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Classical mechanics vs. quantum mechanics

Consider a compact orientable Riemannian manifold M, and
consider a particle moving freely on M with unit speed.

classical mechanics quantum mechanics
phase SM L2(M)
space ToM/{h: h > 0} Hilbert space
moving f:R— SM YR — [2(M)
particle smooth vl =1
bounded a:SM — R Op(a) : L2(M) — L2(M)
observable smooth self-adjoint & bounded
unbounded a: oM - R Op(a) : L2(M) — L2(M)
observable smooth self-adjoint
ener H:ToM =R H: [2(M) — [2(M)
* (x.&) = el b VAY
time Gt: SM — SM Us : L2(M) — L2(M)
evolution geodesic flow U, = e itVA




Wigner measure and quantum limits

Orthonormal Laplace eigenbasis of L2(M)

A(ﬁjz j¢j, 0:)\0<)\1§)\2§...

Solutions of the Schrodinger equation

Y(t) = Ue((0) = Y ge ™ g, (g)i2 € A(N)
j=0

Wigner measures on SM
o (Op(a)oj, dj) = [opy adw;j for a € C>*(SM)
o dwj restricts to du; = |¢;|>du on M

Question

What are the possible weak™ limits of the Wigner measures dw;?




Weyl's law

Local Weyl law

N a) = / 2 duyj ~ Adim(w)/2 Ba vol(M) / ey

Corollary

The Wigner measures dw; tend to the normalized Liouville
measure dw in the Cesaro sense:

1 / N(A, a) /
— adw; = — adw
N(Avl) )\ng:/\ SM ! N(>\a 1) SM

Corollary

If the Wigner measures dw; converge along a subsequence of \;'s
of density 1, then the limit is the normalized Liouville measure dw.




Egorov's theorem

Theorem (Egorov 1969)
For a given a € C>*°(SM) and t € R, let us write

Op(ao G') = U_; Op(a)U; + K(a, t).

Then v/AK(a, t) is a bounded operator from L*(M) to L2(M).

Corollary

/ aondwj—/ adwj + 0a:(\; %)
SM SM

Corollary
Quantum limits on SM are invariant under the geodesic flow.




Standard real spherical harmonics of degree 11

Mathematica® code credit: Vitaliy Kaurov



Standard complex spherical harmonics of degree 11

Mathematica® code credit: Vitaliy Kaurov



Random complex spherical harmonics of degree 11

Mathematica® code credits: Vitaliy Kaurov & Maris Ozols



Quantum limits on the sphere (1 of 2)

Theorem (Uribe 1985, Zelditch 1990)

Let {¢;} be the standard basis of L>(M). Consider the orbits in
SM of the joint action of the geodesic flow and the rotation group
around the vertical axis. The uniform measure on each orbit is a
quantum limit on SM, and these are all the quantum limits on SM.

Theorem (Jakobson—Zelditch 1999)

Every probability measure on SM invariant under the geodesic flow
is a quantum limit for some A-eigenbasis {¢;} of L>(M).

Theorem (Zelditch 1992, VanderKam 1997)

For almost all A-eigenbases {¢;} of L2(M), the normalized
Liouville measure dw is the only quantum limit on SM.



Quantum limits on the sphere (2 of 2)

Averaging operators on the sphere

For a finite set of rotations R C SO3(R), consider the operator
_ 1 -1 2
Tre(m) = 2R ;(Gﬁ(r’”) +o(r=tm)), ¢ e L3(M).

Let {¢;} be an orthonormal (A, Tg)-eigenbasis of L2(M).

Theorem (Jakobson—Zelditch 1999)

If R satisfies a mild technical assumption, then no quantum limit
on SM is supported on a closed geodesic.

Theorem (Brooks—Masson-Lindenstrauss 2016)

If R generates a free subgroup of SO3(R), then on M the projected
measures dpi; = |¢>j\2du converge to du along a subsequence of
Aj's of density 1.




Arithmetic quantum limits on the sphere (1 of 2)
Let us identify S? with {xi + yj + zk : x?+ y? + z? = 1}, then
each nonzero quaternion vy acts on S? via m +— ym¥/(~7¥). Let
bi j + dk
(9::{a+ I+2CJ+ : a,b,c,dGZ,aEbEczdmod2}

be the ring of Hurwitz ﬁ
. N

quaternions.

The 24 units of this
ring act on S? by the
group O* /{£1} = As.

A fundamental domain is
the spherical quadrangle
T1 U T5 in the picture.

Image credit: Michael Magee



Arithmetic quantum limits on the sphere (2 of 2)

Hecke operators on the sphere
Let M = OX\S2. For a prime p > 2, consider the Hecke operator

_ 1 m 2
Tpd(m) := ﬁ%ozx\osﬁ(v. ), ¢ Ll}(M)

YY=pP
Let {¢;} be an orthonormal Hecke eigenbasis of L>(M).

Theorem (Bocherer-Sarnak-Schulze-Pillot 2003)
Forj > k > 1 we have

2
’/ Sl
M

where f; and f are the holomorphic cuspidal newforms associated
to ¢; and ¢y by the Eichler/Jacquet-Langlands correspondence.

1 -
<o (M) Ve (2, FRFf® fk> ,

In particular, GRH (or subconvexity) implies that du; — dy.




Maass forms on the modular surface

Image credits: Fredrik Stromberg & www.Imfdb.org



Maass forms with A ~ 103 on the modular surface

Image credit: Fredrik Stromberg



Maass forms with A = 10* on the modular surface

Image credit: Fredrik Stromberg



Maass forms with A = 10° on the modular surface

Image credit: Fredrik Stromberg



Quantum ergodicity on the modular surface (1 of 2)

Theorem (Hopf 1936)

Let M := SLy(Z)\'H? be the modular surface. The geodesic flow
on SM is ergodic.

Proof (sketch).
By lwasawa, SM can be identified with SL»(Z)\ SL2(R), and then
the geodesic flow G! acts by right multiplication by (em e—f/2>'
Assume that f € L?(SLy(Z)\ SLo(R)) is fixed by this action. Then,
for any fixed b € R and for a > 0 tending to infinity,
I8 F =l =11 8) (C o) £ = (C0n) £

=) D CAf A

= [|(o7®) F=fl = Iif = Fl = 0.
Hence any upper triangular matrix in SLp(R) fixes f. Similarly, any
lower triangular matrix in SLp(R) fixes f. In the end, the entire
group SL»(R) fixes f, and so f is constant almost everywhere. [



Quantum ergodicity on the modular surface (2 of 2)

Theorem (Shnirelman 1974, Colin de Verdiere 1985, Zelditch 1987)

Assume that the geodesic flow on SM is ergodic, and let {¢;} be

any orthonormal Laplace eigenbasis of L2(M). Then dw; —> dw
along a subsequence of \;'s of density 1.

Proof (sketch).
Assume that a € C*°(SM) has space average fSM adw = 0.

Consider also a fixed time average a’ = T fo ao Gtdt.
By Egorov, Cauchy—Schwarz, Weyl, and Birkhoff, we have

1 2 1 2
—_ dwj| = —— T dw;
N(A,l) Z /SMa YT NG ; /SMa “

Z/ a7 dy +0(1) = [ [aTPdur+ (1) <,

A ,\<>\

for T = To(e) and A > Ag(g). Hence the left hand side is o(1). [

+ o(1)




The quantum unique ergodicity conjecture
Assume that M has negative sectional curvature, and let {¢;} be
any orthonormal Laplace eigenbasis of L2(M).

Theorem (Anosov—Sinai 1967)
The geodesic flow on SM s ergodic.

Conjecture (Rudnick—Sarnak 1994)

The normalized Liouville measure is the only quantum limit on SM.

.

Theorem (Anantharaman 2008)

Quantum limits on SM have positive entropy for the geodesic flow.

Theorem (Hassell-Hillairet 2010)

In the above conjecture, it is not enough to assume that M has
nonpositive sectional curvature with ergodic geodesic flow on SM.




Arithmetic QUE on the modular surface (1 of 2)

Hecke operators on the modular surface

Let M := SLy(Z)\'H?. For a prime p, consider the Hecke operator

1
Tp(m) = — ¢(y.m), e L*(M).
’ \/ﬁ «/ESL;U%% M2 (Z)
ety=p

Let {¢;} be an orthonormal Hecke eigenbasis of L?(M).

Theorem (Watson 2002)
Forj > k > 1 we have

2
‘/ o
M

In particular, GRH (or subconvexity) implies that dyu; — dy.

1 -
<<5 (AjAk)71/2+5L (27 ¢_/ ® ¢J ® ¢k> .




Arithmetic QUE on the modular surface (2 of 2)

Theorem (Lindenstrauss 2006, Soundararajan 2010)

The arithmetic quantum unique ergodicity conjecture is true on
the modular surface (or on any arithmetic hyperbolic surface).

Theorem (Brooks-Lindenstrauss 2016)

In the above theorem, a single Hecke operator T, suffices. More
precisely, if {¢;} is a (A, T,)-eigenbasis of L2(M), then on M the
projected measures dy; = |¢;|°dp converge to dy.




