The density hypothesis for horizontal families of lattices

Gergely Harcos

Alfréd Rényi Institute of Mathematics
http://www.renyi.hu/~gharcos/

3 July 2020
Number Theory during Lockdown

- Mikołaj Frączyk (Institute for Advanced Study)
- Péter Maga (Alfréd Rényi Institute)
- Djordje Milićević (Bryn Mawr College \& Max-Planck-Institute)
- https://www.youtube.com/watch?v=65IIy_b6FkQ
- https://conferences.renyi.hu/ocaf2020/programme

Motivation and goal (1 of 2)

- $G:$ Lie group $\mathrm{SL}_{2}(\mathbb{R})^{a} \times \mathrm{SL}_{2}(\mathbb{C})^{b}$
- Γ : arithmetic lattice in G
- $\widehat{G}_{\text {sph }}$: spherical unitary dual of G
- $\mathrm{m}(\pi, \Gamma)$: multiplicity of $\pi \in \widehat{G}_{\text {sph }}$ in $L^{2}(\Gamma \backslash G)$

Conjecture (Selberg)

If $\pi \in \widehat{G}_{\mathrm{sph}}$ is not tempered and not trivial, then $\mathrm{m}(\pi, \Gamma)=0$.

Theorem (Sarnak-Xue 1991, Huntley-Katznelson 1993)

Let $a+b=1$, and assume that $\Gamma(n)$ is a congruence subgroup of a fixed arithmetic lattice $\Gamma \leqslant G$. Let $\pi \in \widehat{G}_{\text {sph }}$ have normalized Casimir eigenvalue $1 / 4-\sigma^{2}$ with $\sigma \geqslant 0$. Then

$$
\mathrm{m}(\pi, \Gamma(n))<_{\varepsilon, \Gamma} \operatorname{vol}(\Gamma(n) \backslash G)^{1-2 \sigma+\varepsilon}
$$

Motivation and goal (2 of 2)

- G: Lie group $\mathrm{SL}_{2}(\mathbb{R})^{a} \times \mathrm{SL}_{2}(\mathbb{C})^{b}$
- 「: arithmetic lattice in G
- $\widehat{G}_{\text {sph }}$: spherical unitary dual of G
- $\mathrm{m}(\pi, \Gamma)$: multiplicity of $\pi \in \widehat{G}_{\text {sph }}$ in $L^{2}(\Gamma \backslash G)$

Goal

Prove a more general and more uniform version of the mentioned theorems of Sarnak-Xue (1991) \& Huntley-Katznelson (1993):
(1) Extend the multiplicity bound to G of rank $a+b \geqslant 2$.
(2) Include more congruence subgroups of a fixed lattice Γ.
(3) Get rid of the dependence on the fixed lattice Γ.
(4) Address the dependence on the tempered components of π.
(5) Talk about subsets of $\widehat{G}_{\text {sph }}$, not just single representations π.

Congruence lattices (1 of 2)

- k : number field
- o: ring of integers of k
- \mathfrak{p} : nonzero prime ideal of \mathfrak{o}
- $\mathbb{A}=\mathbb{A}_{\infty} \times \mathbb{A}_{f}$: adele ring of k
- A : division quaternion algebra over k
- $\operatorname{ram}(A)$: finite set of places of k where A ramifies
- (a, b, c) : determined by $A \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})^{a} \times \mathrm{M}_{2}(\mathbb{C})^{b} \times \mathbb{H}^{c}$
- $D_{\mathfrak{p}}$: unique division quaternion algebra over $k_{\mathfrak{p}}$
- G: algebraic group $\mathrm{SL}_{1}(A)$ defined over k

Fact
(1) $\mathbf{G}(\mathbb{A}) \simeq \mathbf{G}\left(\mathbb{A}_{\infty}\right) \times \mathbf{G}\left(\mathbb{A}_{f}\right)$
(2) $\mathbf{G}\left(\mathbb{A}_{\infty}\right) \simeq \mathbf{G}\left(k \otimes_{\mathbb{Q}} \mathbb{R}\right) \simeq \mathrm{SL}_{2}(\mathbb{R})^{a} \times \mathrm{SL}_{2}(\mathbb{C})^{b} \times \mathrm{SU}_{2}(\mathbb{C})^{c}$
(3) $\mathbf{G}\left(\mathbb{A}_{f}\right) \simeq \prod_{\mathfrak{p} \in \operatorname{ram}(A)} \mathrm{SL}_{1}\left(D_{\mathfrak{p}}\right) \times \prod_{\mathfrak{p} \notin \operatorname{ram}(A)} \mathrm{SL}_{2}\left(k_{\mathfrak{p}}\right)$

Congruence lattices (2 of 2)

- \mathfrak{n} : nonzero ideal of \mathfrak{o} not divisible by any $\mathfrak{p} \in \operatorname{ram}(A)$
- $\mathfrak{n}_{\mathfrak{p}}$: closure of \mathfrak{n} in $\mathfrak{o}_{\mathfrak{p}}$, that is, $\mathfrak{n} \mathfrak{o}_{\mathfrak{p}}$
- $K_{0}\left(\mathfrak{n}_{\mathfrak{p}}\right)$: set of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right)$ satisfying $c \in \mathfrak{n}_{\mathfrak{p}}$
- $K_{1}\left(\mathfrak{n}_{\mathfrak{p}}\right)$: set of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right)$ satisfying $a-d, b, c \in \mathfrak{n}_{\mathfrak{p}}$

Definition

(1) For any map $\kappa:\{\mathfrak{p} \mid \mathfrak{n}\} \rightarrow\{0,1\}$, let

$$
K_{\kappa}(\mathfrak{n}):=\prod_{\mathfrak{p} \in \operatorname{ram}(A)} \mathrm{SL}_{1}\left(D_{\mathfrak{p}}\right) \times \prod_{\mathfrak{p} \mid \mathfrak{n}} K_{\kappa(\mathfrak{p})}\left(\mathfrak{n}_{\mathfrak{p}}\right) \times \prod_{\substack{\mathfrak{p} \notin \operatorname{ram}(A) \\ \mathfrak{p} \mathfrak{n}}} \mathrm{SL}_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right)
$$

It is a compact open subgroup $\mathbf{G}\left(\mathbb{A}_{f}\right)$.
(2) Let $\Gamma_{\kappa}(\mathfrak{n})$ be the intersection $\mathbf{G}(k) \cap\left(\mathbf{G}\left(\mathbb{A}_{\infty}\right) \times K_{\kappa}(\mathfrak{n})\right)$ projected to the factor $\mathrm{SL}_{2}(\mathbb{R})^{a} \times \mathrm{SL}_{2}(\mathbb{C})^{b}$ of $\mathbf{G}(\mathbb{A})$. It is an arithmetic lattice in G, and a congruence subgroup of $\Gamma_{\emptyset}(\mathfrak{o})$.

Main result

- j : element of $\{1, \ldots, a+b\}$ as an archimedean place of k
- ρ_{j} : degree of k_{j} over \mathbb{R}
- $\boldsymbol{s}:(a+b)$-tuple with components $s_{j} \in[-1 / 2,1 / 2] \cup i \mathbb{R}$
- π_{s} : element of $\widehat{G}_{\text {sph }}$ induced from $\binom{y^{1 / 2}}{y^{-1 / 2}} \mapsto \prod_{j}\left|y_{j}\right|^{\rho_{j} s_{j}}$

Definition

Fix a partition $\{1, \ldots, a+b\}=S \cup S^{\prime}$. Let $\sigma=\left(\sigma_{j}\right) \in[0,1 / 2]^{S}$ and $\boldsymbol{T}=\left(T_{j}\right) \in \mathbb{R}^{S^{\prime}}$. Let $\Gamma \leqslant G$ be an arbitrary lattice.
(1) Let $\mathcal{B}(\boldsymbol{\sigma}, \boldsymbol{T})$ be the set of $\pi_{s} \in \widehat{G}_{\text {sph }}$ such that $s_{j} \in\left[\sigma_{j}, 1 / 2\right]$ for all $j \in S$ and $s_{j} \in i\left[T_{j}-1, T_{j}+1\right]$ for all $j \in S^{\prime}$.
(2) Let $\mathcal{C}(\Gamma, \boldsymbol{T}):=\operatorname{vol}(\Gamma \backslash G) \prod_{j \in S^{\prime}}\left(1+\left|T_{j}\right|\right)^{\rho_{j}}$.

Theorem (Frączyk-Harcos-Maga-Milićević 2020)

$$
\sum_{\pi \in \mathcal{B}(\boldsymbol{\sigma}, \boldsymbol{T})} \mathrm{m}\left(\pi, \Gamma_{\kappa}(\mathfrak{n})\right) \ll_{\varepsilon, a, b, c} \mathcal{C}\left(\Gamma_{\kappa}(\mathfrak{n}), \boldsymbol{T}\right)^{\min _{j \in S}\left(1-2 \sigma_{j}\right)+\varepsilon}
$$

Overview of the proof (1 of 3)

(1) We write $\mathbf{G}\left(\mathbb{A}_{\infty}\right) \times K_{\kappa}(\mathfrak{n})$ as $G \times U$, that is,

$$
U:=\mathrm{SU}_{2}(\mathbb{C})^{c} \times K_{\kappa}(\mathfrak{n})
$$

(2) Using strong approximation, we identify the classical quotient $\Gamma_{\kappa}(\mathfrak{n}) \backslash G$ with the adelic quotient $\mathbf{G}(k) \backslash \mathbf{G}(\mathbb{A}) / U$.
(3) We construct a positive definite test function $f \in C_{c}(G)$, with "controlled support and size", such that

$$
\operatorname{tr} \pi(f) \gg \mathcal{C}\left(\Gamma_{\kappa}(\mathfrak{n}), \boldsymbol{T}\right)^{2 \max _{j \in S} \sigma_{j}}, \quad \pi \in \mathcal{B}(\boldsymbol{\sigma}, \boldsymbol{T})
$$

(4) We turn $f \in C_{c}(G)$ into $f_{\mathbb{A}} \in C_{c}(\mathbf{G}(\mathbb{A}))$ by tensoring it with $\mathbf{1}_{U} / \operatorname{vol}(U)$, where the Haar measure on $\mathrm{SU}_{2}(\mathbb{C})^{c} \times \mathbf{G}\left(A_{f}\right)$ is normalized so that maximal compact subgroups have mass 1 .
(5) It remains to bound, by $\mathcal{C}\left(\Gamma_{\kappa}(\mathfrak{n}), \boldsymbol{T}\right)^{1+\varepsilon}$ from above, the trace

$$
\begin{aligned}
\operatorname{tr} R\left(f_{\mathbb{A}}\right) & =\sum_{\gamma \in \mathbf{G}(k)} \int_{\mathbf{G}(k) \backslash \mathbf{G}(\mathbb{A})} f_{\mathbb{A}}\left(g^{-1} \gamma g\right) d g \\
& =\sum_{[\gamma] \subset \mathbf{G}(k)} \operatorname{vol}\left(\mathbf{G}_{\gamma}(k) \backslash \mathbf{G}_{\gamma}(\mathbb{A})\right) \int_{\mathbf{G}_{\gamma}(\mathbb{A}) \backslash \mathbf{G}(\mathbb{A})} f_{\mathbb{A}}\left(g^{-1} \gamma g\right) d g .
\end{aligned}
$$

Overview of the proof (2 of 3)

(0) The contribution of the split conjugacy classes [$\pm \mathrm{id}$] equals

$$
\operatorname{vol}\left(\Gamma_{\kappa}(\mathfrak{n}) \backslash G\right)(f(\mathrm{id})+f(-\mathrm{id})) \ll \mathcal{C}\left(\Gamma_{k}(\mathfrak{n}), \boldsymbol{T}\right) .
$$

(1) We define $f \in C_{c}(G)$ as a pure tensor $\otimes_{j=1}^{a+b} f_{j}$, so $f_{\mathbb{A}} \in C_{c}(\mathbf{G}(\mathbb{A}))$ is a pure tensor $\otimes_{v} f_{v}$ with $f_{v} \in C_{c}\left(\mathbf{G}\left(k_{v}\right)\right)$.
(8) Hence the global orbital integral $\mathbf{O}\left(\gamma, f_{\mathrm{A}}\right)$ decomposes as a product of local orbital integrals $\Pi_{V} \mathbf{O}\left(\gamma, f_{v}\right)$, and we get

$$
\mathbf{O}\left(\gamma, f_{\mathbb{A}}\right) \preccurlyeq\left|N_{k / \mathbb{Q}}\left(\Delta_{k(\gamma) / k}\right)\right|^{-1 / 2} w_{k}^{n}(\operatorname{tr} \gamma),
$$

where $w_{k}^{\mathfrak{n}}: \mathfrak{o} \rightarrow \mathbb{R} \geqslant 0$ is a "mild function", and \preccurlyeq means that we disregard factors of size $\mathcal{C}\left(\Gamma_{\kappa}(\mathfrak{n}), \boldsymbol{T}\right)^{\varepsilon}$.
© Combining the work of Ono (1961 \& 1963) and Ullmo-Yafaev (2015) on algebraic tori, we also prove that

$$
\operatorname{vol}\left(\mathbf{G}_{\gamma}(k) \backslash \mathbf{G}_{\gamma}(\mathbb{A})\right) \preccurlyeq \Delta_{k}^{1 / 2}\left|N_{k / \mathbb{Q}}\left(\Delta_{k(\gamma) / k}\right)\right|^{1 / 2} .
$$

Overview of the proof (3 of 3)

(10) To summarize so far,

$$
\operatorname{tr} R\left(f_{\mathbb{A}}\right) \preccurlyeq \mathcal{C}\left(\Gamma_{\kappa}(\mathfrak{n}), \boldsymbol{T}\right)+\Delta_{k}^{1 / 2} \sum_{[\gamma] \subset \mathbf{G}(k)}^{\prime} w_{\kappa}^{\mathfrak{n}}(\operatorname{tr} \gamma),
$$

where the sum is over the regular semisimple conjugacy classes $[\gamma] \subset \mathbf{G}(k)$ satisfying $\mathbf{O}\left(\gamma, f_{\mathbb{A}}\right) \neq 0$.
(13) Highly nontrivially, each trace $\operatorname{tr}(\gamma)$ occurs with multiplicity $\preccurlyeq 1$. Hence we are left with bounding the sum of $w_{\kappa}^{\mathfrak{n}}(x)$ over the possible traces $x \in \mathfrak{o}$ that occur. For this we invoke our earlier work in the geometry of numbers, and conclude that

$$
\sum_{[\gamma] \subset \mathbf{G}(k)}^{\prime} w_{\kappa}^{\mathfrak{n}}(\operatorname{tr} \gamma) \preccurlyeq \Delta_{k}^{-1 / 2} \mathcal{C}\left(\Gamma_{\kappa}(\mathfrak{n}), \boldsymbol{T}\right)
$$

(12. In the end, $\operatorname{tr} R\left(f_{\mathbb{A}}\right) \preccurlyeq \mathcal{C}\left(\Gamma_{\kappa}(\mathfrak{n}), \boldsymbol{T}\right)$ follows, and we are done.

Some technical details

(1) The construction of $f \in C_{c}(G)$ relies on the theory of the spherical transform on the groups $\mathrm{SL}_{2}(\mathbb{R})$ and $\mathrm{SL}_{2}(\mathbb{C})$. We use that the spherical transform is the Mellin transform of the Harish-Chandra transform, and that orbital integrals can also be expressed in terms of the Harish-Chandra transform.
(2) We estimate the non-archimedean local orbital integrals with the help of the Bruhat-Tits tree of PGL $\left(k_{p}\right)$. We are led to count various subgraphs of this tree, and for this we need to know explicitly the set of fixed points of an arbitrary regular semisimple element of $\mathrm{SL}_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right)$.
(3) We use, e.g. in the geometry of numbers argument, that $\mathcal{C}\left(\Gamma_{\kappa}(\mathfrak{n}), \boldsymbol{T}\right)$ is sufficiently large in terms of Δ_{k} and $N(\mathfrak{n})$. This information is provided by the volume formula of Borel (1981) that we adapt to our situation:

$$
\operatorname{vol}\left(\Gamma_{\emptyset}(\mathfrak{o}) \backslash G\right)=\frac{\zeta_{k}(2) \Delta_{k}^{3 / 2}}{2^{3 b+2 c} \pi^{a+2 b+2 c}} \prod_{\mathfrak{p} \in \operatorname{ram}(A)}(N(\mathfrak{p})-1)
$$

Thanks for your attention!

