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Representing primes by binary quadratic forms (1 of 6)

Theorem (Fermat 1654, Euler 1772)

For an odd prime p we have:

p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4)

p = x2 + 2y2 ⇐⇒ p ≡ 1, 3 (mod 8)

Proof (sketch).

Right hand side means that p is represented by some integral
binary quadratic form ax2 + bxy + cy2 of discriminant d = −4
(resp. d = −8). Using the substitutions

(x , y)
T7→ (x − y , y) and (x , y)

S7→ (−y , x)

one can achieve that |b| 6 |a| 6 |c|, in which case ax2 + bxy + cy2

is the form on the left hand side.



Representing primes by binary quadratic forms (2 of 6)

Definition (Lagrange 1773, Legendre 1798, Gauss 1801)

Two integral binary quadratic forms are (properly) equivalent if
one can be brought to the other by an invertible linear substitution

(x , y) 7→ (αx + βy , γx + δy),

(
α β
γ δ

)
∈ SL2(Z).

Theorem

Equivalent forms have the same discriminant. The number of
classes of a given nonsquare discriminant d is �ε |d |1/2+ε.

Proof (sketch).

Every class is represented by some ax2 + bxy + cy2 such that
|b| 6 |a| 6 |c | and b2 − 4ac = d . Then 3b2 6 |d |, and for each b
there are �ε |d |ε choices for a and c since 4ac = b2 − d 6= 0.



Representing primes by binary quadratic forms (3 of 6)

Definition

Let d be a fundamental discriminant, i.e. a square-free integer ≡ 1
(mod 4), or 4 times a square-free integer ≡ 2, 3 (mod 4). For
d < 0 we denote by h(d) the number of classes of positive forms
of discriminant d . For d > 0 we denote by h(d) the number of
classes of forms of discriminant d .

Example

The classes of positive forms of discriminant −56 are represented
by x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2. Hence h(−56) = 4.

Theorem

Let n be a positive square-free integer ≡ 1, 2 (mod 4), and let p
be a prime not dividing 4n. Then p is represented by some form of
discriminant −4n if and only if (−n/p) = 1. The latter condition
depends only on p mod 4n.



Representing primes by binary quadratic forms (4 of 6)

Example

Let p 6= 2, 7 be a prime. Then p is represented by one of
x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2 if and only if
p ≡ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 (mod 56).

Definition

Two classes of some fundamental discriminant d are in the same
genus if they represent the same reduced residues modulo d .

Example

For d = −56 there are 2 genera, each consisting of 2 classes:

p = x2 + 14y2 or p = 2x2 + 7y2

⇐⇒ p ≡ 1, 9, 15, 23, 25, 39 (mod 56)

p = 3x2 + 2xy + 5y2 or p = 3x2 − 2xy + 5y2

⇐⇒ p ≡ 3, 5, 13, 19, 27, 45 (mod 56)



Representing primes by binary quadratic forms (5 of 6)

The classes of discriminant d considered above form a finite
abelian group Hd under a natural group law called Gauss
composition. We have seen that it is of size h(d)�ε |d |1/2+ε.
In the case of a fundamental discriminant d the group is
isomorphic to the narrow ideal class group of the number field
Q(
√
d), the multiplicative group of nonzero fractional ideals

modulo totally positive principal fractional ideals.

Each genus is a coset of H2
d , hence the number of genera is a

power of 2, namely the order of the elementary abelian group
Hd/H

2
d . In other words, genera can be distinguished by

quadratic characters of the class group Hd .

One can distinguish classes within a genus by class field
theory. For example, in the case of a fundamental discriminant
d , one studies the maximal unramified extension of Q(

√
d), a

Galois extension with Galois group isomorphic to Hd .



Representing primes by binary quadratic forms (6 of 6)

Theorem (taken from Cox’s wonderful book)

Let n be a positive square-free integer ≡ 1, 2 (mod 4). There is an
irreducible polynomial fn(x) ∈ Z[x ] such that for a prime dividing
neither n nor the discriminant of fn(x),

p = x2 + ny2 ⇐⇒(−n/p) = 1 and

fn(x) ≡ 0 (mod p) has an integer solution.

Example

For a prime p 6= 2, 7 we have:

p = x2 + 14y2 ⇐⇒
p ≡ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 (mod 56) and

x4 + 2x2 − 7 ≡ 0 (mod p) has an integer solution.



Geometric picture (1 of 2)

Consider the upper half-plane H together with its boundary
R ∪ {∞}. The group SL2(R) acts on this object by fractional
linear transformations

z
g7−→ αz + β

γz + δ
, g =

(
α β
γ δ

)
∈ SL2(R).

Equip H with the SL2(R)-invariant line element and corresponding
area element

d2s(z) :=
dx2 + dy2

y2
and dµ(z) :=

3

π

dxdy

y2
.

Then the geodesics in H are the half-lines and semi-circles
orthogonal to R: they obey the axioms of hyperbolic geometry.



Geometric picture (2 of 2)

Decompose each form of some fundamental discriminant d as

ax2 + bxy + cy2 = a(x − uy)(x − wy),

u :=
−b −

√
d

2a
, w :=

−b +
√
d

2a
.

For d < 0 consider the unique root in H, while for d > 0 join the
two roots by a semi-circle in H. The actions of SL2(Z) on forms
and on H ∪ R ∪ {∞} are compatible, hence by projection to the
modular surface SL2(Z)\H, we obtain h(d) special points or
geodesics depending on the sign of d . For d > 0 the projected
geodesics are closed of length 2 ln(λd), where λd > 1 generates the
group of positive units in Q(

√
d).

Question (Linnik 1968)

Let d → −∞ (resp. d →∞) run through fundamental
discriminants. How are the h(d) special points (resp. closed
geodesics) of discriminant d distributed in SL2(Z)\H?



Dirichlet’s class number formula and Siegel’s theorem

Λd : the set of special points or closed geodesics on SL2(Z)\H
representing the h(d) classes of forms of discriminant d

wd : the number of roots of unity in Q(
√
d)

Theorem (Dirichlet 1839)

Let d be a fundamental discriminant. Then we have

h(d) =
wd

2π
|d |

1
2 L(1, (d· )), d < 0,

h(d) ln(λd) =
wd

2
|d |

1
2 L(1, (d· )), d > 0.

Theorem (Siegel 1934)

Let d be a fundamental discriminant. Then we have

|d |−ε �ε L(1, (d· ))�ε |d |ε.



Equidistribution and L-functions (1 of 4)

Hd : the narrow ideal class group of Q(
√
d) acting on Λd

Theorem (Zhang 2001, Du–Fr–Iw 2002, Popa 2006, Ha–Mi 2006)

Let d be a fundamental discriminant, and H 6 Hd be a subgroup.
Let g : SL2(Z)\H → C be a smooth function of compact support.

If d < 0 and z0 ∈ Λd is a Heegner point, then∑
σ∈H g(zσ0 )∑
σ∈H 1

=

∫
SL2(Z)\H

g(z) dµ(z)+Og

(
[Hd : H]|d |−

1
2827

)
.

If d > 0 and G0 ∈ Λd is a closed geodesic, then∑
σ∈H

∫
Gσ

0
g(z) ds(z)∑

σ∈H
∫
Gσ

0
1 ds(z)

=∫
SL2(Z)\H

g(z) dµ(z) + Og

(
[Hd : H]|d |−

1
2827

)
.



Equidistribution and L-functions (2 of 4)

By applying harmonic analysis on the finite abelian group Hd and
on the modular surface SL2(Z)\H, one can reduce the above
equidistribution result to cancelation in certain Weyl-sums. It
suffices to establish∑

σ∈Hd

ψ(σ)g(zσ0 )� (1 + |t|)A |d |
1
2
− 1

2826 , d < 0,

∑
σ∈Hd

ψ(σ)

∫
Gσ

0

g(z) ds(z)� (1 + |t|)A |d |
1
2
− 1

2826 , d > 0,

with an absolute constant A > 0, where ψ : Hd → C× is a
character, and g is an L2-normalized Hecke–Maass cusp form or a
standard Eisenstein series E (·, 1

2 + it) of Laplacian eigenvalue
1
4 + t2 for the modular group SL2(Z).



Equidistribution and L-functions (3 of 4)

By formulae of Zhang (2001) for d < 0 and Popa (2006) for
d > 0, which are based on the deep work of Waldspurger (1981),
the left hand side is related to central values of Rankin–Selberg
L-functions:∣∣∣∣∣∣

∑
σ∈Hd

ψ(σ) . . .

∣∣∣∣∣∣
2

= cd |d |
1
2 |ρg (1)|2 Λ

(
fψ ⊗ g , 1

2

)
.

Here cd is positive and takes only finitely many different values,
ρg (1) is the first Fourier coefficient of g , Λ(π, s) denotes the
completed L-function, and fψ is the automorphic induction of ψ
from GL1 over Q(

√
d) to GL2 over Q such that Λ(fψ, s) = Λ(ψ, s).

The modular form fψ was discovered by Hecke (1937) and Maass
(1949) in this special case, it is of level |d | and nebentypus

(
d
·
)
.



Equidistribution and L-functions (4 of 4)

Using standard bounds for ρg (1) and the gamma factors included
in L∞

(
fψ ⊗ g , 1

2

)
, one can further reduce equidistribution to the

following subconvex bound for the finite Rankin–Selberg L-function
(with a different A > 0):

L
(
fψ ⊗ g , 1

2

)
� (1 + |t|)A |d |

1
2
− 1

1413 .

If ψ is not quadratic and g is cuspidal, then the above L-value is a
genuine GL2×GL2 L-value. In this case the subconvex bound was
proved by Harcos–Michel (2006). Otherwise we are dealing with a
product of two GL2 L-values, or two GL2×GL1 L-values, or four
GL1 L-values. In this case the subconvex bound was proved by
Duke–Friedlander–Iwaniec (2002) and Blomer–Harcos–Michel
(2007), Conrey–Iwaniec (2000), and Burgess (1963).


