Primes, Polignac, Polymath

Gergely Harcos

Alfréd Rényi Institute of Mathematics http://www.renyi.hu/~gharcos/

30 July 2019 Northeastern–BSM Colloquium

The ever sparser sequence of primes

10 digits	100 digits	1000 digits
	100 digits	1000 digits
100000007	$100000 \cdots 000289$	$100000 \cdots 000007$
100000009	$100000 \cdots 000303$	$100000 \cdots 000663$
100000021	$100000 \cdots 000711$	$100000 \cdots 002121$
100000033	$100000 \cdots 001287$	$100000 \cdots 002593$
100000087	$100000 \cdots 002191$	$100000 \cdots 003561$
÷	÷	÷
9999999851	9999999 · · · 997783	9999999 · · · 981127
9999999881	9999999 · · · 997873	9999999 · · · 988763
9999999929	9999999 · · · 998713	9999999 · · · 990139
9999999943	9999999 · · · 999089	9999999 · · · 993433
9999999967	9999999 · · · 999203	9999999 · · · 998231
$\Delta pprox 22.3$	$\Delta\approx 229.5$	$\Delta\approx 2301.8$

The even sparser sequence of twin primes

10 digits	100 digits	1000 digits
100000007	1000 · · · 00006001	1000 · · · 01975081
100000009	$1000 \cdots 00006003$	$1000 \cdots 01975083$
100000409	$1000 \cdots 00028441$	$1000 \cdots 03142729$
1000000411	1000 · · · 00028443	$1000 \cdots 03142731$
:	÷	÷
9999999017	999999914921	999995309921
9999999019	999999914923	999995309923
9999999701	9999 · · · 99964781	999998131919
9999999703	9999 · · · 99964783	999998131921

Twin prime conjecture

The equation p - p' = 2 has infinitely many solutions in primes.

Polignac numbers

Definition

A positive integer d is called a Polignac number if the equation p - p' = d has infinitely many solutions in primes.

Conjecture (Polignac 1849)

Every positive even integer is a Polignac number.

Theorem (Zhang 2013)

One of 2, 4, 6, ..., 70000000 is a Polignac number.

Theorem (Polymath 2014, Pintz 2013, Granville et al. 2014)

- One of 2, 4, 6, ..., 246 is a Polignac number.
- The lower density of Polignac numbers exceeds 1/354.
- The gaps between Polignac numbers is bounded.

Fishing for primes (1 of 2)

X

Idea

Let $\mathcal{H} = \{h_1, \dots, h_k\}$ be a k-set of integers. Try to find infinitely many positive integers n such that the translated set $n + \mathcal{H} = \{n + h_1, \dots, n + h_k\}$ contains as many primes as possible.

Definition

A *k*-set of integers is called admissible if it does not contain a complete system of residues modulo any integer bigger than one.

Idea

Let $\mathcal{H} = \{h_1, \ldots, h_k\}$ be an admissible k-set. For any $x > x_0$, exhibit a probability measure on the integers $x \leq n \leq 2x$ such that the expected number of primes in $n + \mathcal{H}$ exceeds one. In other words, find nonnegative weights $\nu(n)$ such that

$$\sum_{\leqslant n \leqslant 2x}
u(n) \sum_{i=1}^{\kappa} \mathbb{1}_{n+h_i} ext{ is prime} > \sum_{x \leqslant n \leqslant 2x}
u(n).$$

Conjecture (Dickson 1904, Hardy-Littlewood 1923)

Let \mathcal{H} be an admissible k-set. Then for infinitely many positive integers n, the translated set $n + \mathcal{H}$ consists of k primes.

Theorem (Zhang 2013)

There exists a positive integer k with the following property. If \mathcal{H} is an admissible k-set, then for infinitely many positive integers n, the translated set $n + \mathcal{H}$ contains at least two primes.

source	value of <i>k</i>	bound for prime gap
Zhang	3500000	7000000
Polymath8a	632	4680
Maynard	105	600
Polymath8b	50	246

The art of fishing (1 of 4)

The sifting weights of Goldston-Pintz-Yıldırım & Soundararajan

$$\nu(n) := \left(\sum_{d \mid (n+h_1)\dots(n+h_k)} \mu(d)g\left(\frac{\log d}{\log x^{\theta/2}}\right)\right)^2$$

where $g : \mathbb{R} \to \mathbb{R}$ is sufficiently smooth and supported on [0, 1]. We restrict these weights to $x \leq n \leq 2x$ such that the prime factors of each $n + h_i$ exceed log log log x.

Theorem (Goldston–Pintz–Yıldırım 2005, Soundararajan 2006)

Let \mathcal{H} be an admissible k-set, and assume Hypothesis EH(θ). Then, for the probability measure determined by the above sifting weights, the expected number of primes in $n + \mathcal{H}$ equals

$$\frac{\theta}{2} \cdot \frac{k \int_0^1 g^{(k-1)}(t)^2 \frac{t^{k-2}}{(k-2)!} dt}{\int_0^1 g^{(k)}(t)^2 \frac{t^{k-1}}{(k-1)!} dt} + o(1).$$

Remarks

- True for $\theta < 1/2$ by Bombieri (1965) & Vinogradov (1966).
- Conjectured for $\theta < 1$ by Elliott–Halberstam (1970).

The art of fishing (2 of 4)

- Zhang established a weaker version of EH(θ) for any θ < 1/2 + 1/584, by deep exponential sum methods. This allowed him to take k = 3500000, with a lot to spare.
- In the weaker version of EH(θ), both q and the residue class a modulo q are strongly restricted. For example, q is allowed to have small prime factors only. This idea goes back to Motohashi–Pintz (2008).
- The Polymath8a research group, led by Tao, relaxed the restriction on q and decreased its negative effect on k. Moreover, the exponential sum estimates of Zhang have been improved significantly. In the end, we could take any θ < 1/2 + 7/300, leading to the value k = 632.

The art of fishing (3 of 4)

The sifting weights of Maynard & Tao

$$\nu(n) := \left(\sum_{\forall i:d_i|n+h_i} \mu(d_1) \dots \mu(d_k) f\left(\frac{\log d_1}{\log x^{\theta/2}}, \dots, \frac{\log d_k}{\log x^{\theta/2}}\right)\right)^2,$$

where $f : \mathbb{R}^k \to \mathbb{R}$ is a symmetric and sufficiently smooth function supported on the simplex $\{(t_1, \ldots, t_k) \in \mathbb{R}_{\geq 0}^k : t_1 + \cdots + t_k \leq 1\}$.

Theorem (Maynard 2013, Tao 2013)

Let \mathcal{H} be an admissible k-set, and assume Hypothesis EH(θ). Then, for the probability measure determined by the above sifting weights, the expected number of primes in $n + \mathcal{H}$ equals

$$\frac{\theta}{2} \cdot \frac{k \int_{\mathbb{R}^{k-1} \times \{0\}} \left(\frac{\partial^{k-1}f}{\partial t_1 \dots \partial t_{k-1}}\right)^2}{\int_{\mathbb{R}^k} \left(\frac{\partial^k f}{\partial t_1 \dots \partial t_k}\right)^2} + o(1).$$

The art of fishing (4 of 4)

- For f(t₁,...,t_k) := g(t₁+···+t_k) the sifting weights of Maynard & Tao reduce to the sifting weights of Goldston-Pintz-Yıldırım & Soundararajan.
- The optimal $f : \mathbb{R}^k \to \mathbb{R}$ catches about $(\log k)/4$ primes.
- Further improvements are possible by enlarging the support of *f* or by incorporating the ideas of Zhang/Polymath8a.
- Symmetric polynomials f found by Maynard/Polymath8b with the help of computers show that Zhang's theorem holds for rather small k, the current record being k = 50.
- Under a suitably generalized Elliott–Halberstam conjecture Polymath8b could take k = 3, improving on the earlier values of k = 5 by Maynard and k = 6 by Goldston–Pintz–Yıldırım.