 2
541 2 2

6| 1 1 2 2

II.

Let A” be a subset of the real line R which is expressible as the" .
union of ¢ disjoint closed intervals., A’ is also called shortly c¢-interval. Let
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L:(c) be the least integer so that for every t-independent finite family
% ={A’} there exists a set {P;} c R with the property: {P.} N A’ £ ¢ if Aleh
and [{P;}] = £Cc) . Obviously 431 = {1 =t.

The existence of J&Z (¢) follows from
* % c-1 et ¥ L
THEOREM 5. £;(e)< [£7Ce-D) - L4(0r+2 [4{(e-1)
C=1

This estimate is generally very far from being the best, We only

sketch the proof:

If A”=1%01%0..017 (the components are indexed from leZ.
to the right) and ®,={B}} is the system of (c-1)-intervals derived from A’ by
replacing I‘.I> and 1‘;_ with their convex hull. There exists a set P,cR of

82(0—1) elements having the property:
Pn B\; + ¢ if B‘;e 31 and Pe’P1

We delete the sets A’ for which Pn A’ + ¢ and repeat the same
reasoning by taking the system B, ={B}} where B, is the c-f -interval of

components I}, conv{l} U 133 LA o4

. » Whichyields the set ?,. We

choose a point @ of fPQ_, and delete from iB?_ the sets B\;_ for which Q(TB; + ¢
Applying this method ¢-4 times, we see the remaining system #’ "separated”
by the points P,Q,... and as a consequence of Theorem 1. there is a set %
(depending on the choice of P,Q,...) of £,(c) elements enjoying the property:
PAN # ¢ if Ae &, This is repeated for every choice of Pe?,, Q €Py, .

and the theorem follows,

‘From this theorem 4%*(2)2 4*(4).2+1 = 3. This is the best

estimate of £¥(2) as will be shown in Theorem 6,

Now we generalize the problems considered above in the following
manner, We replace the real lines, intervals and c -intervals by trees, subtrees

and forests of ¢ components, (c-forests for the sake of shortness,)
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All the theorems stated in part I. remain true in this generalized
setting, We define some notions on the analogy of the ones having played an

important role in the previous proofs.

Let 6 be a tree and F a subtree of G. The complement of F with
respect to G being a forest, we denote by F'(x) the component containing

X € V(F). xeV(F) is said to be an extreme point of F if and only if F'(x)+#{x}.

The assumption that two intervals have no commeon endpoints is
replaced by the next one: if F4+F,c G then ¥, and F, do not contain common

extreme points,

In the first part, intervals often appeared in extremal position.

This is replaced by such an Fc G that F'(x) 1is maximal.,

At last we may clearly assume the {¢(c) (’t:(c)) vertices to be

extreme,

The existence of Qt(c) in this general case also holds as a
consequence of Theorem 1. The proof of the next theorem is much more

difficult than in case of intervals.
THEOREM 6, LX2)=3

PROOF: we assert that 1¥(2) £ 3. Let ¥={F’} be a finite
family of 2~forests, any two of them having non-empty intersection., The
components of F¥ are denoted by H} and Hy . It is clear that there is an
(unique) S° path of G connecting an x €V(H}) and a yeV(H}), so that
V(s nVHY =$x} and V(S") nv(Hy) = {y}. The graphs TV =F us®
are substrees of (5, any two of them having common points, so we can choose

a point S from (T,

Now we split ¥ into two parts: F'= {F”: SeFV} ¢V = F-4’,
We may assume (by changing the indices if 'nessecery) that if F¥e ¥’ then
SeHY. The edges of G incident to S divide G into subtrees GpiGgrer Gy

(Gyn Gj =5) It is obvious that in case of F'e " H} and H§ are subgraphs
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of different G;-s. It may be supposed that every G; contains some component
of F¥Y. (FYe%"). We define a graph M in order to show the distribution of
FY ’-s components in the G;-s. V(M) = {p.p,,.-.,p,} and

Cpi, Pj) eE(M) if and only if there exists an FY, the components of which

are in G; and Gj .

It is clear that any two edges of M have a common vertex and the
degree of every point is at least one, Consequently M 1is a triangle or a star,
If M is a star as shown on the figure,we defineG’ deleting from G, the point
S with the edge incident to S and G"= 'QzG': . Now for every FYe¥" the two
components of F” are in G’ and G" respectively so the existence of an
Xe€V(G') andof an YeV(G") suchthat {X,Y}NnV(FY) # ¢ follows from
Theorem 2. Thereby {X,Y,$}nV(F¥)+¢ if F’e¥ which proves our

assertion,

In the sequel we assume M to be a triangfe, that is we have
G,UG,UG, =G . We refine the splitting ¥ =¥ 'uF" in the following manner:

3
F'=U ¥ and F' = 9712‘)?'23”?34 where
i=1
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?L ={Fv3 Fvé(}:?)H\;CGb} CL=47273)
¥, = { FY: FYe F", the components of F” arein G, and G, }
Tpa = { F*: F¥e F', the components of F” arein G, and Gj}

Fay=1{ FY: Fle F', the components of F” arein G, and G, }

It is easy to prove that we can chose P,Q,R from V(G,), V(G,)
and V(G,) resp. with the property: {P,Q,R}OV(F) + ¢ if F’e¥". The

details are left to the reader,

It P,Q,R are vertices of G,,G, and G, respectively, then
G(S,P,@,R) will denote the union of the (unique) paths sPp, S—(-;), SR.

(This is the smallest subtree of G containing the vertices $,P,Q,R).

Let G(s,P,Q,R) be minimal for set-theoretic inclusion with the

property: {P,Q,R} n V(FY) ¢ if FleF",

We prove that {P,Q.R}YNV(F") + ¢ if FPeF" and FYe T uF;
for suitable i and j (i#j). If this does not hold, then there is, for example,
an Fd‘e?1 and an Fle ?z so that {P,Q,RINV(F*UFP) = ¢. Let HYs s H:Z

and H:3 be the (unique) subtrees with extreme points P,Q,R.

P ot
Va Y b G
A4 H:“ 4
p q
— 3 . G
- A\~ 2
e
v
R Hy®
D— -+ Gs

v -
It F3¢F,, then H,> meets HS (inthe interior of path SQ by

minimality) and so H\;_:* n H:Z = ¢ It follows that sz € 9723 , and the same
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v L v R oo
argument shows sz to be disjoint from Hf’ ; this leads to contradiction.

Replacing F* by gé , the same argument can be repeated and the assertion

follows,

We may assume (by symmetry): {P,Q,R} nV(F”) + ¢  when
FYeF "y F,uF,5 . This is the property for which we choose a minimal tree
G(5,Q% R*).

If {Q5R*}INV(F") £¢ forall F’e ¥, we have nothing to prove,
Let F% be such that Hf N{Q5R*Y = ¢ Fle Ty .H\:Z and H:S will denote the
two components belonging to the extreme points Q* and R¥*. Obviously
sze ’5712 and F2¢ ¥4 otherwise we have a contradiction, (Using F¥ as
above.) Clearly H\;_z n HZE’ + ¢. We choose P* as close as possible to the tree

H‘;Z U va' with the propety: {P* Q% R*}n¥F'+¢ forall FYeT" U F, uTFy.

& Y
N AL
¥ ¥ Vo | 51
He® Hyp2
"
5 x i é vl =+ GZ
H1
RS H‘Js
1
Gy

By the minimum-property of G(S,Q*R*) P*¢ H\;zu HY3. P* is the extreme
point of a tree H:o, but the assumptions H\:"e Fy H\i(’ eFs, H:° e %y,
lead to contradiction,

So {P¥Q*R*}nF +¢ forall F'eF. We conclude that £*(2)<
The following example proves that £¥(2)2 3

Finally we present a conjecture: if G is a tree and $={FV} isa
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finite family of its ¢ -forests, any c+4 of them having non-empty intersection,
then there exists a set PcV(G) so that |Pl=c and PaF” & ¢ for all Fle ¥,
We can prove this only in case of c£3, and if G is a path. (¢ is arbitrarily

given)

L. Surdnyi’s result is worth mentioning (oral communication); it
' gives a necessary and sufficient condition for a graph G to be fepresentable as a
system of subtrees of a suitable tree (between two vertices of G, there is an
edge iff'the corresponding subtrees have common vertices): A graph G is

representable if and only if it does not contain any circuit without chords.

Using this theorem we can easily obtain the following two

corollaries of our first and fourth theorems:

COROLLAR Y. 1. Let G be a complete graph, and its edges
coloured with ¢ different colours. (An edge may be coloured with more than
one colour, ) Let us suppose that G does not contain ahy circuit of one colour
without chords. Then there exists an integer {(¢) (which does not depend on

)]
V()Y sothat V(G) = V(G;) where G; is a complete graph of one colour,
‘ i=4

COROLLARY 2, If c=3 then the least value of {(3) is 4.
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