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Subconvexity for twisted GL2 L-functions over Q

s a point on the critical line (<s = 1
2 )

f a primitive holomorphic or Maass cusp form

χ a primitive Dirichlet character of conductor q

Lindelöf Hypothesis (follows from GRH)

For any δ < 1
2 we have L(s, f ⊗ χ)�s,f ,δ q

1
2
−δ.

δ < 1
22 (Duke–Friedlander–Iwaniec 1993, Michel 2004)

δ < 1
54 (Harcos 2003)

δ < 1−2θ
10+4θ (Blomer 2004)

δ < 1−2θ
8 (Blomer–Harcos–Michel 2007)

δ < 1
8 for f of trivial nebentypus (Bykovskii 1996,

Blomer–Harcos 2008)

δ < 1
6 for s = 1

2 , f self-dual, χ real (Conrey–Iwaniec 2000)



Subconvexity for twisted GL2 L-functions over K

K a totally real number field

π an irreducible cuspidal automorphic representation of GL2

over K with unitary central character

χ a Hecke character of conductor q

Lindelöf Hypothesis (follows from GRH)

For any δ < 1
2 we have L( 1

2 , π ⊗ χ)�K ,π,χ∞,δ (N q)
1
2
−δ.

δ < 1−2θ
14+4θ for π induced by a totally holomorphic Hilbert

modular form (Cogdell–Piatetski-Shapiro–Sarnak 2000)

δ < (1−2θ)2

14−12θ (Venkatesh 2005)

δ < 1−2θ
8 (Blomer–Harcos 2009)



Applications

Number and distribution of representations by a totally
positive integral ternary quadratic form

1 Auxiliary results: Siegel 1935, Shimura 1973, Waldspurger
1981, Schulze-Pillot 1984, Duke–Schulze-Pillot 1990,
Baruch–Mao 2007

2 Core results: Siegel 1935, Linnik 1968, Iwaniec 1987, Duke
1988, Cogdell–Piatetski-Shapiro–Sarnak 2000

Distribution of special subvarieties on Hilbert modular varieties
(Linnik 1968, Duke 1988, Cohen 2005, Zhang 2005)

First moment of central values of certain Hecke L-functions
(Rodriguez-Villegas–Yang 1999, Kim–Masri–Yang 2010)

Ingredient for GL2 and GL2×GL2 subconvexity
(Michel 2004, Harcos–Michel 2006, Blomer–Harcos–Michel
2007, Michel–Venkatesh 2010)



Illustration

Interested in r(n,Q) for Q(x , y , z) := x2 + y 2 + 10z2.

Assume for simplicity that n is square-free and coprime to 10.

Genus of Q contains another class represented by
Q ′(x , y , z) := 2x2 + 2y 2 + 3z2 − 2xz .

r(n,Q) + 2r(n,Q ′) = 2h(−10n) = n
1
2

+o(1) by Siegel.

Need to understand r(n,Q)− r(n,Q ′).

(r(n,Q)− r(n,Q ′))2 = cn
1
2 L( 1

2 , f ⊗ (n
· )) for some constant

c > 0 and some fixed primitive form f ∈ S2(Γ0(1600)).

L( 1
2 , f ⊗ (n

· ))� n
1
2
−δ yields r(n,Q) = 2

3 h(−10n) + O(n
1−δ

2 ).

Under GRH the error term is n
1
4

+o(1) (good lower bounds by
Hoffstein–Lockhart 1999, Rudnick–Soundararajan 2005).

Theorem (Ono–Soundararajan 1997)

Assume GRH. Assume n is not of the form 4k(16m + 6) and not
contained in the finite list 3, 7, 21, 31, 33, 43, 67, 79, 87, 133,
217, 219, 223, 253, 307 391, 679, 2719. Then r(n,Q) > 0.



Summary of new results

K a totally real number field

π an irreducible cuspidal automorphic representation of GL2

over K with unitary central character

χ a Hecke character of conductor q

Q a totally positive integral ternary quadratic form over K

Theorem (Blomer–Harcos 2009, to appear in GAFA)

For any δ < 1−2θ
8 we have L( 1

2 , π ⊗ χ)�K ,π,χ∞,δ (N q)
1
2
−δ.

Corollary

If n is a totally positive square-free integer in K which is integrally
represented by Q over every completion of K, then

r(n,Q) = (Nn)
1
2

+o(1) + OK ,Q((Nn)
7

16
+ θ

8
+o(1)),

where the main term is furnished by Siegel’s mass formula.



Main ingredients of the proof

1 Approximate functional equation

2 Amplification method of Duke–Friedlander–Iwaniec

3 Spectral decomposition of shifted convolution sums

4 Contribution of continuous spectrum bounded using a good
orthogonal basis of Eisenstein series

5 Contribution of discrete spectrum bounded using Venkatesh’s
variant of the Bruggeman–Kuznetsov formula



Spectral decomposition of convolution sums (1 of 2)

π1 and π2 cuspidal representations of GL2 over K whose
central characters are unitary and inverse to each other

φ1 ∈ π1 and φ2 ∈ π2 smooth cusp forms

Idea of linearization

Decompose the product φ1φ2 spectrally in L2(GL2(K )\GL2(A)):

φ1φ2 =

∫
$
φ$ d$, φ$ ∈ $.

Take Fourier-Whittaker coefficients on both sides. Left hand side
becomes a convolution in the Hecke eigenvalues of π1 and π2.
Right hand side becomes a combination of Hecke eigenvalues of
the various $’s. Use the Kirillov model to generate any
convolution sum. Use Sobolev norms and Plancherel to control the
spectral coefficients in the decomposition.



Spectral decomposition of convolution sums (2 of 2)

Theorem (Jacobi 1829)

σk(n) :=
∑
d |n

dk .

σ3(q) + 120
∑

m+n=q

σ3(m)σ3(n) = σ7(q).

Proof.

The spaces M4(SL2(Z)) and M8(SL2(Z)) are one-dimensional,
generated by the Eisenstein series

E4 = 1 + 240
∞∑

n=1

σ3(n)e(nz), E8 = 1 + 480
∞∑

n=1

σ7(n)e(nz),

respectively. In particular, E 2
4 = E8. The identity in the Theorem

follows by taking q-th Fourier coefficients of both sides.



The proof in a nutshell (1 of 5)

Combining the approximate functional equation with some ideas of
Cogdell–Piatetski-Shapiro–Sarnak we reduce the Burgess bound to
cancellation in certain finite sums:

Lχfin
� (N q)

1
2
− 1

8
(1−2θ)+ε.

Here we write, for any character ξ : (o/q)× → S1,

Lξ :=
∑

0<<r∈y

λπ(ry−1)ξ(r)√
N (ry−1)

W
( r

Y 1/d

)
,

where

y is an ideal class representative,

W : K×∞,+ → C is some smooth function of compact support,

Y � (N q)1+ε.



The proof in a nutshell (2 of 5)

By the amplification method of Duke–Friedlander–Iwaniec we see,
for any amplifier length L > 0,

|Lχfin
|2

(N q)1+ε
� 1

L
+

∑
06=q∈qy∩B

∑
`1r1−`2r2=q

06=r1,r2∈y

λπ(r1y
−1)λ̄π(r2y

−1)√
N (r1r2y−2)

W
( r1

Y 1/d

)
W̄
( r2

Y 1/d

)
,

where

B ⊂ K∞ is some box of dimensions ≈ (LY )1/d ,

(`1) and (`2) are some prime ideals of norms ≈ L.



The proof in a nutshell (3 of 5)

We are dealing with a sum of shifted convolution sums. We
decompose each of them spectrally:

∑
06=q∈qy∩B

∫
(c)

∑
t|cc−1

$

λ
(t)
$ (qy−1)√
N (qy−1)

W$,t

(
q

(LY )1/d

)
d$,

where the integral and sum are restricted to level

c := cπ lcm((`1), (`2)).

Continuous spectrum contributes � (N q)−1/2+εL1/2 by∫
$∈E(c)

∑
t|cc−1

$

|W$,t(y)| d$ � (N (`1`2))ε

λ(t)
$ (qy−1)� (N gcd(t, qy−1))(N (qy−1))ε



The proof in a nutshell (4 of 5)

Most of the cuspidal contribution is negligible, thanks to∫
$∈C(c)

(N λ̃$)A
∑
t|cc−1

$

|W$,t(y)| d$ �A |N (`1`2)|
1
2

+ε

We restrict to N λ̃$ 6 (N q)ε and separate variables in W$,t by
Mellin transforms. In this way we bound the cuspidal part by

(N q)ε

( ∑
$∈C(c,ε)

t|cc−1
$

∣∣∣∣∣ ∑
Nm�LY /N (qy)

λ
(t)
$ (mq)√
N (mq)

f (mq)

∣∣∣∣∣
2)1/2

for some f (a)� (N q)ε. Here we “almost factor out” λ
(t)
$ (q)

which is why we need θ: |λ$(q)| � (N q)θ.



The proof in a nutshell (5 of 5)

The endgame:

1 Bound from above using smooth and rapidly decaying spectral
weights.

2 Open the square and apply Venkatesh’s variant of the
Bruggeman-Kuznetsov formula.

3 Use familiar bounds of Weil for Kloosterman sums and
Bruggeman–Miatello–Pacharoni for Bessel transforms.

Altogether amplification gives

|Lχfin
|2

(N q)1+ε
� 1

L
+ (N q)−1/2+θL.

Right hand side is smallest when L := (N q)
1
4

(1−2θ) in which case

Lχfin
� (N q)

1
2
− 1

8
(1−2θ)+ε.


