The Burgess bound for twisted Hilbert modular L-functions

Gergely Harcos

Alfréd Rényi Institute of Mathematics http://www.renyi.hu/~gharcos/

15 March 2010
Workshop on Analytic Number Theory
Institute for Advanced Study
(1) Subconvexity for twisted GL_{2} L-functions (2 slides)
(2) Applications
(3) Illustration
(4) Summary of new results
(6) Main ingredients of the proof
(0) Spectral decomposition of convolution sums (2 slides)
(0) The proof in a nutshell (5 slides)

- s a point on the critical line $\left(\Re s=\frac{1}{2}\right)$
- f a primitive holomorphic or Maass cusp form
- χ a primitive Dirichlet character of conductor q

Lindelöf Hypothesis (follows from GRH)

For any $\delta<\frac{1}{2}$ we have $L(s, f \otimes \chi)<_{s, f, \delta} q^{\frac{1}{2}-\delta}$.

- $\delta<\frac{1}{22}$ (Duke-Friedlander-Iwaniec 1993, Michel 2004)
- $\delta<\frac{1}{54}$ (Harcos 2003)
- $\delta<\frac{1-2 \theta}{10+4 \theta}$ (Blomer 2004)
- $\delta<\frac{1-2 \theta}{8}$ (Blomer-Harcos-Michel 2007)
- $\delta<\frac{1}{8}$ for f of trivial nebentypus (Bykovskii 1996, Blomer-Harcos 2008)
- $\delta<\frac{1}{6}$ for $s=\frac{1}{2}$, f self-dual, χ real (Conrey-Iwaniec 2000)
- K a totally real number field
- π an irreducible cuspidal automorphic representation of GL_{2} over K with unitary central character
- χ a Hecke character of conductor \mathfrak{q}

Lindelöf Hypothesis (follows from GRH)

For any $\delta<\frac{1}{2}$ we have $L\left(\frac{1}{2}, \pi \otimes \chi\right) \ll_{K, \pi, \chi_{\infty}, \delta}(\mathcal{N q})^{\frac{1}{2}-\delta}$.

- $\delta<\frac{1-2 \theta}{14+4 \theta}$ for π induced by a totally holomorphic Hilbert modular form (Cogdell-Piatetski-Shapiro-Sarnak 2000)
- $\delta<\frac{(1-2 \theta)^{2}}{14-12 \theta}$ (Venkatesh 2005)
- $\delta<\frac{1-2 \theta}{8}$ (Blomer-Harcos 2009)
- Number and distribution of representations by a totally positive integral ternary quadratic form
(1) Auxiliary results: Siegel 1935, Shimura 1973, Waldspurger 1981, Schulze-Pillot 1984, Duke-Schulze-Pillot 1990, Baruch-Mao 2007
(2) Core results: Siegel 1935, Linnik 1968, Iwaniec 1987, Duke 1988, Cogdell-Piatetski-Shapiro-Sarnak 2000
- Distribution of special subvarieties on Hilbert modular varieties (Linnik 1968, Duke 1988, Cohen 2005, Zhang 2005)
- First moment of central values of certain Hecke L-functions (Rodriguez-Villegas-Yang 1999, Kim-Masri-Yang 2010)
- Ingredient for GL_{2} and $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ subconvexity (Michel 2004, Harcos-Michel 2006, Blomer-Harcos-Michel 2007, Michel-Venkatesh 2010)
- Interested in $r(n, Q)$ for $Q(x, y, z):=x^{2}+y^{2}+10 z^{2}$.
- Assume for simplicity that n is square-free and coprime to 10 .
- Genus of Q contains another class represented by $Q^{\prime}(x, y, z):=2 x^{2}+2 y^{2}+3 z^{2}-2 x z$.
- $r(n, Q)+2 r\left(n, Q^{\prime}\right)=2 h(-10 n)=n^{\frac{1}{2}+o(1)}$ by Siegel.
- Need to understand $r(n, Q)-r\left(n, Q^{\prime}\right)$.
- $\left(r(n, Q)-r\left(n, Q^{\prime}\right)\right)^{2}=c n^{\frac{1}{2}} L\left(\frac{1}{2}, f \otimes\left(\frac{n}{f}\right)\right)$ for some constant $c>0$ and some fixed primitive form $f \in S_{2}\left(\Gamma_{0}(1600)\right)$.
- $L\left(\frac{1}{2}, f \otimes\left(\frac{n}{.}\right)\right) \ll n^{\frac{1}{2}-\delta}$ yields $r(n, Q)=\frac{2}{3} h(-10 n)+O\left(n^{\frac{1-\delta}{2}}\right)$.
- Under GRH the error term is $n^{\frac{1}{4}+o(1)}$ (good lower bounds by Hoffstein-Lockhart 1999, Rudnick-Soundararajan 2005).

Theorem (Ono-Soundararajan 1997)

Assume GRH. Assume n is not of the form $4^{k}(16 m+6)$ and not contained in the finite list $3,7,21,31,33,43,67,79,87,133$, $217,219,223,253,307$ 391, 679, 2719. Then $r(n, Q)>0$.

- K a totally real number field
- π an irreducible cuspidal automorphic representation of GL_{2} over K with unitary central character
- χ a Hecke character of conductor \mathfrak{q}
- Q a totally positive integral ternary quadratic form over K

Theorem (Blomer-Harcos 2009, to appear in GAFA)

For any $\delta<\frac{1-2 \theta}{8}$ we have $L\left(\frac{1}{2}, \pi \otimes \chi\right) \ll_{K, \pi, \chi_{\infty}, \delta}(\mathcal{N} \mathfrak{q})^{\frac{1}{2}-\delta}$.

Corollary

If n is a totally positive square-free integer in K which is integrally represented by Q over every completion of K, then

$$
r(n, Q)=(\mathcal{N} n)^{\frac{1}{2}+o(1)}+O_{K, Q}\left((\mathcal{N} n)^{\frac{7}{16}+\frac{\theta}{8}+o(1)}\right)
$$

where the main term is furnished by Siegel's mass formula.
(1) Approximate functional equation
(2) Amplification method of Duke-Friedlander-Iwaniec

3 Spectral decomposition of shifted convolution sums
(4) Contribution of continuous spectrum bounded using a good orthogonal basis of Eisenstein series
(5) Contribution of discrete spectrum bounded using Venkatesh's variant of the Bruggeman-Kuznetsov formula

- π_{1} and π_{2} cuspidal representations of GL_{2} over K whose central characters are unitary and inverse to each other
- $\phi_{1} \in \pi_{1}$ and $\phi_{2} \in \pi_{2}$ smooth cusp forms

Idea of linearization

Decompose the product $\phi_{1} \phi_{2}$ spectrally in $L^{2}\left(\mathrm{GL}_{2}(K) \backslash \mathrm{GL}_{2}(\mathbb{A})\right)$:

$$
\phi_{1} \phi_{2}=\int_{\varpi} \phi_{\varpi} d \varpi, \quad \phi_{\varpi} \in \varpi .
$$

Take Fourier-Whittaker coefficients on both sides. Left hand side becomes a convolution in the Hecke eigenvalues of π_{1} and π_{2}. Right hand side becomes a combination of Hecke eigenvalues of the various ϖ 's. Use the Kirillov model to generate any convolution sum. Use Sobolev norms and Plancherel to control the spectral coefficients in the decomposition.

Theorem (Jacobi 1829)

$$
\begin{gathered}
\sigma_{k}(n):=\sum_{d \mid n} d^{k} . \\
\sigma_{3}(q)+120 \sum_{m+n=q} \sigma_{3}(m) \sigma_{3}(n)=\sigma_{7}(q) .
\end{gathered}
$$

Proof.

The spaces $M_{4}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ and $M_{8}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ are one-dimensional, generated by the Eisenstein series

$$
E_{4}=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) e(n z), \quad E_{8}=1+480 \sum_{n=1}^{\infty} \sigma_{7}(n) e(n z)
$$

respectively. In particular, $E_{4}^{2}=E_{8}$. The identity in the Theorem follows by taking q-th Fourier coefficients of both sides.

Combining the approximate functional equation with some ideas of Cogdell-Piatetski-Shapiro-Sarnak we reduce the Burgess bound to cancellation in certain finite sums:

$$
\mathcal{L}_{\chi_{\text {fin }}} \ll(\mathcal{N} \mathfrak{q})^{\frac{1}{2}-\frac{1}{8}(1-2 \theta)+\varepsilon}
$$

Here we write, for any character $\xi:(\mathfrak{o} / \mathfrak{q})^{\times} \rightarrow S^{1}$,

$$
\mathcal{L}_{\xi}:=\sum_{0 \ll r \in \mathfrak{y}} \frac{\lambda_{\pi}\left(r \mathfrak{y}^{-1}\right) \xi(r)}{\sqrt{\mathcal{N}\left(r \mathfrak{y}^{-1}\right)}} W\left(\frac{r}{Y^{1 / d}}\right),
$$

where

- \mathfrak{y} is an ideal class representative,
- $W: K_{\infty,+}^{\times} \rightarrow \mathbb{C}$ is some smooth function of compact support,
- $Y \ll(\mathcal{N q})^{1+\varepsilon}$.

By the amplification method of Duke-Friedlander-Iwaniec we see, for any amplifier length $L>0$,

$$
\begin{aligned}
& \frac{\mid \mathcal{L}_{\left.\chi_{\text {fin }}\right|^{2}}^{(\mathcal{N} \mathfrak{q})^{1+\varepsilon}}}{\sum_{\substack{0 \neq q \in \mathfrak{q} \mathfrak{g} \cap \mathcal{B}}} \sum_{\substack{\ell_{1} r_{1}-\ell_{2} r_{2}=q \\
0 \neq r_{1}, r_{2} \in \mathfrak{y}}} \frac{\lambda_{\pi}\left(r_{1} \mathfrak{y}^{-1}\right) \bar{\lambda}_{\pi}\left(r_{2} \mathfrak{y}^{-1}\right)}{\sqrt{\mathcal{N}\left(r_{1} r_{2} \mathfrak{y}^{-2}\right)}} W\left(\frac{r_{1}}{Y^{1 / d}}\right) \bar{W}\left(\frac{r_{2}}{Y^{1 / d}}\right),}
\end{aligned}
$$

where

- $\mathcal{B} \subset K_{\infty}$ is some box of dimensions $\approx(L Y)^{1 / d}$,
- $\left(\ell_{1}\right)$ and $\left(\ell_{2}\right)$ are some prime ideals of norms $\approx L$.

We are dealing with a sum of shifted convolution sums. We decompose each of them spectrally:

$$
\sum_{0 \neq q \in \mathfrak{q} \mathfrak{n} \cap \mathcal{B}} \int_{(\mathfrak{c})} \sum_{\mathfrak{t | c c _ { \varpi } ^ { - 1 }}} \frac{\lambda_{\varpi}^{(\mathfrak{t})}\left(q \mathfrak{y}^{-1}\right)}{\sqrt{\mathcal{N}\left(q \mathfrak{y}^{-1}\right)}} W_{\varpi, \mathfrak{t}}\left(\frac{q}{(L Y)^{1 / d}}\right) d \varpi
$$

where the integral and sum are restricted to level

$$
\mathfrak{c}:=\mathfrak{c}_{\pi} \operatorname{lcm}\left(\left(\ell_{1}\right),\left(\ell_{2}\right)\right) .
$$

Continuous spectrum contributes $\ll(\mathcal{N q})^{-1 / 2+\varepsilon} L^{1 / 2}$ by

$$
\begin{gathered}
\int_{\varpi \in \mathcal{E}(\mathfrak{c})} \sum_{\mathfrak{t} \mid \mathfrak{c}_{\varpi}^{-1}}\left|W_{\varpi, \mathfrak{t}}(y)\right| d \varpi \ll\left(\mathcal{N}\left(\ell_{1} \ell_{2}\right)\right)^{\varepsilon} \\
\lambda_{\varpi}^{(\mathfrak{t})}\left(q \mathfrak{y}^{-1}\right) \ll\left(\mathcal{N} \operatorname{gcd}\left(\mathfrak{t}, q \mathfrak{y}^{-1}\right)\right)\left(\mathcal{N}\left(q \mathfrak{y}^{-1}\right)\right)^{\varepsilon}
\end{gathered}
$$

Most of the cuspidal contribution is negligible, thanks to

$$
\int_{\varpi \in \mathcal{C}(\mathfrak{c})}\left(\mathcal{N} \tilde{\lambda}_{\varpi}\right)^{A} \sum_{\mathfrak{t} \mid \mathbf{c c}_{\varpi}^{-1}}\left|W_{\varpi, \mathfrak{t}}(y)\right| d \varpi<_{A}\left|\mathcal{N}\left(\ell_{1} \ell_{2}\right)\right|^{\frac{1}{2}+\varepsilon}
$$

We restrict to $\mathcal{N} \tilde{\lambda}_{\varpi} \leqslant(\mathcal{N} \mathfrak{q})^{\varepsilon}$ and separate variables in $W_{\varpi, \mathfrak{t}}$ by Mellin transforms. In this way we bound the cuspidal part by

$$
(\mathcal{N q})^{\varepsilon}\left(\sum_{\substack{\varpi \in \mathcal{C}(\mathfrak{c}, \varepsilon) \\ \mathfrak{t} \mid c_{c}^{-1}}}\left|\sum_{\mathcal{N} \mathfrak{m} \ll L Y / \mathcal{N}(\mathfrak{q g)})} \frac{\lambda_{\varpi}^{(\mathfrak{t})}(\mathfrak{m q})}{\sqrt{\mathcal{N}(\mathfrak{m q})}} f(\mathfrak{m q})\right|^{2}\right)^{1 / 2}
$$

for some $f(\mathfrak{a}) \ll(\mathcal{N q})^{\varepsilon}$. Here we "almost factor out" $\lambda_{\underset{\sim}{t}}^{(\mathfrak{t})}(\mathfrak{q})$ which is why we need $\theta:\left|\lambda_{\varpi}(\mathfrak{q})\right| \ll(\mathcal{N} \mathfrak{q})^{\theta}$.

The endgame:
(1) Bound from above using smooth and rapidly decaying spectral weights.
(2) Open the square and apply Venkatesh's variant of the Bruggeman-Kuznetsov formula.
(3) Use familiar bounds of Weil for Kloosterman sums and Bruggeman-Miatello-Pacharoni for Bessel transforms.

Altogether amplification gives

$$
\frac{\left|\mathcal{L}_{\chi_{\text {fin }}}\right|^{2}}{(\mathcal{N q})^{1+\varepsilon}} \ll \frac{1}{L}+(\mathcal{N q})^{-1 / 2+\theta} L
$$

Right hand side is smallest when $L:=(\mathcal{N q})^{\frac{1}{4}(1-2 \theta)}$ in which case

$$
\mathcal{L}_{\chi_{\text {fin }}} \ll(\mathcal{N} \mathfrak{q})^{\frac{1}{2}-\frac{1}{8}(1-2 \theta)+\varepsilon} .
$$

