On the sup-norm of Maass cusp forms of large level

Gergely Harcos

Alfréd Rényi Institute of Mathematics http://www.renyi.hu/~gharcos/

7 September 2012
Synergies And Vistas in Analytic Number Theory Mathematical Institute, University of Oxford

Overview

(1) The problem
(2) Connections and applications
(3) Evolution of results (2 slides)
(4) Overview of the proof (2 slides)
(5) Atkin-Lehner operators (3 slides)
(6) Amplification and the pretrace formula (2 slides)
(7) Counting integral matrices (4 slides)
(8) The endgame

Congruence subgroup

$$
\Gamma_{0}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

Problem

Let f be a Hecke-Maass cuspidal newform on $\Gamma_{0}(N) \backslash \mathcal{H}$. Normalize f so that it has L^{2}-norm 1 with respect to $d x d y / y^{2}$. Estimate $\|f\|_{\infty}$ in terms of the Laplacian eigenvalue λ and the level N.

- Easy bounds are $\|f\|_{\infty}<_{N} \lambda^{1 / 4}$ (Seeger-Sogge 1989) and $\|f\|_{\infty} \ll \lambda, \varepsilon N^{\varepsilon}$ (Abbes-Ullmo 1995).
- Better bounds rely on extra symmetries of $\Gamma_{0}(N) \backslash \mathcal{H}$, namely the properties of Hecke operators and Atkin-Lehner operators.
- Optimal bounds would be $\|f\|_{\infty} \ll N, \varepsilon \lambda^{1 / 12+\varepsilon}$ and $\|f\|_{\infty}<_{\lambda, \varepsilon} N^{-1 / 4+\varepsilon}$ (cf. Templier 2012)? Not so clear.

Connections and applications

- Quantum Unique Ergodicity
- Behavior of L^{p}-norms of cusp forms
- Subconvex bounds for L-functions
- Bounds for exponential sums associated with cusp forms
- Bounds for shifted convolution sums of Hecke eigenvalues

Evolution of results (1 of 2)

Assume that N is square-free. Then the Atkin-Lehner operators permute the cusps of $\Gamma_{0}(N) \backslash \mathcal{H}$ transitively.

Theorem (Iwaniec-Sarnak 1995)

$$
\|f\|_{\infty} \ll N, \varepsilon \lambda^{5 / 24+\varepsilon}
$$

Theorem (Blomer-Holowinsky 2010)

$$
\|f\|_{\infty} \ll \lambda, \varepsilon \quad N^{-25 / 914+\varepsilon}
$$

Theorem (Templier 2010)

$$
\|f\|_{\infty} \ll \lambda_{\lambda, \varepsilon} N^{-1 / 22+\varepsilon}
$$

Evolution of results (2 of 2)

Assume that N is square-free. Then the Atkin-Lehner operators permute the cusps of $\Gamma_{0}(N) \backslash \mathcal{H}$ transitively.

Theorem (Helfgott-Ricotta 2011)

$$
\|f\|_{\infty} \ll \lambda_{, \varepsilon} N^{-1 / 20+\varepsilon}
$$

Theorem (Harcos-Templier 2011)

$$
\|f\|_{\infty} \ll \lambda_{, \varepsilon} N^{-1 / 12+\varepsilon}
$$

Theorem (Harcos-Templier 2012)

$$
\|f\|_{\infty} \ll \lambda, \varepsilon N^{-1 / 6+\varepsilon}
$$

Overview of the proof (1 of 2)

Original strategy (Iwaniec-Sarnak, Blomer-Holowinsky, Templier):
(1) Pick any $z \in \mathcal{H}$ where you want to estimate $|f(z)|$.
(2) Apply an Atkin-Lehner operator on z to ensure that z is not too far from the cusp ∞.
(3) Use the amplification method and some trace formula to reduce the problem to a counting problem depending on z.
(0) Do the counting based on the diophantine properties of z.

Improved steps in strategy (Harcos-Templier):
(2) Apply an Atkin-Lehner operator on z to ensure that z is not too close to any cusp but ∞.
(9) Observe that z has good diophantine properties automatically, allowing a more efficient counting.

Overview of the proof (2 of 2)

- $\left(f_{j}\right)_{j \geqslant 0}$ an orthonormal basis of Hecke-Maass eigenforms on $\Gamma_{0}(N) \backslash \mathcal{H}$ with Laplacian eigenvalues $\frac{1}{4}+r_{j}^{2} \geqslant 0$
- $h: \mathbb{R} \cup\left[-\frac{i}{2}, \frac{i}{2}\right] \rightarrow(0, \infty)$ a fixed nice even function
- $a_{j} \geqslant 0$ is a suitable arithmetic weight for each f_{j} (amplifier)

We can assume that f is one of the f_{j} 's, then by positivity

$$
h\left(r_{f}\right) a_{f}|f(z)|^{2} \leqslant \sum_{j \geqslant 0} h\left(r_{j}\right) a_{j}\left|f_{j}(z)\right|^{2}+c t s
$$

From here we aim to arrive at the conclusion

$$
\Lambda^{2-\varepsilon}|f(z)|^{2}<_{r_{f}, \varepsilon} \Lambda
$$

where Λ (the amplifier length) is not too small.

$$
\Lambda:=N^{1 / 3-\varepsilon} \quad \Longrightarrow \quad f(z) \ll \lambda_{\lambda, \varepsilon} N^{-1 / 6+\varepsilon} .
$$

Atkin-Lehner operators (1 of 3)

Definition

Atkin-Lehner operators are matrices of the form

$$
W_{M}=\frac{1}{\sqrt{M}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}), \quad M \mid N
$$

where $a, b, c, d \in \mathbb{Z}$ are integers satisfying

$$
a d-b c=M, \quad a \equiv 0(M), \quad d \equiv 0(M), \quad c \equiv 0(N) .
$$

Lemma (standard)
Let N be square-free.
(1) The W_{M} 's form a left and right $\Gamma_{0}(N)$ coset for each $M \mid N$.
(2) $W_{M} W_{M^{\prime}}=W_{M^{\prime \prime}}$ with $M^{\prime \prime}:=\frac{M M^{\prime}}{\left(M, M^{\prime}\right)^{2}}$.
(3) Atkin-Lehner operators form a group $A_{0}(N)$ containing $\Gamma_{0}(N)$ as a normal subgroup such that $A_{0}(N) / \Gamma_{0}(N) \cong(\mathbb{Z} / 2 \mathbb{Z})^{\omega(N)}$.

Atkin-Lehner operators (2 of 3)

$A_{0}(N)$ acts on $f(z)$ by eigenvalues ± 1, hence we can restrict z to the following fundamental domain for $A_{0}(N)$.

Ford polygon

$$
\mathcal{F}(N):=\left\{z \in \mathcal{H} \mid 0 \leqslant \operatorname{Re} z \leqslant 1, \operatorname{Im} z \geqslant \operatorname{Im} \delta z \text { for all } \delta \in A_{0}(N)\right\}
$$

Key Lemma

Let N be square-free. For any $z \in \mathcal{F}(N)$ the associated lattice $\langle 1, z\rangle$ satisfies the following properties.
(1) The minimal distance is at least $N^{-1 / 2}$.
(2) The covolume is $y=\operatorname{Im} z \gg N^{-1}$.
(3) In any disc of radius R the number of lattice points is

$$
\ll 1+R N^{1 / 2}+R^{2} y^{-1}
$$

Atkin-Lehner operators (3 of 3)

Proof of the Key Lemma

(1) It suffices to show $|c z+d| \geqslant N^{-1 / 2}$ for any coprime $c, d \in \mathbb{Z}$. We claim that there is a unique divisor $M \mid N$ such that $W_{M}=\frac{1}{\sqrt{M}}\left(\begin{array}{cc}M a & b \\ M c & M d\end{array}\right)$ is an Atkin-Lehner operator for suitable $a, b \in \mathbb{Z}$. We need $N \mid M c$ and $M a d-b c=1$. The second condition can be fulfilled iff $(M d, c)=1$ i.e. $(M, c)=1$. Hence $M:=N /(N, c)$ is the unique divisor $M \mid N$ that works. Now

$$
\operatorname{Im} z \geqslant \operatorname{lm} W_{M} z=\frac{\operatorname{lm} z}{M|c z+d|^{2}} \Longrightarrow|c z+d|^{2} \geqslant \frac{1}{M} \geqslant \frac{1}{N}
$$

(2) The covolume is essentially the product of the two successive minima. Hence $y=\operatorname{Im} z \gg N^{-1 / 2} N^{-1 / 2}=N^{-1}$.
(3) Consider the lattice points in a disc of radius R. If the points are collinear, then their number is $\ll 1+R N^{1 / 2}$. Otherwise their number is $\ll R^{2} y^{-1}$ by the usual Gauss argument.

Amplification and the pretrace formula (1 of 2)

Amplifier

$$
a_{j}:=\left(\sum_{p} x(p) \lambda_{j}(p)\right)^{2}+\left(\sum_{p} x\left(p^{2}\right) \lambda_{j}\left(p^{2}\right)\right)^{2}
$$

- sums run through the primes $\Lambda<p<2 \Lambda$ not dividing N
- $\lambda_{j}(n)$ is the n-th Hecke eigenvalue of f_{j}
- $x(n)$ abbreviates $\operatorname{sgn}\left(\lambda_{f}(n)\right)$

$$
\begin{aligned}
\lambda_{f}(p)^{2}- & \lambda_{f}\left(p^{2}\right)=1 \quad \Longrightarrow \quad\left|\lambda_{f}(p)\right|+\left|\lambda_{f}\left(p^{2}\right)\right|>1 / 2 \\
a_{f} & =\left(\sum_{p}\left|\lambda_{f}(p)\right|\right)^{2}+\left(\sum_{p}\left|\lambda_{f}\left(p^{2}\right)\right|\right)^{2} \\
& \geqslant \frac{1}{2}\left(\sum_{p}\left|\lambda_{f}(p)\right|+\left|\lambda_{f}\left(p^{2}\right)\right|\right)^{2} \gg_{\varepsilon} \Lambda^{2-\varepsilon} .
\end{aligned}
$$

Amplification and the pretrace formula (2 of 2)

$$
\begin{aligned}
& \Lambda^{2-\varepsilon}|f(z)|^{2} \ll r_{f}, \varepsilon \\
& \sum_{j \geqslant 0} h\left(r_{j}\right) a_{j}\left|f_{j}(z)\right|^{2}+c t s \\
& = \\
& =\sum_{l \geqslant 1} y(I)\left(\sum_{j \geqslant 0} h\left(r_{j}\right) \lambda_{j}(I)\left|f_{j}(z)\right|^{2}+c t s\right) \\
& = \\
& \sum_{l \geqslant 1} \frac{y(I)}{\sqrt{I}} \sum_{\begin{array}{c}
(a, b, c, d) \in \mathbb{Z}^{4} \\
a d-b c=1 \\
c \equiv 0(N)
\end{array}} k\left(\frac{a z+b}{c z+d}, z\right) \\
& \ll \Lambda M(z, 1, N)+\frac{1}{\Lambda} \sum_{p_{1}, p_{2}} M\left(z, p_{1} p_{2}, N\right)+\frac{1}{\Lambda^{2}} \sum_{p_{1}, p_{2}} M\left(z, p_{1}^{2} p_{2}^{2}, N\right)
\end{aligned}
$$

where $\Lambda<p_{1}, p_{2}<2 \Lambda$ are primes, and $M(z, I, N)$ denotes the number of lattice points $(a, b, c, d) \in \mathbb{Z}^{4}$ satisfying

$$
a d-b c=l, \quad c \equiv 0(N), \quad\left|-c z^{2}+(a-d) z+b\right| \leqslant N^{\varepsilon} I^{1 / 2} y .
$$

Counting integral matrices (1 of 4)

We estimate the various sums of $M(z, I, N)$'s via

$$
\left|-c z^{2}+(a-d) z+b\right| \leqslant N^{\varepsilon} I^{1 / 2} y .
$$

We treat separately the three ranges for $I=a d-b c$:
$L=1$ for $I=1, L=\Lambda^{2}$ for $I=p_{1} p_{2}, L=\Lambda^{4}$ for $I=p_{1}^{2} p_{2}^{2}$.
If $c=0$, then $a d=I$, and for any pair (a, d) the number of choices for b is $\ll 1+N^{\varepsilon} L^{1 / 2} y$.

Hence the total contribution of $M_{c=0}(z, I, N)$ is

$$
\ll \Lambda(1+y)+\frac{1}{\Lambda} \Lambda^{2}(1+\Lambda y)+\frac{1}{\Lambda^{2}} \Lambda^{2}\left(1+\Lambda^{2} y\right) \ll \Lambda+\Lambda^{2} y
$$

apart from factors of N^{ε}.

Counting integral matrices (2 of 4)

From now on we assume $c \neq 0$. We prove first that

$$
\max (|c z+d|,|c z-a|) \ll N^{\varepsilon} L^{1 / 2} .
$$

This implies that

$$
\# c \ll N^{\varepsilon} \frac{L^{1 / 2}}{N y} \quad \text { and } \quad a+d \ll N^{\varepsilon} L^{1 / 2} .
$$

We proceed in two steps, both starting from

$$
\left|-c z^{2}+(a-d) z+b\right| \leqslant N^{\varepsilon} l^{1 / 2} y .
$$

Multiplying by $c,|(c z+d)(c z-a)+I| \leqslant N^{\varepsilon} I^{1 / 2} c y$, hence

$$
\min (|c z+d|,|c z-a|) \leqslant|(c z+d)(c z-a)|^{1 / 2} \ll N^{\varepsilon} L^{1 / 2} .
$$

Taking imaginary part, $|2 c x+d-a| \leqslant N^{\varepsilon} I^{1 / 2}$, hence

$$
||c z+d|-|c z-a|| \leqslant|c z+d+\overline{c z-a}| \ll N^{\varepsilon} L^{1 / 2} .
$$

Counting integral matrices (3 of 4)

We are still using

$$
\left|-c z^{2}+(a-d) z+b\right| \leqslant N^{\varepsilon} l^{1 / 2} y
$$

For each c, the possible pairs $(a-d, b)$ correspond to lattice points from $\langle 1, z\rangle$ in a disk of radius $R \ll N^{\varepsilon} L^{1 / 2} y$. Hence for each c the number of choices for $(a-d, b)$ is

$$
\ll N^{\varepsilon}\left(1+N^{1 / 2} L^{1 / 2} y+L y\right)
$$

By the bounds on c and $a+d$ we see immediately that

$$
\sum_{l ר L} M_{c \neq 0}(z, I, N) \ll N^{\varepsilon} \frac{L^{1 / 2}}{N y} L^{1 / 2}\left(1+N^{1 / 2} L^{1 / 2} y+L y\right) .
$$

Note that here $L=1$ or $L=\Lambda^{2}$ or $L=\Lambda^{4}$.

Counting integral matrices (4 of 4)

In the range $L=\Lambda^{4}$ we can do better by noting that $I=p_{1}^{2} p_{2}^{2}$ is a square and the triple $(c, a-d, b)$ determines

$$
(a+d)^{2}-4 I=(a-d)^{2}+4 b c
$$

Under the assumption $I<N^{-\varepsilon} y^{-2}$ we can show that the right hand side is a nonzero integer $\ll N^{\varepsilon} L$, and we observe that $a+d$ is the mean of the divisor pair $a+d \pm 2 \sqrt{I}$. Hence for each triple $(c, a-d, b)$ the number of choices for $a+d$ is $\ll N^{\varepsilon}$. This furnishes the improved bound

$$
\sum_{l \asymp L} M_{c \neq 0}(z, l, N) \ll N^{\varepsilon} \frac{L^{1 / 2}}{N y}\left(1+N^{1 / 2} L^{1 / 2} y+L y\right)
$$

in the range $L=\Lambda^{4}$, at least when $16 \Lambda^{4}<N^{-\varepsilon} y^{-2}$.

The endgame

The total contribution of $M_{c \neq 0}(z, I, N)$ is

$$
\begin{aligned}
& \ll \Lambda \frac{1}{N y}\left(1+N^{1 / 2} y+y\right)+\frac{1}{\Lambda} \frac{\Lambda}{N y} \Lambda\left(1+N^{1 / 2} \Lambda y+\Lambda^{2} y\right) \\
& +\frac{1}{\Lambda^{2}} \frac{\Lambda^{2}}{N y}\left(1+N^{1 / 2} \Lambda^{2} y+\Lambda^{4} y\right) \ll \frac{\Lambda}{N y}+\frac{\Lambda^{2}}{N^{1 / 2}}+\frac{\Lambda^{4}}{N}
\end{aligned}
$$

apart from factors of N^{ε}. Collecting all terms,

$$
\Lambda^{2-\varepsilon}|f(z)|^{2}<_{\lambda, \varepsilon} \Lambda+\Lambda^{2} y+\frac{\Lambda}{N y}+\frac{\Lambda^{2}}{N^{1 / 2}}+\frac{\Lambda^{4}}{N}
$$

For $N^{-1} \ll y \leqslant N^{-2 / 3}$ and $\Lambda:=N^{1 / 3-\varepsilon}$ the condition $16 \Lambda^{4}<N^{-\varepsilon} y^{-2}$ is satisfied and we obtain the desired bound:

$$
\Lambda^{2-\varepsilon}|f(z)|^{2} \ll \lambda_{\lambda, \varepsilon} \Lambda \quad \Longrightarrow \quad f(z) \ll_{\lambda, \varepsilon} N^{-1 / 6+\varepsilon}
$$

For $y>N^{-2 / 3}$ we use the rapid decay of the Fourier expansion:

$$
f(z) \ll \lambda_{, \varepsilon} N^{\varepsilon}(N y)^{-1 / 2} \quad \Longrightarrow \quad f(z) \ll \lambda_{, \varepsilon} N^{-1 / 6+\varepsilon} .
$$

Happy Birthday!

