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In our paper we present some results in connection with a 

problem ofT. GALLAI. 

R11 R2 , ... , Rc will denote c distinct parallel lines in the pla.ne. 
c 

Let I k be a closed interval of R k, then the set A = U l k is said to be a c­
k:::1 

intervaL lk is the k-th component of A. 

Let :f\:. ={Av} be an arbitrary finite family of c-intervals, any two 

of them having common points. It is well known that in case c = 1 the set n Av 
~Eft 

is non-empty, or which means the same, there exists a point p so that 

p n A'\) f ¢ (AvE !t) • (This is Helly' s theorem in one-dimension.) 

. . 
T. GALLAI has posed the problem for c -intervals: to find the least 

c 
integer ..tc c) for whlc h there is a set P c U R k of t (c) points that 

k ... 1 
P n Av =1= ¢ (AvE .:It). We may assume that P consists of endpoints of the 

:;omponents of A-v -s. 

In the first part we prove the existence of .f.Cc) 1 (Theorem l.) and 

we show that {(2) = 2, tC3) = 4 (Theorem 2. and Theorem 4.) Theorem 2. was 

proved by J. Suranyi and .L. Suranyi, 'independent from us. 
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Now we formulate the problem which we are dealing with in the 

second part: instead of distinct lines we suppose that R1 i R 2 , ... , Rc coincide..­

We define t*cc) in this case on the analogy of t(c). It is clear that t(c)~e*cc). 

We will prove that ~*(c) exists, '('Theorem 5.) and t*'C2) =3·(Theorem 6.) 

Replacing the lines by trees (a tree is a connected graph without 

circuits) and the intervals by s~btrees, all the theorems mentioned above 

remain true. In particular, if every tree is a path, our problem is equivaient 

to the original one. This generalization was suggested by L. Lovasz, who 

proved Theorem 2. in this form. 

For the sake of simplicity we only sketch the proofs for trees 

unless they demand different methods as in case of Theorem 6. 

I. 

Without restriction of generality we may assume that the c-intervals 

have no common end points. 

A family of sets is said to be t~independent if the maximal number 

of its pairwise disjoint sets is t. A family of pairwise intersecting sets is 

clearly !-independent. For t._independent c-intervals .ttCc) is defined similar 

to tee). It is obvious that t 1cc) = tCc). tt('l) = t according to a theorem of 

Hajnal and Suranyh [1] 

The existence of .f.tCc) follows from 

In the proof we use the following 

1 tc 2. tc t tc 
LEMMA: let it 1 =- t X j \::1 , :It 2 = { X j } j = 

1 
, · · · ) jt t = { X j } j = 1 

be systems of pairwise disjoint c-intervals. Then we can choose from 

1t 1 , ft 2 , ... > .:Itt th,e c- intervals X~ , X~ , ... , X~ which are also pairwise 
J1 Jz Jt' 

disjoint. 

PROOF: we prove by induction on c. 
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(i) In case of c = 1 we may assume the disjoint (1- )intervals to follow 

one another from left to the right. Let us choose the index L1 E{1,2., ... ,t} 

for which the right e11dpoint of x\1 is to the extreme left. We continue the 

process by choosing an ~ ·2 E { 1, 2 , ... , t 1 - { i. 11 for which the right end point of 

X~2 is to the extreme left, and so on. This procedure obviously leads to an 

interval- system of the desired property. 

. tc 
(ii) Supposing the Lemma to be true for c -1 1 let { X~}. 

J j=1 

be a system of c -intervals satisfying the assumptions of the Lemma. 

U = 1,2., ... ,t). We may suppose that for every L the first components of 
G ~ ~ • 

X 1 , X 2 , ... , Xtc follow one another from left to the right on R1 . Let Y ~ be 

the convex hull of the union of the first components of 
~ v~ 

x(k-1)tc-\2.?"''"'k·tc- 1 • 

v~ 

~ 
X{ k-1 )tc-\ 1 ' 

v1 
lJ 

A1 xlt:[ ====--:t)tl--===:l~f 
(; 1 v' - ][ ~ ==~..:.:x.!..a: ~--=======1] 

; v~ 

E ] 

X~ 

The intervals Y ~ are pairwise dis joint for all i , so because of ( i._) 

we can choose the· pairwise disjoint intervals YJ-1 , ... , V.t . We apply the 
1 Jt 

. tc-1 . J. 
inductive hypothesis for the last components of the system { '/.. ~} • . 1.c-i 

1 
~ 

v =(Ji-1) ~ + 

The t pairwise disjoint c-intervals with their first components are t pairwise 

disjoint c -intervals, which completes the proof. 

Proof of Theorem l. : let t A"'l} be a t- independent system of c­

intervals, Av = I\) u B\) where I" is the first component of A-v ( B~ is a Cc-1)-
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interval). We define a sequence of points of R1 ·as follows: P0 ==- oo and Pr is 

to the extreme right with the property: the system { Bv: I\> c ( Pr_
1

, Pr}} 

[ c--1 J is Ct+1) -1· ·-independent •. ( Co.>b) and Ca.,b] mean open and half-closed 

intervals). As a conseq~ence of the definition of Pr, there exists an 

r"'rc (Pr_1 , Pr) sothattherightendpointof I"r is Pr, moreover the 

system { Bv: I" c C Pr_1 , Pr]} is (t+1) c-
1 

-independent, so it contains a 

pairwise disjoint subsystem X~, ... > X~t+1 )c-1 • It follows from the Lemma 

(applying to t+1 and_c-1) that Pt+
1 

= +oo • We decompose the system {Av} 

into two parts: 

t+1 
{A"}= U{A": Ivc(Pr_1 ,Pr)1 U{A"': P

5
elv for somes 

r=1 
(1~s~t)} 

It is clear that the system of (c-1)·-intervals Bv belonging to the A~ -s of the 

first part of the decomposition is t [Ct+1)c-
1
- 1] -independent and the theorem 

follows. The simple consequence of this theorem is 

THE 0 REM 2. t(2.) = 2. 

PROOF: because of .f-('2.) = .( 1 (2.)~ -t1C1)+1 = 2. we only have to 

prove {(2.) ~ 2 which is obvious from the following simple example: 

We will prove that Theorem 2. also holds under more general 

assumptions. For this purpose we need the notion of the interval-graph. 

A finite graph G is called an interval-graph if its vertices are in an one-to-one 

correspondence to an interval-system of the real line, and two vertices are 

connected if and only if the corresponding intervals have common points. 

A well-known property of interval-graphs is that they do not contain circuits 

without chords. Let's suppose that we have an one-to-one correspondence 

between the vertices ot a complete graph G and the members of a system ·of 
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pairwise intersecting 2 -intervals. The edge between two vertices of G is 

coloured with red (with blue) if the corresponding 2-intervals meet each other 

in their first (second) components. Clearly G is an interval-graph if we con~ider 

only its edges of one colour. Now it is easy to see that Theorem 2. follows from 

the following 

THE 0 REM 3. Let G be a complete graph, and its edges E(G) 

coloured with red -and blue. (An edge may be coloured with both colours.) Let 

us suppose that G contains neither blue nor red circuits of length 4 and 5 

without chords. Then V(G) = V(R) U V(B) where R and B complete red and 

blue ·subgraphs. (We denote the set of H' s vertices by VCH)). 

PR 0 0 F: by induction on the number of G' s vertices. For 

IVCG)l = 2 the theorem holds. Supposing that it is true for I V(G) I= n, let G 

be a graph of the desired property with I V(G) l = n +1. If p E: VCG) then 

V( G -{p}) = VCR) u V( B) • Let Rb and Br be the subgraphs of R and B with 

which p is connected on~y with blue and red edg~s respectively. It is clear that 

IV ( R b) I and IV C B r) I =I= 0 , otherwise we have nothing to prove. Let us 

choose the decomposition of V (G-{p}) so that I V(Br)! + IV ( Rb)\ should be 

minimal. Let us consider a q_ E: V C B r) • Because of the minimality there exists 

_ ~J~_lue edge C q_, r) between q_ and R • Let s be an element of V C R b) • If 

r~ V(Rb) then (q_,s) is not red, otherwise p,q_,s,r, p would be 

·. 

p 
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a red circuit without chords. Analogously we may suppose that in case of 

U.tVCRb) there exists a VEV(Br) such that (u.,v) is not blue. Now it 

follows that there is a circuit in G with points alternately to V C Rb) and V C B r) 

and its edges are altern.ately blue and red. Let us consider the circuit C of 

minimallenght of such type. It is easy to see that C is of length 4, so p and 

the points of C determine a circuit of length 5 without chords. This 

contradiction proves the theorem. 

THEOREM 4. -t(3) = 4 

PROOF: tHe following example shows that ..f.C3) ~4: 

R 1 2 3 
6 7 

5 
I 

8 
I 

9 10 
I I 

Let A ={A\)} be a system of 3 -intervals, any two of them having 

A-v \) I~ I" P R common points. ::; I 1 u 2. u 3 , e 1 and Q e R 2. are two points given 

arbitrarily. 

Let us decompose! as follows: A= A. 11 CP,Q)u;lt
12

CP,Q)u 

v.:fl: 21 CP,Q) vJt 22CP,Q) u 8( P,Q) where , 

A11 CP,Q) =={A'J: I~c(-oo,P) I~c(-oo,Q)} 

Jt12 CP,Q) = t A'J: I~ c(-cc,P) I~ c(Q,+oo)} 

lt 21 (P,Q) ={Av: I~c(P,+oo) I~c(-oo,Q)} 

ft. 22CP,Q) = { Av : I~ c ( P1 +oo) I~·c (Q, +oo)} 

B C P, Q) = { Av : (I~ u I~ ) n { P, Q } =I= ¢ } 
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In the proof we often use the fo~lowing simple proposition: let { X~ l 
and {Y~ 1 be two systems of intervals, X~ n Yj + ¢ for all L and j, then nx~ 

or nvj is non-empty. 

The third components of the 3-intervals from Jt11 C P, Q) and 

:lt22CP,Q) satisfy the assumptions ,of this proposition, so we conclude that one 

of them has common points. The same reasoning can be applied to Jt12 ( P,Q) 

and Jt
21 

C P, Q). Because of the symmetry we may suppose that the two systems 

are .1t 11 C P,Q) and ~ 12 CP,Q) that is (;) r; =/= rp and ~ r; ={:. ¢·. 
A'~~e~ 11 (P,Q) . A"€ .i12CP,Q) 

We wish to emphasize that the two systems depend on P and Q which 

is denoted shortly by { P,Q} ~ <11 ,12). Now we want to define the points p* 

and Q* so that { P~ Q*"}--+ <11,12,21,22) holds. Let P*= ma-x P 
{P,Q}-+<H,12> 

(The lines are considered as sets ordered in the U~?ual way.) P* is the right 

endpoint of one and only one interval. Let Q be an arbitrary point of R2. for 

which t P*, Q} ~ < 11,12 >. It is clear from the definition of P* that if C P~ P'] 

contains no endpoints of 1~-s, then { P~Q} -7(11,12) is false, so for example 

v (vi I~ is empty. This means that if P* is the right endpoint of the 
A'.£ :l\:.11CP~Q) 
component I~1 then A\)1 €: :1\:; 11 ( p>, Q) and there exists an I~ where AO{E Jt 11CP~ Q) 

I v1 01. rt. /\ v r~, { * 1 so that 3 n 13 = 'f'. Thus !vl r 3 =I= 'r that is. P ,Q 1 -7(11,12,2.2). 
A"E A:.2'l..(P .. , Q) 

P* p· 
I c5 I I '\)i @) I 

Q* is defined similarly: Q* = mi.n Q 
{.~Q}-+<11,12.,2.2.) 

left endpoint of one and only one interval. ) 

- 577-

( Q* is the 



If A"1 e J1:. 12 C P', Q*) then { P', Q *} -7 (11, 12.,2.2.) is false, so 

there exists an A~ e. Jt12 C P*,Q*) for which r;1 n 1~ = ¢, that is 

{. p~ Q*} ~ < 11 ,12., 2.2., 21 >. 
It follows that A-v1 E A11 ( P', Q*) since Q'~ ~ I~1 , so there is an 

A't. E ~11 c p~ Q*) so that ri (\ r; = ¢. If [Q', Q*) does not contain endpoints, 

then { P *, Q'} ~ < 11, 12, 2 2) is false because of the minimality of Q ~. Let 

Q* be the left endpoint of the interval 1"2'. In case of A"2 e i. 22 C P~ Q 1
) every 

element of the set {I~: A" e 1 22 ( P~ Q
1

) 1 meets I; and 1;1 , this also holds 

for I ~2 which contradiqts to the minimality of Q *. 

We conclude that A"2 E A 12 CP~ Q') so we can find an A8e .lt 12CP~Q*") 
so that I~ni~2 =¢.Thus {P~Q*} ~<11,12,22,21). {I~: A..,eJli~ 1 CP~Q•)uA22CP~Q*)) 
and {I~: A.;e Jt 12 CP*, Q*) u Jt21 C ?*,Q-ll.-)} are interval-systems of non-empty 

intersection, so we can choose the points R and S from these intersections. 

It is clear that for all A"', { ?~ Q*, R, S 5 n A~ =f= ¢ which proves the theorem. 

We close the first part with a note. 

Let us suppose that .:fl:. is a system of c -intervals, any k of them 

having common points. tkcc.) is defined in a similar manner as tee) above. 

It is easy to see that. tkCc) = 1 if k~ 2.c. The following scheme shows the values 

of tk(c) known to us. 

~ 2 3 4 5 

2 2 4 

3 2 3 

4 1 2 2 

.5 1 2 2 

6 1 1 2 2 

II. 

Let A" be a subset of the r,eal line R which is expressible as the'' . 

union of c disjoint closed intervals. A-J is also called shortly c -interval. Let 
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t: Cc) be the least integer so that for every t-independent finite family 

*- = {A\11 there exists a set { Pc} c R with the property: { Pd n Av 4= ¢ if A\1 f Jr_ 

and I { PL 11 = t~ (c) . Obviously tt C1) = tt;C1) = t. 

The existence of .tt (c) follows from 

THEOREM 5 .. 

This estimate is generally very far from being the best. We only 

sketch the proof: 

If A~ = I~ u I~ u ... u I~ (the components are indexed from le.::" 

to the right) and 'B1 = {B~ 1 is the system of (c-1)-intervals derived from A-v by 

r~placing I~ and I~ with their convex hull. There exists a set 1>1 c R of 

t~ ( c -1) elements having the property: 

P n B ~ ::1= rp if B ~ € P> 1 and P E 1'1 

We delete the sets Av for which P n A-v =I= ¢ and repeat the same 

reasoning by taking the system 1>2 = { B~} where B~ is the c-1 -interval of 

components I~ , conv{ 1~ u 1; }I~, ... , I~ , which. yields the set j)2 • We 

choose a point Q of P 2 > and delete from :B2 the sets B ~ for which Q n B~ =1= ¢ . 

Applying this method c-1 times, we see the remaining system jt' "separated" 

by the points P, Q,... and as a consequence of Theorem 1. there is a set P 

(depending on the choice of P,Q, ... ) of ttCc) elements enjoyingthe property: 

9n A~+ ¢ if A'V E JV. This is repeated fo:r every choice of P e P1 1 Q E <J>
2 

> ... 

and the theorem follows. 

From this theorem .t *(2.) ~ .. P·cn. 2+1 = :3. This is the best 

estimate of .t *(2.) as will be shown in Theorem 6. 

Now we generalize the problems considered above in the following 

manner. We replace the real lines, intervals and c -intervals by trees, subtrees 

and forests of c compo~ents. (c-forests for the sake of shortness.) 
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All the theorems .stated in part I. remain true i,n this generalized 

setting. We define some notions on the analogy of the ones having played an 

important role .in the previous proofs. 

Let G be a tree and F a subtree of G. The complement of F with 

respect to G being a forest, we denote by F'Cx.) the component containing 

x E V(F). Y..E:V(F) is said to be an extreme point ofF if and only if F'Cx) =1= {x}. 

The assumption that two intervals have no common endpoints is 

replaced by the ne;·:t one: if F1 , F2. c G then F1 and F2 do not contain common 

extreme points. 

In the first part, intervals often appeared in extremal position. 

This is replaced by such an F c. G that F 1 
( x) is maXimal. 

At last we may clearly assume the .f.tCc) ( t~Cc)) vertices to be 

extreme. 

The existence of tt C c) in this general case also holds as a 

consequence of Theorem 1. The proof of the next theorem is much more 

difficult than in case of intervals. 

THEOREM 6. t*C2)=3 

PROOF: we assert that t*c2.) ~ 3. Let T= { F~} be a finite 

family of 2-forests, any two of them having non-empty intersection. The 

components of F"' are denoted by H ~ and H ~ . It is clear that there is an 

(unique) S\) .path of G connecting an .x.EVCH~) and a yeV(H~), so that 

V(<:/) n V(H~) = i x} and V(S'~~) n V( H~) = { y 1 . The graphs T'Y = F~U S'~~ 

are substrees of G, any two of them having common points, so we can choose 

a point S from 0 T". 

Now we split~ into two parts: ~~ = t Fv: 5eF"1 if 11 = lj=-~'. 

We may assume (by changing the indices if 'nessecery) that if F" € g:' then 

5 E H~. The edges of G incident to S divide G into subtrees G11 G2 1 ... , Gk ., 

CG~nGj = 5) It is obvious that in case of F"e'f''· H~ and H~ are subgraphs 
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of different G~ -s. It may be supposed that every G~ contains some component 

of Fv. ( FvE g:-n). We define a graph M in order to show the distribution of 

Fv ,_s components in the G~ -s. VC M) = { p1 , p 2 , ... , p k 1 and 

( p~ 1 Pj) E E ( M) if and only if there exists an Fv, the components of which 

are in G~ and Gj . 

P, 

It is clear that any twQ edges of ·M have a common vertex and the 

degree of every point is at least one. Consequently M is a triangle or a star. 

If M is a star as shown on the figure,we define G, deleting from G1 the point 
k 

5 with the edge incident to S and G n = .U G ~ • Now for every F v E 'j: 11 the two 
v=-2. 

components of Fv are ip. G' and G11 respectively so the existence of an 

Xe VCG 1
) and of an Ye V(G 11 ) such that {X 1Y} n VCF"~~) =I= ¢ follows from 

Theorem 2. Thereby {X 1 Y 1 S} n V C F'~~) =/: ¢ if FvE 'r which proves our 

assertion. 

In the sequel we assume M- to be a triangle, that is we have 

G
1 

u G
2 

u G
3 

= G. We refine the splitting if= 'J)u 'r 11 in the following manner: 

'ft. = 0 r~ and 'f II ::: g:-12. U g: 2.~ U «f 31 Where 
~=1 

... 581 -



~12 == { Fv: Fv e g: 11
, the components of F'\1 are iri G1 and G2.} 

g:23 = { Fv: Fv E g:-'', the components of F\) are in Gz. and G3} 

g:-31 = { Fv: F\> E g:-" 1 the ~omponents of Fv are in G_, and G1 } 

It is easy to prove that we can chose P, Q 1 R from VCG1) 
1 

V<G 2 ) 

and VCG
3
; resp. with the property: 1P,Q,R)f\V(!='~~):f=¢ if FvEg:l1, The 

details are left to the reader. 

If P,Q,R are vertices of G1' G2 and G3 respectively, then 

G C S ,P, Q , R) will denote the union of the (unique) paths S P, S Q 1 S R . 

(This is the smallest subtree of G containing the vertices S, P, Q, R). 

Let G C S, P, Q, R) be minimal for set-theoretic inclusion with the 

property: { P, Q, R 1 n VC ~v) =f ¢ if y.::V E '} 11
• 

We prove that {P,Q,R1 nVCf"')trf.. if F"Eg:: 11 and FvE~·-u't'· 
'fJ (, J 

for suitable L and j C L =I= j) . If this does not hold, then there is, for example, 

an F 0\:'f1 and an F~Eg:2 so that {P,Q,R1nV(Fo(ufl?>) =¢o Let 1-\~1 , l4~ 2 

and H~3 be the (unique) subtrees with extreme points P, Q, R. 

'---~------~~--~--+-------------Gs 

If Fv3 E 'f23 then H:3 meets H~ (in,the interior of path SQ by 

· · 1· ) d Hv 3 1 1 v 2 - A. It f 11 th t F" 2 n-- d th m1mma lty an so 2 n t-~ 1 - 'f'" o ows a E ~ 23 , an e same 
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v v 
argument shows 1-4 22. to be disjoint from ~ 1 3 ; this leads to contradiction. 

Replacing F 0( by 'F ~, the same argument can be repeated and the assertion 

follows. 

We may assume (by symmetry): { P, Q, R ~ n V( t='~') :j= ¢ when 

-"' IJ:'ll rr n-r E J u ::rz.. u r 3 • This is the property for which we choose a minimal tree 

GC;:.,Q*", Rl(,). 

If { Q*, R*} n V(Fv) =/:- ¢ for all F"' E. ~1 we have nothing to prove. 

Let F~ be such that H~ n { Q*, R*} = ¢ f-gE 'f1 , 1-\~z.. and H~3 will denote the 

two components belonging to the extreme points Q* and R"'". Obviously 

F VzE 3:"12 and Fv3 E S:
31 

otherwise we have a contradiction. (Using F '6 as 

vz v 3 ,../... * a ?eve.) Clearly 1-\ 2 n H 2 f. '+'. We choose P as close as possible to the tree 

H~2 u H~3 with the propety: { P*, Q\ R*} n F-v =1=- ¢ for all F17 
E'f

11 u 1='2 u 'f3 • 

p* H~1 
H~o H"'a. 

~ 

Q* 
5 

H"'z. 
1 

R" H'\13 
1 

By the minimum-property of GCS,Q~ R*) p'*¢ 1--1 {v 1-\~3. P* is the extreme 

· f '1 vo b 1 '"'o n- H"'o fl:' , 1 'Vo rr--pOint o a tree n 1 , ut the assumptions n 1 E: .J2., 1 E .J 3 , H 
1 

E. ::r12 

lead to contradiction. 

So { P*, Q*, R~} n f-v + ¢ for all FvE 'f. We conclude that t'JI"(?_)~ 

The following example proves that t *"c 2) s 3 ; 

3 5 

' 6 

Finally we present a conjecrure: if G is a tree and o/ = { F" 3' is a 
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finite family of its c -forests, any C+1 of them having non-t:rmpty intersection, 

thenthereexistsaset PcVCG) sothat\PI=c and PnF"' +¢ for all F'\)Eij:"'. 

We can prove this only in case of c ~ 3, arid if G is a path. ( c is arbitrarily 

given) 

L. Suranyi' s result is worth mentioning (oral communication); it 

gives a necessary and sufficient condition for a graph G to be representable as a 

system <?f subtrees of a suitable tree (between two vertices of G , there is an 

edge iff the corresponding subtrees have common vertices): A graph G is 

representable it and only if it does not contain any circuit without chords. 

Using this theorem we can easily obtain the following two 

corollaries of our first and fourth theorem: 

COR 0 L LAR Y 1. Let G be a complete graph, and its edges 

coloured with c different colours. (An edge may be coloured with more than 

one colour. ) Let us suppose that G does not contain any circuit of one colour 

without chords. Then there exists an integer fCc) (which does not depend on 
f(c) 

\V(G)\) so that V(G) = U VCG~) where Gl. is a complete graph of one colour. 
~=1 

COROLLARY 2. If c=3 then the least value of fC3) is 4. 
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