On the sup-norm problem for arithmetic hyperbolic 3-manifolds

Gergely Harcos

Alfréd Rényi Institute of Mathematics
http://www.renyi.hu/~gharcos/

29 September 2014
Analytic Number Theory Workshop
University of Oxford

Arithmetic Quantum Chaos (1 of 3)

Consider a freely moving particle on a compact manifold M.

- In classical mechanics, the particle corresponds to an orbit of the geodesic flow on the unit cotangent bundle $S^{*} M$.
- In quantum mechanics, the particle corresponds to a solution $\psi: M \times \mathbb{R} \rightarrow \mathbb{C}$ of the Schrödinger equation $\Delta \psi+i \frac{\partial \psi}{\partial t}=0$. $|\psi(m, t)|^{2}$ is the probability density of the particle. Any nice solution is a linear combination of the stationary waves $(m, t) \mapsto \phi(m) e^{-i \lambda t}$, where $\phi: M \rightarrow \mathbb{C}$ satisfies $\triangle \phi+\lambda \phi=0$.

Assume that M has negative sectional curvature.

- The geodesic flow on $S^{*} M$ is ergodic (Anosov-Sinai 1967).
- $|\phi(m)|^{2} d \mathrm{vol}(m) \rightarrow d \mathrm{vol}(m)$ holds for almost all ϕ (Schnirelman 1974, Colin de Verdière 1985, Zelditch 1987).
- The limit should hold for all ϕ (QUE, Rudnick-Sarnak 1994).
- Any weak star limit of the measures $|\phi(m)|^{2} d \operatorname{vol}(m)$ has a lift to $S^{*} M$ which has positive entropy (Anantharaman 2008).

Arithmetic Quantum Chaos (2 of 3)

Abstract

Arithmetic Quantum Unique Ergodicity Conjecture Let M be a compact Riemannian manifold of negative sectional curvature. Assume that $M=\Gamma \backslash S$, where S is a globally symmetric space and $\Gamma \leqslant \operatorname{lsom}^{+}(S)$ is an arithmetic subgroup of isometries. Let $\phi: M \rightarrow \mathbb{C}$ run through a complete orthonormal sequence of Hecke eigenforms. Then the probability measures $|\phi(m)|^{2} d \mathrm{vol}(m)$ tend in the weak star topology to the uniform measure $d \mathrm{vol}(\mathrm{m})$.

- AQUE is true for compact arithmetic hyperbolic surfaces $\Gamma \backslash \mathcal{H}^{2}$ (Lindenstrauss 2006), and also for the modular surface $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}^{2}$ (Soundararajan 2010). In these cases, GRH implies an optimal rate of convergence (Watson 2001).
- The conjecture generalizes to higher rank. AQUE is true for $S=\mathrm{PGL}_{n}(\mathbb{R}) / \mathrm{PO}_{n}(\mathbb{R})$, n prime (Silberman-Venkatesh 2007).
- Hecke operators are key in all these results.

Arithmetic Quantum Chaos (3 of 3)

Theorem (Sarnak 2004)

Let $M=\Gamma \backslash S$, where S is a Riemannian globally symmetric space and $\Gamma \leqslant \operatorname{Isom}^{+}(S)$ is a co-compact discrete subgroup of isometries. Let $\phi: M \rightarrow \mathbb{C}$ be an L^{2}-normalized joint eigenfunction of the invariant differential operators on S. If λ denotes the Laplacian eigenvalue of ϕ, then

$$
\|\phi\|_{\infty} \ll S, \Gamma \lambda^{(\operatorname{dim} S-\operatorname{rank} S) / 4} .
$$

Problem

Fix S. Assume that Γ is arithmetic and ϕ is a Hecke eigenform.
(1) Estimate $\|\phi\|_{\infty}$ in terms of λ.
(2) Estimate $\|\phi\|_{\infty}$ in terms of Γ.
(3) Examine what happens when $M=\Gamma \backslash S$ is not compact.

Results for the sup-norm problem on arithmetic manifolds

group	eigenvalue aspect	level aspect
$\mathrm{GL}_{2}(\mathbb{R})$	Iwaniec-Sarnak 95 Rudnick 05, Xia 07 Friedman-Jorgenson-Kramer 14^{+} Templier 14^{+} Das-Sengupta 14^{+}, Steiner 14^{+} Sarnak 04, Milićević 10	Abbes-Ullmo 95, Michel-Ullmo 98 Jorgenson-Kramer 04 Blomer-Holowinsky 10 Templier 10, Helfgott-Ricotta 11 Harcos-Templier 13 Ye 14^{+}, Kiral 14^{+}, Saha 14^{+} Lau 10, Templier 14, Saha 14^{+}
$\mathrm{GL}_{2}(\mathbb{C})$	Koyama 95 Blomer-Harcos-Milićević 14^{+} Rudnick-Sarnak 94, Milićević 11	Blomer-Harcos-Milićević 14+
$\mathrm{SO}_{n}(\mathbb{R})$	VanderKam 97, Blomer-Michel 13	Blomer-Michel 13
$\mathrm{Sp}_{4}(\mathbb{R})$	Blomer-Pohl 14+	
$G L_{n}(\mathbb{R})$	Holowinsky-Ricotta-Royer 14^{+} Blomer-Maga 14^{+}, Marshall 14^{+} Brumley-Templier 14^{+}	

- Consider $\mathcal{H}^{2}:=\{x+y i: x \in \mathbb{R}, y>0\}$ with the $\mathrm{GL}_{2}(\mathbb{R})$-action

$$
\begin{array}{ll}
g z=(a z+b)(c z+d)^{-1} & g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R}) \\
g z=-\bar{z} & g=\left(\begin{array}{ll}
-1 & \\
& 1
\end{array}\right)
\end{array}
$$

- Consider $\mathcal{H}^{3}:=\{z+r j: z \in \mathbb{C}, r>0\}$ with the $\mathrm{GL}_{2}(\mathbb{C})$-action

$$
\begin{array}{ll}
g P=(a P+b)(c P+d)^{-1} & g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{C}) \\
g P=P & g=\left(\begin{array}{ll}
a & \\
& a
\end{array}\right) \in Z(\mathbb{C})
\end{array}
$$

- $\mathcal{H}^{2} \cong \mathrm{Z}(\mathbb{R}) \backslash \mathrm{GL}_{2}(\mathbb{R}) / \mathrm{O}_{2}(\mathbb{R})$ and $\mathcal{H}^{3} \cong \mathrm{Z}(\mathbb{C}) \backslash \mathrm{GL}_{2}(\mathbb{C}) / \mathrm{U}_{2}(\mathbb{C})$

Congruence subgroup

$$
\Gamma_{0}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

Theorem (Iwaniec-Sarnak 1995)

$$
\|\phi\|_{\infty} \ll N_{N, \varepsilon} \lambda^{\frac{5}{24}+\varepsilon}
$$

Theorem (Blomer-Holowinsky 2010)

$$
\|\phi\|_{\infty} \ll \lambda, \varepsilon N^{-\frac{25}{914}+\varepsilon}
$$

Theorem (Templier 2013)

$$
\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{\frac{5}{24}+\varepsilon} N^{-\frac{1}{6}+\varepsilon}
$$

Results for \mathcal{H}^{3} and square-free level $N \in \mathbb{Z}[i]$

Congruence subgroup

$$
\Gamma_{0}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}[i]) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

Theorem (Koyama 1994)

$$
\|\phi\|_{\infty} \ll N_{N, \varepsilon} \lambda^{\frac{37}{76}+\varepsilon}
$$

Theorem (Blomer-Harcos-Milićević 2013)

$$
\|\phi\|_{\infty} \ll_{\varepsilon}(\lambda|N|)^{\varepsilon} \min \left(\lambda^{\frac{5}{12}}, \lambda^{\frac{1}{2}}|N|^{-\frac{1}{3}}\right)
$$

Theorem (Blomer-Harcos-Milićević 2013)

$$
\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{\frac{4}{9}+\varepsilon}|N|^{-\frac{1}{9}+\varepsilon}
$$

(1) Amplification method (Duke-Friedlander-Iwaniec)
(2) Pretrace formula (Selberg)
(3) Arithmetic symmetries (Hecke, Atkin-Lehner)
(4) Geometry of numbers (Gauss, Minkowski)
(5) Diophantine approximation (Dirichlet)

Theorem (Blomer-Harcos-Milićević 2013)

Let ϕ be an L^{2}-normalized Hecke-Maass newform on \mathcal{H}^{3} of square-free level $N \in \mathbb{Z}[i]$. Then

$$
|\phi(P)|<_{\varepsilon}(\lambda|N|)^{\varepsilon} \min \left(\lambda^{\frac{5}{12}}, \lambda^{\frac{1}{2}}|N|^{-\frac{1}{3}}\right), \quad P \in \mathcal{H}^{3} .
$$

Key Lemma

The supremum of $|\phi(P)|$ is attained at a point $P=z+r j \in \mathcal{H}^{3}$ such that the associated lattice $\mathbb{Z}[i]+\mathbb{Z}[i] P \subset \mathbb{R}+\mathbb{R} i+\mathbb{R} j+\mathbb{R} k$ and its successive minima $m_{1} \leqslant m_{2} \leqslant m_{3} \leqslant m_{4}$ satisfy:
(1) $|N|^{-\frac{1}{2}} \leqslant m_{1}=m_{2} \leqslant m_{3}=m_{4}$
(2) $m_{1} m_{2} m_{3} m_{4} \asymp r^{2}$ and $r \gg|N|^{-1}$
(3) In any ball of radius R the number of lattice points is

$$
\ll 1+R^{2}|N|+R^{4} r^{-2}
$$

Notation

$$
X \preccurlyeq Y \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad X \ll_{\varepsilon} Y(\lambda|N|)^{\varepsilon}
$$

Proposition

There is $\lambda^{-1} \leqslant \delta \preccurlyeq 1$ such that

$$
|\phi(P)|^{2} \preccurlyeq \frac{\sqrt{\lambda}}{\sqrt{\delta}}\left(r^{2} \delta+\frac{1}{L}+\frac{M(P, L, \delta)}{L^{3}}+\frac{\tilde{M}(P, L, \delta)}{L^{4}}\right),
$$

where

- $M(P, L, \delta)$ is the number of matrices $\gamma \in \mathrm{M}_{2}(\mathbb{Z}[i])$ such that

$$
\cosh (\operatorname{dist}(\gamma P, P)) \leqslant 1+\delta
$$

the lower left entry of γ is nonzero and divisible by N, and $\operatorname{det} \gamma=I_{1} I_{2}$ with split primes $I_{1}, l_{2} \asymp \sqrt{L}$ from the first octant;

- $\widetilde{M}(P, L, \delta)$ is same with $\operatorname{det} \gamma=l_{1}^{2} l_{2}^{2}$ (instead of $\operatorname{det} \gamma=l_{1} l_{2}$).

We write $P=z+r j \in \mathcal{H}^{3}$ and $\operatorname{det} \gamma=I \asymp \sqrt{\mathcal{L}}$.

$$
\begin{gathered}
\cosh (\operatorname{dist}(\gamma P, P)) \leqslant 1+\delta, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}[i]) \\
\left\|a^{\prime} P+b^{\prime}-P c^{\prime} P-P d^{\prime}\right\|^{2} \leqslant 2 r^{2} \delta, \quad\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right):=\frac{1}{\sqrt{l}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{gathered}
$$

Geometric principle
Asssume $\cosh (\operatorname{dist}(\gamma P, P)) \leqslant 1+\delta$. Then

$$
\|c P+d\|,\|c P-a\|=|/|^{1 / 2}+O\left(\mathcal{L}^{1 / 4} \sqrt{\delta}\right) .
$$

Moreover, if c is fixed and the angle of I varies only $O(\sqrt{\delta})$, then
(1) $(a-d) z+b$ lies in a disk of radius $O\left(r \mathcal{L}^{1 / 4} \sqrt{\delta}\right)$;
(2) $a+d$ lies in a rectangle \mathcal{R} of size $O\left(\mathcal{L}^{1 / 4} \sqrt{\delta}\right) \times \widetilde{O}\left(\mathcal{L}^{1 / 4}\right)$;
(3) $a-d$ lies in the rotated rectangle $2 c z+i \mathcal{R}$.

$M(P, L, \delta)$ for all δ, and $\widetilde{M}(P, L, \delta)$ for $\delta \gg L^{-4}$

Goal

$$
\begin{aligned}
& M(P, L, \delta) \preccurlyeq L^{2}+L^{4} \min \left(\sqrt{\delta},|N|^{-2}\right) \\
& \widetilde{M}(P, L, \delta) \preccurlyeq L^{3}+L^{6} \min \left(\sqrt{\delta},|N|^{-2}\right)
\end{aligned}
$$

Idea $(c \rightsquigarrow a-d \rightsquigarrow b \rightsquigarrow a+d)$
For fixed c, the lattice point $(a-d) P+b \in \mathbb{Z}[i]+\mathbb{Z}[i] P$ lies in a small ball. If, in addition, I lies in a small angular sector, then $a-d$ and $a+d$ lie in thin rectangles. Finally, for I square, $a+d$ is essentially determined by $(c, a-d, b)$ via

$$
(a-d)^{2}+4 b c=(a+d-2 \sqrt{l})(a+d+2 \sqrt{l}) .
$$

Idea $(c \rightsquigarrow a \rightsquigarrow I \rightsquigarrow d$)

If c and a are fixed, then the rational integer $|I|^{2}$ lies in a small interval. If I is also fixed, then d is restricted to a small disk.

Idea

In this case $I=\operatorname{det} \gamma$ is a square, so $\lambda:=\sqrt{I}$ is a Gaussian integer. The lattice triangle $0, a+d, \lambda$ has tiny height by the distance condition, so its area is zero. Arithmetic in Gaussian integers shows that $a+d \in\{0, \pm \lambda, \pm 2 \lambda\}$, hence λ essentially determines $a+d$.

Idea

Approximate Nz by a Gaussian fraction:

$$
N z=\frac{p}{q}+O\left(\frac{1}{|q| L^{2}}\right)
$$

where $p, q \in \mathbb{Z}[i]$ and $1 \leqslant|q| \leqslant L^{2}$ and $(p, q)=1$. Proceed differently for $|q| \leqslant L$ and for $|q|>L$.

$\tilde{M}(P, L, \delta)$ for $\delta \ll L^{-4}(2$ of 2$)$

Idea (for $|q| \leqslant L$)
Write $c=N c^{\prime}$. The matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{Z}[i])$ is essentially determined by the product $\left(2 c^{\prime} p-a q+d q\right) \bar{\lambda}$ which lies in a rectangle of size $O\left(1+|q| L^{2} \sqrt{\delta}\right) \times O\left(|q| L^{2}\right)$. Hence

$$
\widetilde{M}(P, L, \delta) \ll\left(1+|q| L^{2} \sqrt{\delta}\right)|q| L^{2} \ll L^{3}+L^{6} \sqrt{\delta} .
$$

Idea (for $|q|>L$)

The matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}[i])$ is essentially determined by the product $c^{\prime}\left(\bar{a}-\overline{a_{c^{\prime}}}\right)$ which lies in $\ll\left(1+|q| L^{2} \sqrt{\delta}\right)|q| /|(q, \bar{q})|$ translates of a 2-dimensional lattice with minimal length $\gg|q| /|(q, \bar{q})|$ and covolume $\gg|q|^{2} /|(q, \bar{q})|$. Hence

$$
\begin{aligned}
\tilde{M}(P, L, \delta) & \ll\left(1+|q| L^{2} \sqrt{\delta}\right) \frac{|q|}{|(q, \bar{q})|}\left(1+\frac{L^{2}|(q, \bar{q})|}{|q|}+\frac{L^{4}|(q, \bar{q})|}{|q|^{2}}\right) \\
& \ll L^{3}+L^{6} \sqrt{\delta} .
\end{aligned}
$$

