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Motivation for the sup-norm problem

1 Subconvexity for automorphic L-functions (periods and norms)

2 Chaos (classical and quantum)



Arithmetic quantum chaos

Consider a freely moving particle on a compact manifold M with
normalized volume form dvol(m) and negative sectional curvature.

Classical mechanics

The particle corresponds to an orbit of the geodesic flow on the
unit tangent bundle SM. The geodesic flow is ergodic, but not
uniquely ergodic (there are infinitely many closed geodesics).

Quantum mechanics

The particle corresponds to an L2-normalized linear combination of

the stationary waves φ(m)e−it
√
λ, where 4φ = λφ and ‖φ‖2 = 1.

The probability measures |φ(m)|2dvol(m) converge weakly to
dvol(m) along a density one subsequence of any ∆-eigenbasis {φ}.

QUE predicts that dvol(m) is the only weak limit. This has been
confirmed for arithmetic hyperbolic surfaces and Hecke eigenforms,
and in this case GRH implies an optimal rate of convergence.



The sup-norm problem for arithmetic manifolds

Theorem (Sarnak 1994)

Let M be a compact locally symmetric space. If φ : M → C is an
L2-normalized eigenfunction of all the invariant differential
operators on M, then

‖φ‖∞ �M λ(dimM−rankM)/4.

If M is an n-fold covering of a fixed locally symmetric space, then
the implied constant is � n1/2.

Problem

Assume that M is arithmetic and φ is a Hecke eigenform.

Estimate ‖φ‖∞ in terms of λ and n.

Examine what happens when M is not compact.



Results for the sup-norm problem on arithmetic manifolds

group eigenvalue aspect level aspect

GL2(R) Iwaniec–Sarnak 95 Abbes–Ullmo 95, Michel–Ullmo 98

Rudnick 05, Xia 07 Jorgenson–Kramer 04

Friedman–Jorgenson–Kramer 14+ Blomer–Holowinsky 10

Das–Sengupta 15, Steiner 16 Templier 10, Helfgott–Ricotta 11

Templier 15 Harcos–Templier 13, Saha 15+

Sarnak 04, Milićević 10 Lau 10, Templier 14, Saha 15

4 more papers since 2014 5 more papers since 2014

GL2(C) Koyama 95

Blomer–Harcos–Milićević 16 Blomer–Harcos–Milićević 16

Rudnick–Sarnak 94, Milićević 11

SOn(R) VanderKam 97, Blomer–Michel 13 Blomer–Michel 13

Sp4(R) Blomer–Pohl 16

GLn(R) Holowinsky–Ricotta–Royer 14+

Blomer–Maga 16, Marshall 14+

Brumley–Templier 14+



Results for GL2 and square-free level (1 of 3)

Setup

F is a number field with adele ring A and ring of integers o

n ⊆ o is a square-free ideal of norm |n| df= [o : n]

φ is an L2-normalized Hecke–Maaß cuspidal newform on
GL2(F )\GL2(A) of level n and trivial central character

Trivial bound (crude version)

Let us regard φ as a function on the congruence manifold

M := GL2(F )\GL2(A)/Z(F∞)K0(n)

whose connected components are left quotients of (H2)r × (H3)s

by Γ0(n) and related level n subgroups (one for each ideal class).
Sarnak’s bound reads (pretending that M is compact and n = |n|)

‖φ‖∞ � λ(dimM−rankM)/4|n|1/2 = λ[F :Q]/4|n|1/2.



Results for GL2 and square-free level (2 of 3)

Trivial bound (refined version)

Consider the tuple λ := (λ1, . . . , λr , λr+1, . . . , λr+s) of Laplace
eigenvalues at the r real places and the s complex places. Write

|λ|∞
df
=

r∏
j=1

λj

r+s∏
j=r+1

λ2
j .

Then for φ a Hecke–Maaß cusp form as above, we (ought to) have

‖φ‖∞ � |λ|
1/4
∞ |n|

1/2.

Theorem (Templier 2012, Blomer–Harcos–Maga–Milićević 2016)

‖φ‖∞ �ε |λ|5/24+ε
∞ |n|1/3+ε for F = Q

‖φ‖∞ �ε |λ|5/24+ε
∞ |n|1/3+ε for F totally real

‖φ‖∞ �ε |λ|5/24+ε
∞ |n|5/12+ε for F a CM-field



Results for GL2 and square-free level (3 of 3)

Theorem (Blomer–Harcos–Maga–Milićević 2016)

Decompose |λ|∞ as |λ|R |λ|C, where

|λ|R
df
=

r∏
j=1

λj and |λ|C
df
=

r+s∏
j=r+1

λ2
j .

Then for φ a Hecke–Maaß cusp form as above, we have

‖φ‖∞ �ε |λ|5/24+ε
∞ |n|1/3+ε + |λ|1/8+ε

R |λ|1/4+ε
C |n|1/4+ε.

Theorem (Blomer–Harcos–Maga–Milićević 2016)

Assume that F is not totally real, and denote by K its maximal
totally real subfield. Then for φ a Hecke–Maaß cusp form as
above, we have

‖φ‖∞ �ε

(
|λ|1/2
∞ |n|

) 1
2
− 1

8[F :K ]−4
+ε
.



Skeleton of the proof

As the level n is square-free, the supremum of |φ(g)| is attained at
a special matrix g =

( y x
1

)(
θ

1

)
, where x ∈ F∞, y ∈ F×∞, and

θ ∈ A×fin lies in a fixed finite set of ideal class representatives.

We maximize |y |∞, which is partly motivated by the Fourier bound

|φ(g)| �ε

(
|λ|1/12
∞ + |λ|1/4

∞ |y |
−1/2
∞

)1+ε|n|ε.

If this bound is insufficient, we estimate |φ(g)| in terms of certain
matrix counts by an amplified pre-trace inequality.

The counting is facilitated by the observation that the lattice

oP + o ⊂
∏
v real

C
∏

v complex

H,

P
df
=
∏
v real

{xv + yv i} ×
∏

v complex

{xv + yv j},

has favorable diophantine properties.



Ideas for matrix counting (1 of 2)

We can derive an amplified pre-trace inequality from a suitable
positive integral operator acting on L2(M) that fixes φ. The
operator comes from an element of the underlying Hecke algebra.
The inequality follows by comparing the kernels of this operator
and its restriction to the invariant subspace Cφ.

It remains to bound the number of γ =
(
a b
c d

)
∈ GL2(F ) such that

γP is close to P on (H2)r × (H3)s

a, d ∈ o, b ∈ θo, c ∈ θ−1n

det γ ∈ o is arithmetically controlled

Closeness is given in terms of parameters 0 < δv 6 4 at each place
v | ∞, and we seek good bounds in terms of |δ|R and |δ|C. In the
|δ|R-aspect we can get good bounds by associating the lattice point

γ 7→ (a− d)P + b ∈ oP + o.

For the |δ|C-aspect we need additional arithmetic ideas.



Ideas for matrix counting (2 of 2)

For this last side I assume that F is not totally real and |δ|C is very

small. I will focus on the field element ξ
df
= tr(γ)2/ det(γ) ∈ F .

As |δ|C is very small, ξ is close to being totally real. As F is not
totally real, we can show that F = K (ξ) cannot hold, so ξ lies in a
proper subfield of F . However, the denominator of ξ ∈ F is
arithmetically controlled, so we infer that ξ ∈ o is an integer. If
ξ = 4, then γ is parabolic, for which special methods are available.
In general, we only know that ξ is bounded, so we employ a trick.

We choose an auxiliary ideal q ⊆ o and shrink K0(n) by imposing
additional congruence conditions mod q. Applying an amplified
pre-trace inequality for the L2-space of the covering manifold, we
can ensure that the our matrices γ ∈ GL2(F ) are locally parabolic
mod q. As a result, ξ ∈ 4 + q, which forces ξ = 4 when q is large.
To keep the determinants under control, it helps if the only units in
o that are quadratic residues mod q are the squared units.


