Primes, Polignac, Polymath

Gergely Harcos

Alfréd Rényi Institute of Mathematics
http://www.renyi.hu/~gharcos/
30 July 2019
Northeastern-BSM Colloquium

The ever sparser sequence of primes

$\mathbf{1 0}$ digits	100 digits	$\mathbf{1 0 0 0}$ digits
1000000007	$100000 \cdots 000289$	$100000 \cdots 000007$
1000000009	$100000 \cdots 000303$	$100000 \cdots 000663$
1000000021	$100000 \cdots 000711$	$100000 \cdots 002121$
1000000033	$100000 \cdots 001287$	$100000 \cdots 002593$
1000000087	$100000 \cdots 002191$	$100000 \cdots 003561$
\vdots	\vdots	\vdots
9999999851	$999999 \cdots 997783$	$999999 \cdots 981127$
9999999881	$999999 \cdots 997873$	$999999 \cdots 988763$
9999999929	$999999 \cdots 998713$	$999999 \cdots 990139$
9999999943	$999999 \cdots 999089$	$999999 \cdots 993433$
9999999967	$999999 \cdots 999203$	$999999 \cdots 998231$
$\Delta \approx 22.3$	$\Delta \approx 229.5$	$\Delta \approx 2301.8$

The even sparser sequence of twin primes

10 digits	$\mathbf{1 0 0}$ digits	$\mathbf{1 0 0 0}$ digits
1000000007	$1000 \cdots 00006001$	$1000 \cdots 01975081$
1000000009	$1000 \cdots 00006003$	$1000 \cdots 01975083$
1000000409	$1000 \cdots 00028441$	$1000 \cdots 03142729$
1000000411	$1000 \cdots 00028443$	$1000 \cdots 03142731$
\vdots	\vdots	\vdots
9999999017	$9999 \cdots 99914921$	$9999 \cdots 95309921$
9999999019	$9999 \cdots 99914923$	$9999 \cdots 95309923$
9999999701	$9999 \cdots 99964781$	$9999 \cdots 98131919$
9999999703	$9999 \cdots 99964783$	$9999 \cdots 98131921$

Twin prime conjecture

The equation $p-p^{\prime}=2$ has infinitely many solutions in primes.

Polignac numbers

Definition

A positive integer d is called a Polignac number if the equation $p-p^{\prime}=d$ has infinitely many solutions in primes.

Conjecture (Polignac 1849)
Every positive even integer is a Polignac number.

Theorem (Zhang 2013)
One of $2,4,6, \ldots, 70000000$ is a Polignac number.

Theorem (Polymath 2014, Pintz 2013, Granville et al. 2014)

- One of $2,4,6, \ldots, 246$ is a Polignac number.
- The lower density of Polignac numbers exceeds $1 / 354$.
- The gaps between Polignac numbers is bounded.

Fishing for primes (1 of 2)

Idea

Let $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ be a k-set of integers. Try to find infinitely many positive integers n such that the translated set $n+\mathcal{H}=\left\{n+h_{1}, \ldots, n+h_{k}\right\}$ contains as many primes as possible.

Definition

A k-set of integers is called admissible if it does not contain a complete system of residues modulo any integer bigger than one.

Idea

Let $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ be an admissible k-set. For any $x>x_{0}$, exhibit a probability measure on the integers $x \leqslant n \leqslant 2 x$ such that the expected number of primes in $n+\mathcal{H}$ exceeds one. In other words, find nonnegative weights $\nu(n)$ such that

Fishing for primes (2 of 2)

Conjecture (Dickson 1904, Hardy-Littlewood 1923)

Let \mathcal{H} be an admissible k-set. Then for infinitely many positive integers n, the translated set $n+\mathcal{H}$ consists of k primes.

Theorem (Zhang 2013)

There exists a positive integer k with the following property. If \mathcal{H} is an admissible k-set, then for infinitely many positive integers n, the translated set $n+\mathcal{H}$ contains at least two primes.

source	value of k	bound for prime gap
Zhang	3500000	70000000
Polymath8a	632	4680
Maynard	105	600
Polymath8b	50	246

The art of fishing (1 of 4)

The sifting weights of Goldston-Pintz-Yıldırım \& Soundararajan

$$
\nu(n):=\left(\sum_{d \mid\left(n+h_{1}\right) \ldots\left(n+h_{k}\right)} \mu(d) g\left(\frac{\log d}{\log x^{\theta / 2}}\right)\right)^{2}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is sufficiently smooth and supported on $[0,1]$. We restrict these weights to $x \leqslant n \leqslant 2 x$ such that the prime factors of each $n+h_{i}$ exceed $\log \log \log x$.

Theorem (Goldston-Pintz-Yıldırım 2005, Soundararajan 2006)

Let \mathcal{H} be an admissible k-set, and assume Hypothesis EH($\theta)$.
Then, for the probability measure determined by the above sifting weights, the expected number of primes in $n+\mathcal{H}$ equals

$$
\frac{\theta}{2} \cdot \frac{k \int_{0}^{1} g^{(k-1)}(t)^{2} \frac{t^{k-2}}{(k-2)!} d t}{\int_{0}^{1} g^{(k)}(t)^{2} \frac{t^{k-1}}{(k-1)!} d t}+o(1)
$$

Intermezzo: the Elliott-Halberstam conjecture

Hypothesis $E H(\theta)$

For any $A>0$ there is a constant $C>0$ such that, for any $x \geqslant 2$,

$$
\sum_{\substack{q \leqslant x^{\theta} \\ q \text { squarefree }}} \max _{(a, q)=1}\left|\sum_{\substack{x \leqslant p \leqslant 2 x \\ p \equiv a(\bmod q)}} 1-\frac{1}{\varphi(q)} \int_{x}^{2 x} \frac{d t}{\log t}\right|<C \frac{x}{\log ^{A} x} .
$$

Remarks

- True for $\theta<1 / 2$ by Bombieri (1965) \& Vinogradov (1966).
- Conjectured for $\theta<1$ by Elliott-Halberstam (1970).

The art of fishing (2 of 4)

- Zhang established a weaker version of $E H(\theta)$ for any $\theta<1 / 2+1 / 584$, by deep exponential sum methods. This allowed him to take $k=3500000$, with a lot to spare.
- In the weaker version of $E H(\theta)$, both q and the residue class a modulo q are strongly restricted. For example, q is allowed to have small prime factors only. This idea goes back to Motohashi-Pintz (2008).
- The Polymath8a research group, led by Tao, relaxed the restriction on q and decreased its negative effect on k. Moreover, the exponential sum estimates of Zhang have been improved significantly. In the end, we could take any $\theta<1 / 2+7 / 300$, leading to the value $k=632$.

The art of fishing (3 of 4)

The sifting weights of Maynard \& Tao

$$
\nu(n):=\left(\sum_{\forall i: d_{i} \mid n+h_{i}} \mu\left(d_{1}\right) \ldots \mu\left(d_{k}\right) f\left(\frac{\log d_{1}}{\log x^{\theta / 2}}, \ldots, \frac{\log d_{k}}{\log x^{\theta / 2}}\right)\right)^{2}
$$

where $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a symmetric and sufficiently smooth function supported on the simplex $\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}_{\geqslant 0}^{k}: t_{1}+\cdots+t_{k} \leqslant 1\right\}$.

Theorem (Maynard 2013, Tao 2013)

Let \mathcal{H} be an admissible k-set, and assume Hypothesis EH($\theta)$.
Then, for the probability measure determined by the above sifting weights, the expected number of primes in $n+\mathcal{H}$ equals

$$
\frac{\theta}{2} \cdot \frac{k \int_{\mathbb{R}^{k-1} \times\{0\}}\left(\frac{\partial^{k-1} f}{\partial t_{1} \ldots \partial t_{k-1}}\right)^{2}}{\int_{\mathbb{R}^{k}}\left(\frac{\partial^{k} f}{\partial t_{1} \ldots \partial t_{k}}\right)^{2}}+o(1)
$$

The art of fishing (4 of 4)

- For $f\left(t_{1}, \ldots, t_{k}\right):=g\left(t_{1}+\cdots+t_{k}\right)$ the sifting weights of Maynard \& Tao reduce to the sifting weights of Goldston-Pintz-Yıldırım \& Soundararajan.
- The optimal $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ catches about $(\log k) / 4$ primes.
- Further improvements are possible by enlarging the support of f or by incorporating the ideas of Zhang/Polymath8a.
- Symmetric polynomials f found by Maynard/Polymath8b with the help of computers show that Zhang's theorem holds for rather small k, the current record being $k=50$.
- Under a suitably generalized Elliott-Halberstam conjecture Polymath8b could take $k=3$, improving on the earlier values of $k=5$ by Maynard and $k=6$ by Goldston-Pintz-Yıldırım.

