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4:1n the present paper we deal with graphs having a finite number of vertices,
single edges and no loops. The number of vertices of the graph G will be denoted
by z(G), the edge between the vertices A and B by AB. To indicate that a
vertex or an edge belongs to the graph, we use the symbol € A graph is called
complete, if any two of its vertices are connected by an edge. Complete graphs
. with k vertices are called complete k-tuples. The graph having as vertices the
points Uy, U, ..., Ugyy and edges U U,, UyUs, ..., U Uy, is a path of length
k, Uy, Uy, are its endpoints. Adding the edge U, U, we get a circuit of length
k+1. G will denote the complementary graph or complement of :G (ile. two

vertices in G are adjacent if and only if they are not adjacent in G). A graph is
connected if for each pair of its vertices there exists a path in G having these
vertices as endpoints.

According to the well known theorem of RAMSEY [1] there exists for every
system of natural numbers (ky, k,, ..., k,) a natural number N(ky, &, ..., k)
with the property that for n = N(k,, ..., k,) dividing the edges of a complete
graph of n vertices into r distinct classes (colouring every edge with one of r
different colours) at least for one i (1 = i = r) the i-th class contains a complete
k; —tuple (there exists a one-coloured complete k;-tuple.) The least value of
N(ky, ..., k) is unknown for the general case. (For special. cases see [2].)

Colouring the edges of complete graphs with r different colours, we may
investigate problems about the existence of other special types of one-coloured
subgraphs instead of one-coloured k-tuples — as in Ramsey-theorem. In this
paper we shall consider two different types of graphs, namely:

a) paths of given length and
b) connected graphs.

Let g(k, I) denote the least integer for which in case w(G) = g(k, [) either

G contains a path of length k, or G one of length L.
Our main purpose is to prove the following
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THEOREM 1. For k = l we have
[+ 1
(1) gk, 1) = k+[ J; ]

Considering the other special case of this type of problems, let f,(n) denote
the greatest integer with the property, that colouring the edges of a complete
n-tuple g with r colours arbitrarily, there exists always a one-coloured connected
subgraph with at least f.(n) vertices.

[t is easy to see the following remark of P. ErDGs: if a graph is not connected
then its complement is connected, i.e. fy(n) = n. We shall prove

THEOREM 2.
t n+1
@ i = 5|
2
Now we turn to the proof of Theorem 1. First we prove g(k, )=k + lizl}

by induction on k. For k=1 the Theorem evidently holds and let us sdpposé
that for all k-s less than this the statement is true. Let us consider a graph G

with k +[l~;—l] vertices. If [<k, then for any subgraph of G with k—1+ l;;l }

points holds that either itself contains a path of length k—1, or its complement

a path of length I. For I=Fk we consider a subgraph with k—l—;—[—é] points.

This or its complement contains a path of length £ — 1. Thus in every case can
be supposed, that the length of the longest path of Gisk—1. LetU;, U,, ..., Uy

be the consecutive vertices of such a path and U = {U,, ..., U,}. We denote
the remaining vertices by Vi, ..., V[zj] and the set of them by V =
2
esil]

It clearly holds that

(i) for all V, ¢ V either V; U €GorV, Uj1 € G
(ii) for all V, € V V,U; E(rand V.U, € G
(iii) for Vi, Vi, Vg€ Vand U, Uy, € U
at least one of the latest points is connected in G with at least two of V5, V5, V.

Consider a maximal path of G not containing U,, U, with the property
that any edge of it connects a point of U with a point of V, and its endpoints-
are in V; let us denote the endpoints by A and B, and the path by S. If S con
tains all points of V, then by adding the edges U, A, BU, we have a path of

Jength 2[1—%1—]51 in G. So we may suppose that the set of points V not con-

tained by S is not empty. Let this set be called W. Consider a maximal path
q of G not containing U,, U, and having no common points with S, such that
any edge of it connects a point of U with a point of W and the endpoints of it,
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called by C and D, are in W. We show that all points of V are contained either
in S or in q. Suppose that X ¢ V but X ¢ S, X ¢ ¢. It is clear, that the number

of vertices of S and ¢ in U is at most [%]—3 < [k; 3] = k—22—1 ] since
[ = k. So there exist two points U,, U4, € {U,, ..., Ux_,} which do not Vbelong

either to S or to ¢. Applying (iii) for A,C, X € V and U, U;;, € U we have
a contradiction to the maximal properties of S and q.

So the sum of the length of S and ¢ is 2 [lizl—]—4. We add them the edges

1 —
U,A, BU,, U,C, DU, and so we have a circuit of length Z[H-T] in G. For

odd [ this contains a desired path with length I. For even ! an easy reasoning
shows that there are U;, U;;, € U which do not belong to this circuit. Hence
one of them is connected with a vertex of the circuit (see (i)) and so we have

again a path with length [ in G. That completes the proof.

Now we give examples for graphs G with k+|il—J;—1—] — 1 points that have

no path of length k, and for them at the same time G have no path of length .

a) Let G consist of the disjoint graphs H;, H, with -k and [l——;l]— 1 points

respectively, where the graph H, is complete.

b) For even [ we can leave one of the edges of H,. These graphs possess
obviously the desired property.?

Now we turn to the proof of Theorem 2. We consider a classification of the
edges of a complete graph G into three classes, i.e. let the edges of G be coloured
with red, yellow and blue colours. So we get the graphs G,, G, and G, formed
by the red. vellow and blue edges respectively. We say that a subgraph-is for
example red-connected if it is a connected subgraph of G,. Let us take a maximal
red-connected subgraph E. It may be supposed that R is not empty and #(R) <
< w(G) = n. Let B be a point of G such that B ¢ R. Since R is a maximal con-
nected subgraph of (i, BR; is not red for R, ¢ R. So one may suppose that

there are at least -; 7 R) points of R which are connected with B by blue edges.

Let V denote the set of these points of R and W be the maximal blue-connected
subgraph that contains B. If ¥ is a point such that ¥ ¢ R and Y ¢ W then
YV, is yellow for V,; ¢ V. Let Q denote the maximal yellow-connected sub-
graph that contains V. If there is no such Y, Q denotes the empty set. R, W, @
contain together all points of G. Namely any points S ¢ R is connected with a

! The weaker result g(k,!) = k+/ can be easily proved. Let us consider any vertex
P and a pair of paths of G and G without common vertices except P. It can be proved that a
pair of paths with maximal sum of lengths contains all points. (Maximality with respect to all
P and all pairs.) From that the statement follows.



170 L. GERENCSER AND A. GYARFAS, ON RAMSEY-TYPE PROBLEMS

V,; € V either by a blue or a yellow edge, i.e. either S € W or S € Q."In both

«£ases
a(W)+7(Q) = (n(G) —n(R)) +2n(V) = n—m(R)+2 @ =n,

and then
n

- max (W), m(Q)) = )

which completes the proof of f;(n) = [IHZ_ ! ]

~ For the proof of fa(n) = [%:-1-] we prove the more general

LEmMA. For odd r,n=(r+1p (» =1,2,...)

2
) » fn) =
r+1

Here we use the following theorem:

The edges of a complete graph G, with 2k vertices can be coloured with
2k —1 colours so that the edges having common vertices have different colours
([3])- Let H be a graph with r+1 vertices, and consider a colouring mentioned
above for 2k = r+ 1. Let us replace any vertex of / by an arbitrarily coloured
complete »-tuple. Let the edges which connect vertices from two different
»-tuples have the same colour as the edge connecting the corresponding vertices
in H. This graph clearly satisfies the requirements and this proves (3).

.
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