ON RAMSEY-TYPE PROBLEMS

By

L. GERENCSÉR and A. GYÁRFÁS
Eötvös Loránd University, Budapest
(Received February 10, 1966)

In the present paper we deal with graphs having a finite number of vertices, single edges and no loops. The number of vertices of the graph G will be denoted by $\pi(G)$, the edge between the vertices A and B by AB. To indicate that a vertex or an edge belongs to the graph, we use the symbol \in. A graph is called complete, if any two of its vertices are connected by an edge. Complete graphs with k vertices are called complete k-tuples. The graph having as vertices the points $U_1, U_2, \ldots, U_{k+1}$ and edges $U_1U_2, U_2U_3, \ldots, U_kU_{k+1}$ is a path of length k, U_1, U_{k+1} are its endpoints. Adding the edge $U_{k+1}U_1$ we get a circuit of length $k+1$. \overline{G} will denote the complementary graph or complement of G (i.e. two vertices in \overline{G} are adjacent if and only if they are not adjacent in G). A graph is connected if for each pair of its vertices there exists a path in G having these vertices as endpoints.

According to the well known theorem of RAMSEY [1] there exists for every system of natural numbers (k_1, k_2, \ldots, k_r) a natural number $N(k_1, k_2, \ldots, k_r)$ with the property that for $n \geqslant N(k_1, \ldots, k_r)$ dividing the edges of a complete graph of n vertices into r distinct classes (colouring every edge with one of r different colours) at least for one $i (1 \leqslant i \leqslant r)$ the i-th class contains a complete k_i-tuple (there exists a one-coloured complete k_i-tuple.) The least value of $N(k_1, \ldots, k_r)$ is unknown for the general case. (For special cases see [2].)

Colouring the edges of complete graphs with r different colours, we may investigate problems about the existence of other special types of one-coloured subgraphs instead of one-coloured k-tuples — as in Ramsey-theorem. In this paper we shall consider two different types of graphs, namely:

a) paths of given length and
b) connected graphs.

Let $g(k, l)$ denote the least integer for which in case $\pi(G) \geqslant g(k, l)$ either G contains a path of length k, or \overline{G} one of length l.

Our main purpose is to prove the following
Theorem 1. For \(k \geq l \) we have

\[
g(k, l) = k + \left[\frac{l+1}{2} \right].
\]

Considering the other special case of this type of problems, let \(f_r(n) \) denote the greatest integer with the property, that colouring the edges of a complete \(n \)-tuple \(g \) with \(r \) colours arbitrarily, there exists always a one-coloured connected subgraph with at least \(f_r(n) \) vertices.

It is easy to see the following remark of P. Erdős: if a graph is not connected then its complement is connected, i.e. \(f_2(n) = n \). We shall prove

Theorem 2.

\[
f_3(n) = \left\lceil \frac{n+1}{2} \right\rceil.
\]

Now we turn to the proof of Theorem 1. First we prove \(g(k, l) = k + \left[\frac{l+1}{2} \right] \) by induction on \(k \). For \(k = 1 \) the Theorem evidently holds and let us suppose that for all \(k \)-s less than this the statement is true. Let us consider a graph \(G \) with \(k + \left[\frac{l+1}{2} \right] \) vertices. If \(l < k \), then for any subgraph of \(G \) with \(k - 1 + \left[\frac{l+1}{2} \right] \) points holds that either it contains a path of length \(k - 1 \), or its complement a path of length \(l \). For \(l = k \) we consider a subgraph with \(k - 1 + \left[\frac{l}{2} \right] \) points. This or its complement contains a path of length \(k - 1 \). Thus in every case can be supposed, that the length of the longest path of \(G \) is \(k - 1 \). Let \(U_1, U_2, \ldots, U_k \) be the consecutive vertices of such a path and \(U = \{U_1, \ldots, U_k\} \). We denote the remaining vertices by \(V_1, \ldots, V_{\left\lceil \frac{l+1}{2} \right\rceil} \) and the set of them by \(V = \{V_1, \ldots, V_{\left\lceil \frac{l+1}{2} \right\rceil}\} \).

It clearly holds that

(i) for all \(V_i \in V \) either \(V_iU_j \in \overline{G} \) or \(V_iU_{j+1} \in \overline{G} \)
(ii) for all \(V_i \in V \) \(V_iU_1 \in \overline{G} \) and \(V_iU_k \in \overline{G} \)
(iii) for \(V_{i1}, V_{i2}, V_{i3} \in V \) and \(U_j, U_{j+1} \in U \)

at least one of the latest points is connected in \(\overline{G} \) with at least two of \(V_{i1}, V_{i2}, V_{i3} \).

Consider a maximal path of \(\overline{G} \) not containing \(U_1, U_k \) with the property that any edge of it connects a point of \(U \) with a point of \(V \), and its endpoints are in \(V \); let us denote the endpoints by \(A \) and \(B \), and the path by \(S \). If \(S \) contains all points of \(V \), then by adding the edges \(U_1A, BU_k \) we have a path of length \(2 \left[\frac{l+1}{2} \right] \geq l \) in \(\overline{G} \). So we may suppose that the set of points \(V \) not contained by \(S \) is not empty. Let this set be called \(W \). Consider a maximal path \(q \) of \(G \) not containing \(U_1, U_k \) and having no common points with \(S \), such that any edge of it connects a point of \(U \) with a point of \(W \) and the endpoints of it,
called by C and D, are in W. We show that all points of V are contained either in S or in q. Suppose that $X \in V$ but $X \notin S$, $X \notin q$. It is clear, that the number of vertices of S and q in U is at most $\left\lfloor \frac{l+1}{2} \right\rfloor - 3 < \left\lfloor \frac{k-3}{2} \right\rfloor = \left\lfloor \frac{k-2-1}{2} \right\rfloor$ since $l \leq k$. So there exist two points $U_i, U_{i+1} \in \{U_2, \ldots, U_{k-1}\}$ which do not belong either to S or to q. Applying (iii) for $A, C, X \in V$ and $U_i, U_{i+1} \in U$ we have a contradiction to the maximal properties of S and q.

So the sum of the length of S and q is $2 \left\lfloor \frac{l+1}{2} \right\rfloor - 4$. We add them the edges $U_1 A, BU_k, U_k C, DU_1$ and so we have a circuit of length $2 \left\lfloor \frac{l+1}{2} \right\rfloor$ in \overline{G}. For odd l this contains a desired path with length l. For even l an easy reasoning shows that there are $U_i, U_{i+1} \in U$ which do not belong to this circuit. Hence one of them is connected with a vertex of the circuit (see (i)) and so we have again a path with length l in \overline{G}. That completes the proof.

Now we give examples for graphs G with $k + \left\lfloor \frac{l+1}{2} \right\rfloor - 1$ points that have no path of length k, and for them at the same time \overline{G} have no path of length l.

a) Let G consist of the disjoint graphs H_1, H_2 with k and $\left\lfloor \frac{l+1}{2} \right\rfloor - 1$ points respectively, where the graph H_1 is complete.

b) For even l we can leave one of the edges of H_1. These graphs possess obviously the desired property.1

Now we turn to the proof of Theorem 2. We consider a classification of the edges of a complete graph G into three classes, i.e. let the edges of G be coloured with red, yellow and blue colours. So we get the graphs G_r, G_y and G_b formed by the red, yellow and blue edges respectively. We say that a subgraph is for example red-connected if it is a connected subgraph of G_r. Let us take a maximal red-connected subgraph R. It may be supposed that R is not empty and $\pi(R) < \pi(G) = n$. Let B be a point of G such that $B \notin R$. Since R is a maximal connected subgraph of G, BR_i is not red for $R_i \in R$. So one may suppose that there are at least $\frac{1}{2} \pi(R)$ points of R which are connected with B by blue edges.

Let V denote the set of these points of R and W be the maximal blue-connected subgraph that contains B. If Y is a point such that $Y \notin R$ and $Y \notin W$ then YV_i is yellow for $V_i \in V$. Let Q denote the maximal yellow-connected subgraph that contains Y. If there is no such Y, Q denotes the empty set. R, W, Q contain together all points of G. Namely any points $S \notin R$ is connected with a

1 The weaker result $g(k, l) \leq k+l$ can be easily proved. Let us consider any vertex P and a pair of paths of G and \overline{G} without common vertices except P. It can be proved that a pair of paths with maximal sum of lengths contains all points. (Maximality with respect to all P and all pairs.) From that the statement follows.
V_i \in V$ either by a blue or a yellow edge, i.e. either $S \in W$ or $S \in Q$. In both cases
\[
\pi(W) + \pi(Q) \geq (\pi(G) - \pi(R)) + 2\pi(V) \geq n - \pi(R) + 2 \frac{\pi(R)}{2} = n,
\]
and then
\[
\max(\pi(W), \pi(Q)) \geq \frac{n}{2}
\]
which completes the proof of $f_3(n) \equiv \left\lfloor \frac{n+1}{2} \right\rfloor$.

For the proof of $f_3(n) \equiv \left\lfloor \frac{n+1}{2} \right\rfloor$ we prove the more general

Lemma. For odd r, $n = (r+1)v$ ($v = 1, 2, \ldots$)

(3)

\[
f_r(n) \equiv \frac{2}{r+1} n.
\]

Here we use the following theorem:

The edges of a complete graph G_0 with $2k$ vertices can be coloured with $2k - 1$ colours so that the edges having common vertices have different colours ([3]). Let H be a graph with $r+1$ vertices, and consider a colouring mentioned above for $2k = r+1$. Let us replace any vertex of H by an arbitrarily coloured complete ν-tuple. Let the edges which connect vertices from two different ν-tuples have the same colour as the edge connecting the corresponding vertices in H. This graph clearly satisfies the requirements and this proves (3).

References

