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Introducing prime gap graphs

Definition
Let pn denote the n-th prime number, and let p0 = 1.
We call a simple graph on n ⩾ 2 vertices a prime gap graph if its
vertex degrees are p1 − p0, . . . , pn − pn−1.

Example (n = 10)
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Prime gap graphs generated by a DPG-process
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Imagine that we made to 30 vertices...
A gap of 14 occurs between p30 = 113 and p31 = 127.
The earlier gaps are smaller, in fact they do not exceed 8.
Imagine that we made to 30 vertices with the DPG-process.
Then our prime gap graph has (p30 − 1)/2 = 56 edges.
To continue, we want to remove 14/2 = 7 independent edges,
and connect their 14 ends to a new vertex, creating a prime
gap graph with 31 vertices and (p31 − 1)/2 = 63 edges.
How can we guarantee 14/2 = 7 independent edges without
actually looking at the graph?

Theorem (Vizing 1964)
The edges of a simple graph with maximal vertex degree ∆ can be
colored with ∆ + 1 colors.

Corollary
The 56 edges of a prime gap graph on 30 vertices can be colored
with 9 colors. The largest color class has at least 7 members,
because 9 · 6 < 56, and it consists of independent edges.



Main conjectures and main theorem

Conjecture (Toroczkai 2016)
For every n ⩾ 2, there exists a prime gap graph on n vertices.

Conjecture (Toroczkai 2016)
In every prime gap graph on n vertices, there exist (pn+1 − pn)/2
independent edges.

Remark
The second conjecture says that, starting with the prime gap graph
on 2 vertices, the DPG-process runs indefinitely. Hence it implies
the first conjecture.

Theorem (EHKMMT 2022)
The above conjectures are true for every sufficiently large n.
Assuming the Riemann hypothesis, they are true for every n ⩾ 2.



Existence of prime gap graphs under RH

Notation
We shall denote by Gn any prime gap graph on n ⩾ 2 vertices. It
has (pn − 1)/2 edges.

Theorem (EHKMMT 2022)
Assume the Riemann hypothesis. In every prime gap graph Gn on
n vertices, there exist (pn+1 − pn)/2 independent edges. Hence the
DPG-process creates an infinite sequence (G2,G3, . . . , ) of prime
gap graphs.

Skeleton of the proof
Let N be a parameter. Delete all vertices of degree at least N (and
the incident edges) from Gn. The remaining graph Hn admits an
edge coloring with N colors, by the theorem of Vizing (1964). For
suitable N, the largest color class has size at least (pn+1 − pn)/2.



(pn+1 − pn)/2 independent edges for pn < 1018

We can assume n ⩾ 5. For pn < 1018, we choose

N := max
1⩽ℓ⩽n

(1 + pℓ − pℓ−1).

That is, we apply Vizing’s theorem to Hn = Gn. It suffices that⌈pn − 1
2N

⌉
⩾

pn+1 − pn
2 .

For n ⩽ 44, this can be checked by a simple computer program.
For n ⩾ 45, the statement is a consequence of the following

Lemma (cf. T. Oliveira e Silva, S. Herzog, S. Pardi 2014)
For any x ∈ [117, 1018], there is a prime number in [x , x +

√
x ].

Indeed, let k ⩾ 15 be the integer satisfying (k − 1)2 < pn < k2.
The lemma implies that pn+1 − pn ⩽ k − 1 and N ⩽ k, hence⌈pn − 1

2N

⌉
⩾

k − 1
2 ⩾

pn+1 − pn
2 .



(pn+1 − pn)/2 independent edges for pn > 1018

For pn > 1018, we choose

N :=
⌈ √pn

3 log pn

⌉
.

So we delete at most ∑
ℓ⩽n

pℓ−pℓ−1⩾N

(pℓ − pℓ−1)

edges from Gn, and we apply Vizing’s theorem to the remaining
graph Hn. We shall see that the sum above is less than (pn − 1)/3,
hence Hn has more than (pn − 1)/6 edges. Now it suffices to invoke

Theorem (Carneiro–Milinovich–Soundararajan 2019)
Assume the Riemann hypothesis. Then, for any x ⩾ 4, there is a
prime number in [x , x + 22

25
√

x log x ].

Indeed, these results imply that⌈pn − 1
6N

⌉
> 0.499√pn log pn >

pn+1 − pn
2 .



Main analytic input under RH (1 of 3)
The claimed lower bound (pn − 1)/6 for the number of edges of
Hn follows from an explicit version of a result by Selberg (1943):

Theorem (EHKMMT 2022)
Assume the Riemann hypothesis. Then, for any x ⩾ 2 and N > 0,
we have ∑

x⩽pℓ⩽2x
pℓ+1−pℓ⩾N

(pℓ+1 − pℓ) <
163x log2 x

N .

Indeed, for

pn > 1018 and N :=
⌈ √pn

3 log pn

⌉
,

this theorem readily gives that∑
ℓ⩽n

pℓ−pℓ−1⩾N

(pℓ − pℓ−1) < 489√pn log3 pn <
pn − 1

3 .



Main analytic input under RH (2 of 3)
The proof relies on ideas of Heath-Brown (1978) and
Saffari–Vaughan (1977). First, one can restrict to x > 1018 and

81 log2 x < N <
4
3

√
x log x .

Then, writing N = 4δx , the statement can be reduced to∫ 2x

x
|ψ(y + δy) − ψ(y) − δy |2 dy < 20 δx2 log2 x .

Now we employ an explicit version of a result by Goldston (1983):

Theorem (EHKMMT 2022)
For any z > x > 1018 we have

ψ(x) = x −
∑

|ℑρ|<z

xρ

ρ
+ O∗(5 log x log log x

)
,

where the sum is over the nontrivial zeros of the Riemann zeta
function (counted with multiplicity).



Main analytic input under RH (3 of 3)
Then it remains to show that∫ 2x

x

∣∣∣∣∣∣
∑

|ℑρ|<3x
yρC(ρ)

∣∣∣∣∣∣
2

dy < 9.942δx2 log2 x ,

where
C(ρ) := 1 − (1 + δ)ρ

ρ
.

Here the calculation becomes technical. In big steps:

LHS <
∫ 2

1

∫ 2xv

xv/2

∣∣∣∣∣∣
∑

|ℑρ|<3x
yρC(ρ)

∣∣∣∣∣∣
2

dy dv

< x2∑
ρ,ρ′

|C(ρ)|2
∣∣∣∣∣ 22 + 2−2

2 + ρ− ρ′

∣∣∣∣∣
∣∣∣∣∣ 23 + 1
3 + ρ− ρ′

∣∣∣∣∣
< 15.616x2 ∑

ℑρ>0
min

(
δ2,

4
(ℑρ)2

)(1
2 + log ℑρ

2π

)
.



Graphicality of the prime gap sequence without RH (1 of 5)

Theorem (EHKMMT 2022)
Let n ⩾ 2 be sufficiently large. There exists a prime gap graph on
n vertices. Moreover, in every prime gap graph on n vertices, there
exist (pn+1 − pn)/2 independent edges. Hence the DPG-process
creates an infinite sequence (Gm,Gm+1, . . . , ) of prime gap graphs.

We deduce the first part from the following classical result.

Theorem (Erdős–Gallai 1960)
Let d1 ⩾ · · · ⩾ dn ⩾ 0 be integers. Then the sequence (d1, . . . , dn)
is graphic if and only if d1 + · · · + dn is even and for every
k ∈ {1, . . . , n} we have

k∑
ℓ=1

dℓ ⩽ k(k − 1) +
n∑

ℓ=k+1
min(k, dℓ) .

Interestingly, we can apply this result to a long initial segment of
the prime gap sequence even though this sequence is not ordered.



Graphicality of the prime gap sequence without RH (2 of 5)

Theorem (EHKMMT 2022)
Let D = (d1, . . . , dn) be a sequence of positive integers such that
∥D∥1 =

∑n
ℓ=1 dℓ is even. Let 1 < p ⩽ ∞ be a parameter, and

assume that the following Lp-norm bound holds:

∥2 + D∥p ⩽ n
1
2 + 1

2p .

Then there is a simple graph G with degree sequence D.

Proof (sketch).
By symmetry, we can assume that d1 ⩾ · · · ⩾ dn. Denoting
Dk := (d1, . . . , dk), we strengthen the Erdős–Gallai condition to
∥2 + Dk∥1 ⩽ k2 + n. This stronger condition follows from the
initial assumption and Hölder’s inequality, hence we are done:

∥2 + Dk∥1 ⩽ k1− 1
p ∥2 + Dk∥p ⩽ k1− 1

p n
1
2 + 1

2p < k2 + n.



Graphicality of the prime gap sequence without RH (3 of 5)
Applying the previous theorem with p = 2, it remains to verify that

n∑
ℓ=1

(2 + pℓ − pℓ−1)2 ⩽ n3/2.

By Heath-Brown (1978), the left-hand side is at most n4/3+o(1),
hence we are done.
We deduce the existence of (pn+1 − pn)/2 independent edges in Gn
from the theorem of Vizing (1964). In general, we have

Theorem (EHKMMT 2022)
Let D = (d1, . . . , dn) be a sequence of positive integers such that
∥D∥1 =

∑n
ℓ=1 dℓ is even. Let 1 < p ⩽ ∞ be a parameter, and let

G be any simple graph with degree sequence D. Assume that
d ⩾ 2 is an even integer satisfying

4d1− 1
p ∥D∥p ⩽ ∥D∥1.

Then G contains d/2 independent edges.



Graphicality of the prime gap sequence without RH (4 of 5)

Proof (sketch).
By Vizing’s theorem, it suffices to verify that the following
condition holds for some integer δ ⩾ 1:

1
δ

1
2

n∑
ℓ=1

dℓ −
∑
dℓ⩾δ

dℓ

 ⩾
d
2 .

If p = ∞, then we can choose δ := 1 + ∥D∥∞. So let us focus on
the case 1 < p < ∞. For any integer δ ⩾ 1, we have

n∑
ℓ=1

dℓ − 2
∑
dℓ⩾δ

dℓ ⩾ ∥D∥1 − 2δ1−p∥D∥p
p,

hence it suffices that

δ1−p∥D∥p
p ⩽

1
4∥D∥1 and δd ⩽

1
2∥D∥1.



Graphicality of the prime gap sequence without RH (5 of 5)

Proof (sketch, continued).
In other words, it suffices to find an integer δ satisfying(

4∥D∥p
p

∥D∥1

) 1
p−1

⩽ δ ⩽
1

2d ∥D∥1.

The left-hand side exceeds 1, hence δ exists as long as

2
(

4∥D∥p
p

∥D∥1

) 1
p−1

⩽
1

2d ∥D∥1.

Applying the previous theorem with p = 2, it remains to verify that

16(pn+1 − pn)
n∑

ℓ=1
(pℓ − pℓ−1)2 ⩽ (pn − 1)2.

By Ingham (1937) and Heath-Brown (1978), the left-hand side is
at most n5/8+4/3+o(1) = n47/24+o(1), hence we are done.


