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Integral binary quadratic forms

〈a, b, c〉 := ax2 + bxy + cy2 ∈ Z[x, y]

• discriminant d := b2 − 4ac ∈ Z

• possible discriminants are d ≡ 0,1 (mod 4)

• form reducible if and only if d is a square

• form positive definite if d < 0 and a, c > 0

• form negative definite if d < 0 and a, c < 0

• form indefinite if d > 0



Fundamental discriminants, primitive forms

〈a, b, c〉 := ax2 + bxy + cy2 ∈ Z[x, y]

d := b2 − 4ac ∈ Z

• discriminant fundamental if d 6= d′e2

for all discriminants d′ < d and e ∈ Z

• fundamental discriminant implies form
〈a, b, c〉 is primitive, i.e. gcd(a, b, c) = 1

• possible fundamental discriminants are d

square-free ≡ 1 (mod 4) and 4 times
square-free ≡ 2,3 (mod 4); they parame-
trize the quadratic extensions Q(

√
d)

• first values are −20, −19, −15, −11, −8,
−7, −4, −3; 5, 8, 12, 13, 17, 21, 24, 28



Equivalence of integral binary quadratic forms

For M =

(
α β
γ δ

)
∈ SL2(Z) consider the actions

(x, y)
M7−→ (x′, y′) df⇐⇒ (x′, y′) = (αx + βy, γx + δy)

〈a, b, c〉 M7−→ 〈a′, b′, c′〉 df⇐⇒ a′x′2 + b′x′y′ + c′y′2 = ax2 + bxy + cy2

• 〈a, b, c〉 and 〈a′, b′, c′〉 as above are called equivalent

• equivalent forms have the same discriminant



Finiteness of class number

Fix fundamental discriminant d, and consider

〈a, b, c〉 S7−→ 〈c,−b, a〉, S :=

(
0 −1
1 0

)
,

〈a, b, c〉 T7−→ 〈a, b− 2a, c + a− b〉, T :=

(
1 1
0 1

)
.

Applying T±1, S finitely many times we achieve

|b| 6 |a| 6 |c|, b2 − 4ac = d.

Then

|d| = |b2 − 4ac| > 4|ac| − b2 > 3b2

shows there are

h(d) �ε |d|1/2+ε

inequivalent forms 〈a, b, c〉 of discriminant d.

For example, in the case of d = −23 we ob-

tain h(−23) = 3 different classes represented

by the forms 〈1,1,6〉 and 〈2,±1,3〉.



Geometric picture

Conformal automorphisms of the Riemann
sphere C ∪ {∞} fixing R ∪ {∞} are given by
fractional linear transformations

z
g7−→

αz + β

γz + δ
, g =

(
α β
γ δ

)
∈ SL2(R).

Decompose each form of discriminant d as

ax2 + bxy + cy2 = a(x− uy)(x− wy),

u :=
−b−

√
d

2a
, w :=

−b +
√

d

2a
,

and embed Q(
√

d) into C ∪ {∞}. Then the
action of SL2(Z) on forms induces on the
roots precisely the action given by fractional
linear transformations above. In particular,

(u, w)
S7−→ (−1/u,−1/w), S :=

(
0 −1
1 0

)
,

(u, w)
T7−→ (u + 1, w + 1), T :=

(
1 1
0 1

)
.





54 2 Modular Curves as Riemann Surfaces

If |c| = 1 then the condition |cτ1 + d|2 ≤ 1 becomes |τ1 ± d|2 ≤ 1, or
(Re(τ1) ± d)2 + (Im(τ1))2 ≤ 1, implying (Re(τ1) ± d)2 ≤ 1 − (Im(τ1))2 ≤
1 − 3/4 = 1/4, so |Re(τ1) ± d| ≤ 1/2, forcing |d| ≤ 1.

If |c| = 1 and |d| = 1 then in the preceding calculation all inequalities
must be equalities. It follows that Im(τ1) =

√
3/2 and |Re(τ1) ± 1| = 1/2, so

Re(τ1) = ±1/2 and both (1) and (2) hold.
If |c| = 1 and d = 0 then the condition |cτ1 +d| ≤ 1 becomes |τ1| ≤ 1, so in

fact |τ1| = 1 (since τ1 ∈ D) and Im(τ2) = Im(τ1). So also |τ2| = 1 by symmetry
since now τ1 and τ2 have the same conditions on their imaginary parts and on
the c-entries of the matrices transforming each to the other. Thus τ1 and τ2
have the same absolute value and the same imaginary part but are distinct,
forcing their real parts to be opposites and (2) holds. ��

So with suitable boundary identification the set D is a model for Y (1) =
SL2(Z)\H, also called a fundamental domain for SL2(Z). Topologically, D
modulo the identification is a plane. Figure 2.4 shows some SL2(Z)-translates
of D. The whole configuration repeats horizontally with period 1 under iter-
ations of

[ 1 ±1
0 1

]
: τ 
→ τ ± 1. The figure shows how the SL2(Z)-translates of

a point τ ∈ H can cluster only down toward the real axis, perhaps giving a
more intuitive understanding of Proposition 2.1.1.

Figure 2.4. Some SL2(Z)-translates of D



Geometric picture (cont.)

C−R is the disjoint union of H and H, where

H := {z = x + iy ∈ C : y > 0}
is the upper half-plane equipped with SL2(R)-
invariant line element and area element

d2s(z) :=
dx2 + dy2

y2
and dµ(z) :=

3

π

dxdy

y2
.

Geodesics in H are the half-lines and semi-
circles orthogonal to R. The SL2(Z)-orbits
in H form a noncompact surface SL2(Z)\H
of curvature −1 and area 1.

Let 〈a, b, c〉 run through all forms of discrimi-
nant d and consider the roots as before,

u :=
−b−

√
d

2a
, w :=

−b +
√

d

2a
.

For d < 0 the various roots w ∈ H give rise
to h(d) points in SL2(Z)\H. For d > 0 the
geodesics joining the various pairs {u, w} ⊂ R
give rise to h(d) geodesics in SL2(Z)\H.
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Figure 1. Geodesic flow on the upper half-plane H

In all our considerations, we assume implicitly that an oriented geodesic on M is
endowed with a unit tangent (direction) vector at each point and thus is an orbit of
the geodesic flow {ϕt} on M . For an oriented geodesic γ on M , its lift to H is any
oriented geodesic γ̃ on H such that π(γ̃) = γ. In this article we mainly study the
case when Γ = PSL(2, Z) = SL(2, Z)/{±12} is the modular group and M is the
modular surface which topologically is a sphere with one cusp and two singularities.

A cross-section C for the geodesic flow is a subset of the unit tangent bundle
SM visited by (almost) every geodesic infinitely often both in the future and in the
past. In other words, every v ∈ C defines an oriented geodesic γ(v) on M which
will return to C infinitely often. The function f : C → R giving the time of the
first return to C is defined as follows: if v ∈ C and t is the time of the first return
of γ(v) to C, then f(v) = t. The map R : C → C defined by R(v) = ϕf(v)(v) is
called the first return map. Thus {ϕt} can be represented as the special flow on the
space

Cf = {(v, s) | v ∈ C, 0 ≤ s ≤ f(v)}

given by the formula ϕt(v, s) = (v, s+t) with the identification (v, f(v)) = (R(v), 0).
Let N be a finite or countable alphabet, N Z = {x = {ni}i∈Z | ni ∈ N} be the

space of all bi-infinite sequences endowed with the Tikhonov (product) topology,

σ : N Z → N Z defined by {σx}i = ni+1

be the left shift map, and Λ ⊂ N Z be a closed σ-invariant subset. Then (Λ, σ)
is called a symbolic dynamical system. There are some important classes of such
dynamical systems. The whole space (N Z, σ) is called the Bernoulli shift. If the
space Λ is given by a set of simple transition rules which can be described with
the help of a matrix consisting of zeros and ones, we say that (Λ, σ) is a one-step
topological Markov chain or simply a topological Markov chain (sometimes (Λ, σ)
is also called a subshift of finite type). Similarly, if the space Λ is determined by
specifying which (k+1)-tuples of symbols are allowed, we say that (Λ, σ) is a k-step
topological Markov chain (a precise definition is given in Section 4).

In order to represent the geodesic flow as a special flow over a symbolic dynamical
system, one needs to choose an appropriate cross-section C and code it, i.e. to find
an appropriate symbolic dynamical system (Λ, σ) and a continuous surjective map
C : Λ → C (in some cases the actual domain of C is Λ except a finite or countable



Geometric picture (cont.)

Any geodesic Gu,w joining the roots of an
indefinite form 〈a, b, c〉 becomes closed when
projected to SL2(Z)\H. Namely, for any g ∈
SL2(R) mapping the pair (0,∞) to (u, w) the
motions in SL2(Z) fixing Gu,w are given by

g

(
λ 0
0 λ−1

)
g−1 =

(
m−bn

2 −nc

na m+bn
2

)
,

where

λ =
m + n

√
d

2
, m, n ∈ Z, m2 − dn2 = 4,

runs through the totally positive units in the
ring of integers of Q(

√
d). If λd > 1 generates

the group of totally positive units then the
length of the projected geodesic is 2 ln(λd).

For a fixed λ and a fixed closed geodesic in
SL2(Z)\H the above motions for the various
g ∈ SL2(R) form a hyperbolic conjugacy class
in SL2(Z). All hyperbolic conjugacy classes in
SL2(Z) arise in this way, and primitive classes
correspond to λ = ±λ±1

d .
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[n1, n2, . . . , nm], defined up to a cyclic permutation, its geometric code. Moreover,
if we choose A such that its axis enters F through the circular boundary, then

A = Tn1STn2S . . . TnmS.

For example, the Morse coding sequence of the closed geodesic shown on Figure 1
is

[T, T, T, T, S, T−1, T−1, T−1, S],

hence the periodic geometric code is [4, −3]. The lift of the geodesic on H shown
with a dashed line is the axis of the transformation G = T 4ST−3S, G(z) =
(13z + 4)/(3z + 1).

PSfrag replacements
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Figure 1. The fundamental region and a geodesic on M

The case when a geodesic passes through the corner ρ = 1
2 + i

√
3

2 of F was
described to a great extend in [GL, Section 7]. Such a geodesic has more than one
code obtained by approximating it by general position geodesics which pass near the
corner ρ slightly higher or slightly lower. If a geodesic hits the corner only once it
has exactly two codes. If a geodesic hits the corner at least twice, it hits it infinitely
many times and is closed; if it hits the corner n times in its period, it has exactly
2n+2 codes, i. e., shift-equivalent classes of coding sequences, some of which are not
periodic. Canonical codes considered in [K2] were obtained by the convention that
a geodesic passing through ρ in the clockwise direction exits F through the right
vertical side of F labeled by T (this corresponds to the approximation by geodesics
which pass near the corner ρ slightly higher). According to this convention, the
geometric codes of the axes of transformations A4 = T 4S, A3,6 = T 3ST 6S, and
A6,3 = T 6ST 3S are [4], [3, 6], and [6, 3], respectively (see Figures 5, 4, and 7
below). However, all these geodesics have other codes. For example, the axis of
A4 has a code [2, −1] obtained by approximation by geodesics which pass near the
corner ρ slightly lower (see Figure 3), and two non-periodic codes for the same



Eisenstein series on SL2(Z)\H

θ(s) := 2π−sΓ(s)ζ(2s), ηs(n) :=
∑

ab=n

(a/b)s

E∗(z, s) := θ(s)E(z, s) :=
θ(s)

2

∑

m,n∈Z
gcd(m,n)=1

ys

|mz + n|2s

= θ(s)ys + θ(1− s)y1−s + 4
√

y
∑

n6=0

η
s−1

2
(|n|)K

s−1
2
(2π|n|y)e2πinx

• For any s ∈ C − {0,1}, E∗(z, s) is real-analytic in z ∈ H and
invariant under z 7→ γz for any γ ∈ SL2(Z).
• For any z ∈ H, E∗(z, s) is holomorphic in s ∈ C−{0,1}, invariant
under s 7→ 1 − s, and has a simple pole at s = 1 (resp. s = 0)
with constant residue 1 (resp. −1).



Dirichlet’s class number formula via Eisenstein series

• Λd: the set of special points or closed geodesics on SL2(Z)\H
representing the h(d) classes of forms 〈a, b, c〉 of discriminant d

• wd: the number of roots of unity in Q(
√

d)
∑

z∈Λd

E∗(z, s) = wd |d|
s
2 (2π)−sΓ(s) ζ(s)L(s, (d

· )), d < 0,

∑

G∈Λd

∫

G
E∗(z, s) ds(z) = wd |d|

s
2 π−sΓ

(
s

2

)2
ζ(s)L(s, (d

· )), d > 0.

Taking residues at s = 1 of both sides we obtain

h(d) = wd |d|
1
2 (2π)−1 L(1, (d

· )), d < 0,

h(d) 2 ln(λd) = wd |d|
1
2 L(1, (d

· )), d < 0.



Siegel’s theorem

• Λd: the set of special points or closed geodesics on SL2(Z)\H
representing the h(d) classes of forms 〈a, b, c〉 of discriminant d

• wd: the number of roots of unity in Q(
√

d)

h(d) = wd |d|
1
2 (2π)−1 L(1, (d

· )), d < 0,

h(d) 2 ln(λd) = wd |d|
1
2 L(1, (d

· )), d < 0.

Siegel’s theorem from 1934 states that

|d|−ε ¿ε L(1, (d
· )) ¿ε |d|ε,

so that

|d|12−ε ¿ε h(d) ¿ε |d|
1
2+ε, d < 0,

|d|12−ε ¿ε h(d) ln(λd) ¿ε |d|
1
2+ε, d > 0.



The spectral decomposition of L2(SL2(Z)\H)

The space L2(SL2(Z)\H) is defined by the inner product

〈g1, g2〉 :=
∫

SL2(Z)\H
g1(z) g2(z) dµ(z).

Smooth and compactly supported functions g : SL2(Z)\H → C
are dense. They have a decomposition (Selberg, 1956)

g(z) = 〈g,1〉+
∞∑

j=1

〈g, uj〉uj(z)+
1

4π

∫ ∞
−∞

〈g, E(·, 1
2+it)〉E(z, 1

2+it) dt

which converges uniformly on compact sets. The functions uj

here form an orthonormal basis of the so-called cuspidal subspace

and possess very nice harmonic properties, along with the func-

tions E(·, 1
2 + it). Precisely, they are simultaneous eigenfunctions

of various “averaging operators” on SL2(Z)\H.



Laplacian and Hecke operators on L2(SL2(Z)\H)

• g: some uj or E(·, 1
2 + it) with t ∈ R

• p: any prime number

∆g := −y2
(

∂2g

∂x2
+

∂2g

∂y2

)
=:

(
1
4 + t2g

)
g, tg ∈ R

Tpg :=
1√
p

p∑

ad=p
06b<d

g

(
az + b

d

)
=:

(
αg(p) + βg(p)

)
g, αg(p)βg(p) = 1

T−1g := g(−z) =: (−1)ρg, ρ ∈ {0,1}

Λ(s, g) := π−sΓ
(

s+ρ−itg
2

)
Γ

(
s+ρ+itg

2

)
L(s, g)

:= π−sΓ
(

s+ρ−itg
2

)
Γ

(
s+ρ+itg

2

) ∏
p

1

(1− αg(p)p−s)(1− βg(p)p−s)

= (−1)ρ Λ(1− s, g)



Weyl sums and central twisted L-values

• g: some uj or E(·, 1
2 + it) with t ∈ R

• Λd: the set of special points or closed geodesics on SL2(Z)\H
representing the h(d) classes of forms 〈a, b, c〉 of discriminant d

g(x + iy) = gconst(y) +
√

y
∑

n6=0

ρg(n)Kitg(2π|n|y)e2πinx

The following identity (developed by Waldspurger, Kohnen–Zagier,
Katok–Sarnak, Guo, Zhang, Popa from 1985 to 2006) is deep:

∣∣∣∣∣∣
∑

z∈Λd

g(z)

∣∣∣∣∣∣

2

= cd |d|
1
2 |ρg(1)|2 Λ

(
1
2, g

)
Λ

(
1
2, g ⊗ (d

· )
)

, d < 0,

∣∣∣∣∣∣
∑

G∈Λd

∫

G
g(z) ds(z)

∣∣∣∣∣∣

2

= cd |d|
1
2 |ρg(1)|2 Λ

(
1
2, g

)
Λ

(
1
2, g ⊗ (d

· )
)

, d > 0.



Weyl sums and subconvexity bounds

• g: some uj or E(·, 1
2 + it) with t ∈ R

By work of Burgess (1963) and Duke–Friedlander–Iwaniec (1994),

∃ δ > 0, A > 0 : L
(
1
2, g ⊗ (d

· )
)
¿ (1 + |tg|)A |d|12−δ,

hence by crude bounds on ρg(1) and Λ(s, g) we conclude, for

some B > 0,
∣∣∣∣∣∣

∑

z∈Λd

g(z)

∣∣∣∣∣∣

2

¿ (1 + |tg|)B |d|1−δ, d < 0,

∣∣∣∣∣∣
∑

G∈Λd

∫

G
g(z) ds(z)

∣∣∣∣∣∣

2

¿ (1 + |tg|)B |d|1−δ, d > 0.



Equidistribution on the modular surface

• g: any smooth and compactly supported function on SL2(Z)\H

g(z) = 〈g,1〉+
∞∑

j=1

〈g, uj〉uj(z)+
1

4π

∫ ∞
−∞

〈g, E(·, 1
2+it)〉E(z, 1

2+it) dt

∆uj =
(
1
4 + t2j

)
uj, ∆E(·, 1

2 + it) =
(
1
4 + t2

)
E(·, 1

2 + it)

〈g, uj〉 ¿g,C (1 + |tj|)−C, 〈g, E(·, 1
2 + it)〉 ¿g,C (1 + |t|)−C

1

h(d)

∑

z∈Λd

g(z) →
∫

SL2(Z)\H
g(z) dµ(z), d → −∞

1

h(d) 2 ln(λd)

∑

G∈Λd

∫

G
g(z) ds(z) →

∫

SL2(Z)\H
g(z) dµ(z), d → +∞



Refinement: equidistribution in shorter orbits

There is a natural bijection from Λd to the narrow ideal class

group Hd of Q(
√

d) which induces an action of Hd on Λd. Equidis-

tribution in orbits of size Àε |d|1/2−δ/2+ε follows from a bound
∣∣∣∣∣∣

∑

σ∈Hd

ψ(σ)g(zσ
0)

∣∣∣∣∣∣

2

¿ (1 + |tg|)B |d|1−δ, d < 0,

∣∣∣∣∣∣
∑

σ∈Hd

ψ(σ)
∫

Gσ
0

g(z) ds(z)

∣∣∣∣∣∣

2

¿ (1 + |tg|)B |d|1−δ, d > 0,

where g is any uj or E(·, 1
2 + it) with t ∈ R, z0 (resp. G0) is any

element of Λd when d < 0 (resp. d > 0), and ψ : Hd → C× is any

ideal class character.



Refinement: equidistribution in shorter orbits (cont.)

By deep formulae of Zhang (2001) and Popa (2006) the left
hand side equals

∣∣∣∣∣∣
∑

σ∈Hd

ψ(σ) . . .

∣∣∣∣∣∣

2

= cd |d|
1
2 |ρg(1)|2 Λ

(
1
2, g ⊗ fψ

)
,

where fψ is the Jacquet–Langlands lift of ψ, a modular form

on H of level |d| and nebentypus
(

d
·
)

with the same completed
L-function as ψ. If ψ : Hd → C× is real-valued then there is a
factorization d = d1d2 into fundamental discriminants such that

Λ(s, g ⊗ fψ) = Λ(s, g ⊗ (d1· ))Λ(s, g ⊗ (d2· )).
Otherwise fψ is a cusp form and the necessary subconvex bounds
were proved by Duke–Friedlander–Iwaniec (2002) and Harcos–
Michel (2006). Equidistribution follows in orbits of sizeÀ |d|0.4997.




