On the sup-norm problem for arithmetic hyperbolic 3-manifolds

Gergely Harcos

Alfréd Rényi Institute of Mathematics http://www.renyi.hu/~gharcos/

29 September 2014 Analytic Number Theory Workshop University of Oxford

Arithmetic Quantum Chaos (1 of 3)

Consider a freely moving particle on a compact manifold M.

- In classical mechanics, the particle corresponds to an orbit of the geodesic flow on the unit cotangent bundle *S***M*.
- In quantum mechanics, the particle corresponds to a solution $\psi: M \times \mathbb{R} \to \mathbb{C}$ of the Schrödinger equation $\Delta \psi + i \frac{\partial \psi}{\partial t} = 0$. $|\psi(m, t)|^2$ is the probability density of the particle. Any nice solution is a linear combination of the stationary waves $(m, t) \mapsto \phi(m) e^{-i\lambda t}$, where $\phi: M \to \mathbb{C}$ satisfies $\Delta \phi + \lambda \phi = 0$.

Assume that M has negative sectional curvature.

- The geodesic flow on S^*M is ergodic (Anosov–Sinai 1967).
- $|\phi(m)|^2 d \operatorname{vol}(m) \to d \operatorname{vol}(m)$ holds for almost all ϕ (Schnirelman 1974, Colin de Verdière 1985, Zelditch 1987).
- The limit should hold for all ϕ (QUE, Rudnick–Sarnak 1994).
- Any weak star limit of the measures $|\phi(m)|^2 d \operatorname{vol}(m)$ has a lift to S^*M which has positive entropy (Anantharaman 2008).

Arithmetic Quantum Unique Ergodicity Conjecture

Let M be a compact Riemannian manifold of negative sectional curvature. Assume that $M = \Gamma \setminus S$, where S is a globally symmetric space and $\Gamma \leq \text{lsom}^+(S)$ is an arithmetic subgroup of isometries. Let $\phi : M \to \mathbb{C}$ run through a complete orthonormal sequence of Hecke eigenforms. Then the probability measures $|\phi(m)|^2 d\text{vol}(m)$ tend in the weak star topology to the uniform measure dvol(m).

- AQUE is true for compact arithmetic hyperbolic surfaces $\Gamma \setminus \mathcal{H}^2$ (Lindenstrauss 2006), and also for the modular surface $SL_2(\mathbb{Z}) \setminus \mathcal{H}^2$ (Soundararajan 2010). In these cases, GRH implies an optimal rate of convergence (Watson 2001).
- The conjecture generalizes to higher rank. AQUE is true for $S = PGL_n(\mathbb{R})/PO_n(\mathbb{R})$, *n* prime (Silberman–Venkatesh 2007).
- Hecke operators are key in all these results.

Theorem (Sarnak 2004)

Let $M = \Gamma \setminus S$, where S is a Riemannian globally symmetric space and $\Gamma \leq \text{Isom}^+(S)$ is a co-compact discrete subgroup of isometries. Let $\phi : M \to \mathbb{C}$ be an L^2 -normalized joint eigenfunction of the invariant differential operators on S. If λ denotes the Laplacian eigenvalue of ϕ , then

$$\|\phi\|_{\infty} \ll_{S,\Gamma} \lambda^{(\dim S - \operatorname{rank} S)/4}.$$

Problem

Fix S. Assume that Γ is arithmetic and ϕ is a Hecke eigenform.

- **1** Estimate $\|\phi\|_{\infty}$ in terms of λ .
- **2** Estimate $\|\phi\|_{\infty}$ in terms of Γ .
- **③** Examine what happens when $M = \Gamma \setminus S$ is not compact.

Results for the sup-norm problem on arithmetic manifolds

group	eigenvalue aspect	level aspect
$GL_2(\mathbb{R})$	Iwaniec–Sarnak 95	Abbes–Ullmo 95, Michel–Ullmo 98
	Rudnick 05, Xia 07	Jorgenson–Kramer 04
	Friedman–Jorgenson–Kramer 14 ⁺	Blomer–Holowinsky 10
		Templier 10, Helfgott–Ricotta 11
	Templier 14 ⁺	Harcos–Templier 13
	Das–Sengupta 14 ⁺ , Steiner 14 ⁺	Ye 14 $^+$, Kiral 14 $^+$, Saha 14 $^+$
	Sarnak 04, Milićević 10	Lau 10, Templier 14, Saha 14 $^+$
$GL_2(\mathbb{C})$	Koyama 95	
	Blomer–Harcos–Milićević 14 ⁺	Blomer–Harcos–Milićević 14 ⁺
	Rudnick–Sarnak 94, Milićević 11	
$SO_n(\mathbb{R})$	VanderKam 97, Blomer–Michel 13	Blomer–Michel 13
$Sp_4(\mathbb{R})$	Blomer–Pohl 14 ⁺	
$GL_n(\mathbb{R})$	Holowinsky–Ricotta–Royer 14 ⁺	
	Blomer–Maga 14 ⁺ , Marshall 14 ⁺	
	Brumley–Templier 14 ⁺	

Hyperbolic plane and hyperbolic space

• Consider $\mathcal{H}^2 := \{x + yi : x \in \mathbb{R}, y > 0\}$ with the $GL_2(\mathbb{R})$ -action

$$gz = (az + b)(cz + d)^{-1}$$
 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$
 $gz = -\overline{z}$ $g = \begin{pmatrix} -1 \\ & 1 \end{pmatrix}$

• Consider $\mathcal{H}^3 := \{z + rj : z \in \mathbb{C}, r > 0\}$ with the $GL_2(\mathbb{C})$ -action

$$gP = (aP + b)(cP + d)^{-1}$$
 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{C})$
 $gP = P$ $g = \begin{pmatrix} a \\ & a \end{pmatrix} \in Z(\mathbb{C})$

 $\bullet \ \ \, \mathcal{H}^2\cong \mathsf{Z}(\mathbb{R})\backslash\operatorname{\mathsf{GL}}_2(\mathbb{R})/\operatorname{\mathsf{O}}_2(\mathbb{R}) \ \ \, \text{and} \ \ \, \mathcal{H}^3\cong\mathsf{Z}(\mathbb{C})\backslash\operatorname{\mathsf{GL}}_2(\mathbb{C})/\operatorname{\mathsf{U}}_2(\mathbb{C}) \ \ \, \\$

Results for \mathcal{H}^2 and square-free level $N \in \mathbb{Z}$

Congruence subgroup

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \ \middle| \ c \equiv 0 \pmod{N} \right\}$$

Theorem (Iwaniec–Sarnak 1995)

$$\|\phi\|_{\infty} \ll_{N,\varepsilon} \lambda^{\frac{5}{24}+\varepsilon}$$

Theorem (Blomer–Holowinsky 2010)

$$\|\phi\|_{\infty} \ll_{\lambda,\varepsilon} N^{-rac{25}{914}+\varepsilon}$$

Theorem (Templier 2013)

$$\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{\frac{5}{24} + \varepsilon} N^{-\frac{1}{6} + \varepsilon}$$

Results for \mathcal{H}^3 and square-free level $N \in \mathbb{Z}[i]$

Congruence subgroup

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}[i]) \ \middle| \ c \equiv 0 \pmod{N} \right\}$$

Theorem (Koyama 1994) $\|\phi\|_{\infty} \ll_{\pmb{N},\varepsilon} \lambda^{\frac{37}{76}+\varepsilon}$

Theorem (Blomer-Harcos-Milićević 2013)

$$\|\phi\|_{\infty} \ll_{\varepsilon} (\lambda|\mathcal{N}|)^{\varepsilon} \min(\lambda^{\frac{5}{12}}, \lambda^{\frac{1}{2}}|\mathcal{N}|^{-\frac{1}{3}})$$

Theorem (Blomer-Harcos-Milićević 2013)

$$\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{\frac{4}{9}+\varepsilon} |\mathbf{N}|^{-\frac{1}{9}+\varepsilon}$$

The five pillars of the proof

- Amplification method (Duke-Friedlander-Iwaniec)
- Pretrace formula (Selberg)
- S Arithmetic symmetries (Hecke, Atkin–Lehner)
- Geometry of numbers (Gauss, Minkowski)
- **o** Diophantine approximation (Dirichlet)

Theorem (Blomer-Harcos-Milićević 2013)

Let ϕ be an L²-normalized Hecke–Maass newform on \mathcal{H}^3 of square-free level $N \in \mathbb{Z}[i]$. Then

$$|\phi(P)| \ll_{\varepsilon} (\lambda|N|)^{\varepsilon} \min(\lambda^{rac{5}{12}}, \lambda^{rac{1}{2}}|N|^{-rac{1}{3}}), \qquad P \in \mathcal{H}^3.$$

Key Lemma

The supremum of $|\phi(P)|$ is attained at a point $P = z + rj \in \mathcal{H}^3$ such that the associated lattice $\mathbb{Z}[i] + \mathbb{Z}[i]P \subset \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$ and its successive minima $m_1 \leq m_2 \leq m_3 \leq m_4$ satisfy:

2
$$m_1m_2m_3m_4 symp r^2$$
 and $r \gg |N|^{-2}$

(3) In any ball of radius R the number of lattice points is

 $\ll 1 + R^2 |N| + R^4 r^{-2}.$

Reduction to a matrix counting problem

Notation

$$X \preccurlyeq Y \qquad \stackrel{\mathrm{def}}{\Longleftrightarrow} \qquad X \ll_{\varepsilon} Y(\lambda|N|)^{\varepsilon}$$

Proposition

There is $\lambda^{-1} \leq \delta \preccurlyeq 1$ such that

$$|\phi(P)|^2 \preccurlyeq \frac{\sqrt{\lambda}}{\sqrt{\delta}} \left(r^2 \delta + \frac{1}{L} + \frac{M(P, L, \delta)}{L^3} + \frac{\widetilde{M}(P, L, \delta)}{L^4} \right)$$

where

 M(P, L, δ) is the number of matrices γ ∈ M₂(ℤ[i]) such that cosh(dist(γP, P)) ≤ 1 + δ,

the lower left entry of γ is nonzero and divisible by N, and det $\gamma = l_1 l_2$ with split primes $l_1, l_2 \asymp \sqrt{L}$ from the first octant;

• $\widetilde{M}(P, L, \delta)$ is same with det $\gamma = l_1^2 l_2^2$ (instead of det $\gamma = l_1 l_2$).

The distance condition

We write $P = z + rj \in \mathcal{H}^3$ and det $\gamma = I \asymp \sqrt{\mathcal{L}}$.

Geometric principle

Asssume $\cosh(\operatorname{dist}(\gamma P, P)) \leq 1 + \delta$. Then

$$\|cP+d\|, \|cP-a\| = |I|^{1/2} + O(\mathcal{L}^{1/4}\sqrt{\delta}).$$

Moreover, if c is fixed and the angle of I varies only $O(\sqrt{\delta})$, then (a - d)z + b lies in a disk of radius $O(r\mathcal{L}^{1/4}\sqrt{\delta})$; (a + d lies in a rectangle \mathcal{R} of size $O(\mathcal{L}^{1/4}\sqrt{\delta}) \times \widetilde{O}(\mathcal{L}^{1/4})$; (a - d lies in the rotated rectangle $2cz + i\mathcal{R}$.

$M(P, L, \delta)$ for all δ , and $\widetilde{M}(P, L, \delta)$ for $\delta \gg L^{-4}$

Goal

$$M(P, L, \delta) \preccurlyeq L^2 + L^4 \min(\sqrt{\delta}, |N|^{-2})$$
$$\widetilde{M}(P, L, \delta) \preccurlyeq L^3 + L^6 \min(\sqrt{\delta}, |N|^{-2})$$

Idea $(c \rightsquigarrow a - d \rightsquigarrow b \rightsquigarrow a + d)$

For fixed c, the lattice point $(a - d)P + b \in \mathbb{Z}[i] + \mathbb{Z}[i]P$ lies in a small ball. If, in addition, I lies in a small angular sector, then a - d and a + d lie in thin rectangles. Finally, for I square, a + d is essentially determined by (c, a - d, b) via

$$(a-d)^2 + 4bc = (a+d-2\sqrt{I})(a+d+2\sqrt{I})$$

Idea $(c \rightsquigarrow a \rightsquigarrow l \rightsquigarrow d)$

If c and a are fixed, then the rational integer $|I|^2$ lies in a small interval. If I is also fixed, then d is restricted to a small disk.

 $\widetilde{M}(P,L,\delta)$ for $\delta \ll L^{-4}$ (1 of 2)

Idea

In this case $I = \det \gamma$ is a square, so $\lambda := \sqrt{I}$ is a Gaussian integer. The lattice triangle $0, a + d, \lambda$ has tiny height by the distance condition, so its area is zero. Arithmetic in Gaussian integers shows that $a + d \in \{0, \pm \lambda, \pm 2\lambda\}$, hence λ essentially determines a + d.

Idea

Approximate Nz by a Gaussian fraction:

$$Nz = rac{p}{q} + O\left(rac{1}{|q|L^2}
ight),$$

where $p, q \in \mathbb{Z}[i]$ and $1 \leq |q| \leq L^2$ and (p, q) = 1. Proceed differently for $|q| \leq L$ and for |q| > L.

 $\widetilde{M}(P,L,\delta)$ for $\delta \ll L^{-4}$ (2 of 2)

Idea (for $|q| \leq L$)

Write c = Nc'. The matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}[i])$ is essentially determined by the product $(2c'p - aq + dq)\overline{\lambda}$ which lies in a rectangle of size $O(1 + |q|L^2\sqrt{\delta}) \times O(|q|L^2)$. Hence $\widetilde{M}(P, L, \delta) \ll (1 + |q|L^2\sqrt{\delta})|q|L^2 \ll L^3 + L^6\sqrt{\delta}$.

Idea (for |q| > L)

The matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}[i])$ is essentially determined by the product $c'(\overline{a} - \overline{a_{c'}})$ which lies in $\ll (1 + |q|L^2\sqrt{\delta})|q|/|(q,\overline{q})|$ translates of a 2-dimensional lattice with minimal length $\gg |q|/|(q,\overline{q})|$ and covolume $\gg |q|^2/|(q,\overline{q})|$. Hence $\widetilde{M}(P,L,\delta) \ll (1 + |q|L^2\sqrt{\delta})\frac{|q|}{|(q,\overline{q})|} \left(1 + \frac{L^2|(q,\overline{q})|}{|q|} + \frac{L^4|(q,\overline{q})|}{|q|^2}\right)$

 $\ll L^3 + L^6 \sqrt{\delta}.$