Equidistribution on the modular surface and automorphic L-functions

Gergely Harcos

11 February, 2008

Integral binary quadratic forms

$$\langle a, b, c \rangle := ax^2 + bxy + cy^2 \in \mathbb{Z}[x, y]$$

- discriminant $d := b^2 4ac \in \mathbb{Z}$
- possible discriminants are $d \equiv 0, 1 \pmod{4}$
- form reducible if and only if d is a square
- form positive definite if d < 0 and a, c > 0
- form negative definite if d < 0 and a, c < 0
- form indefinite if d > 0

Fundamental discriminants, primitive forms

$$\langle a, b, c \rangle := ax^2 + bxy + cy^2 \in \mathbb{Z}[x, y]$$

$$d := b^2 - 4ac \in \mathbb{Z}$$

- discriminant fundamental if $d \neq d'e^2$ for all discriminants d' < d and $e \in \mathbb{Z}$
- fundamental discriminant implies form $\langle a, b, c \rangle$ is primitive, i.e. gcd(a, b, c) = 1
- possible fundamental discriminants are dsquare-free $\equiv 1 \pmod{4}$ and 4 times square-free $\equiv 2,3 \pmod{4}$; they parametrize the quadratic extensions $\mathbb{Q}(\sqrt{d})$
- first values are −20, −19, −15, −11, −8, −7, −4, −3; 5, 8, 12, 13, 17, 21, 24, 28

Equivalence of integral binary quadratic forms

For
$$M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(\mathbb{Z})$$
 consider the actions
 $(x, y) \xrightarrow{M} (x', y') \qquad \stackrel{\text{df}}{\iff} \qquad (x', y') = (\alpha x + \beta y, \gamma x + \delta y)$
 $\langle a, b, c \rangle \xrightarrow{M} \langle a', b', c' \rangle \qquad \stackrel{\text{df}}{\iff} \qquad a'x'^2 + b'x'y' + c'y'^2 = ax^2 + bxy + cy^2$

• $\langle a,b,c\rangle$ and $\langle a',b',c'\rangle$ as above are called equivalent

• equivalent forms have the same discriminant

Finiteness of class number

Fix fundamental discriminant d, and consider

$$\langle a, b, c \rangle \xrightarrow{S} \langle c, -b, a \rangle, \qquad S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \\ \langle a, b, c \rangle \xrightarrow{T} \langle a, b - 2a, c + a - b \rangle, \quad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Applying $T^{\pm 1}$, S finitely many times we achieve

$$|b| \leq |a| \leq |c|, \qquad b^2 - 4ac = d.$$

Then

$$|d| = |b^2 - 4ac| \ge 4|ac| - b^2 \ge 3b^2$$

shows there are

$$h(d) \ll_{\varepsilon} |d|^{1/2 + \varepsilon}$$

inequivalent forms $\langle a, b, c \rangle$ of discriminant d.

For example, in the case of d = -23 we obtain h(-23) = 3 different classes represented by the forms $\langle 1, 1, 6 \rangle$ and $\langle 2, \pm 1, 3 \rangle$.

Geometric picture

Conformal automorphisms of the Riemann sphere $\mathbb{C} \cup \{\infty\}$ fixing $\mathbb{R} \cup \{\infty\}$ are given by fractional linear transformations

$$z \xrightarrow{g} \frac{\alpha z + \beta}{\gamma z + \delta}, \qquad g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(\mathbb{R}).$$

Decompose each form of discriminant d as

$$ax^{2} + bxy + cy^{2} = a(x - uy)(x - wy)$$

 $u := \frac{-b - \sqrt{d}}{2a}, \qquad w := \frac{-b + \sqrt{d}}{2a},$

,

and embed $\mathbb{Q}(\sqrt{d})$ into $\mathbb{C} \cup \{\infty\}$. Then the action of $SL_2(\mathbb{Z})$ on forms induces on the roots precisely the action given by fractional linear transformations above. In particular,

$$(u,w) \xrightarrow{S} (-1/u, -1/w), \quad S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$
$$(u,w) \xrightarrow{T} (u+1, w+1), \quad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Geometric picture (cont.)

 $\mathbb{C}-\mathbb{R}$ is the disjoint union of $\mathcal H$ and $\overline{\mathcal H},$ where

$$\mathcal{H} := \{z = x + iy \in \mathbb{C} : y > 0\}$$

is the upper half-plane equipped with $SL_2(\mathbb{R})$ -invariant line element and area element

 $d^2s(z) := \frac{dx^2 + dy^2}{y^2}$ and $d\mu(z) := \frac{3}{\pi} \frac{dxdy}{y^2}$. Geodesics in \mathcal{H} are the half-lines and semicircles orthogonal to \mathbb{R} . The SL₂(\mathbb{Z})-orbits in \mathcal{H} form a noncompact surface SL₂(\mathbb{Z})\ \mathcal{H} of curvature -1 and area 1.

Let $\langle a, b, c \rangle$ run through all forms of discriminant d and consider the roots as before,

$$u := \frac{-b - \sqrt{d}}{2a}, \quad w := \frac{-b + \sqrt{d}}{2a}.$$

For d < 0 the various roots $w \in \mathcal{H}$ give rise to h(d) points in $SL_2(\mathbb{Z}) \setminus \mathcal{H}$. For d > 0 the geodesics joining the various pairs $\{u, w\} \subset \mathbb{R}$ give rise to h(d) geodesics in $SL_2(\mathbb{Z}) \setminus \mathcal{H}$.

Geometric picture (cont.)

Any geodesic $G_{u,w}$ joining the roots of an indefinite form $\langle a, b, c \rangle$ becomes closed when projected to $SL_2(\mathbb{Z}) \setminus \mathcal{H}$. Namely, for any $g \in$ $SL_2(\mathbb{R})$ mapping the pair $(0, \infty)$ to (u, w) the motions in $SL_2(\mathbb{Z})$ fixing $G_{u,w}$ are given by

$$g\begin{pmatrix}\lambda & 0\\ 0 & \lambda^{-1}\end{pmatrix}g^{-1} = \begin{pmatrix}\frac{m-bn}{2} & -nc\\ na & \frac{m+bn}{2}\end{pmatrix}g^{-1}$$

where

$$\lambda = \frac{m + n\sqrt{d}}{2}, \quad m, n \in \mathbb{Z}, \quad m^2 - dn^2 = 4,$$

runs through the totally positive units in the ring of integers of $\mathbb{Q}(\sqrt{d})$. If $\lambda_d > 1$ generates the group of totally positive units then the length of the projected geodesic is $2 \ln(\lambda_d)$.

For a fixed λ and a fixed closed geodesic in $SL_2(\mathbb{Z})\setminus\mathcal{H}$ the above motions for the various $g\in SL_2(\mathbb{R})$ form a hyperbolic conjugacy class in $SL_2(\mathbb{Z})$. All hyperbolic conjugacy classes in $SL_2(\mathbb{Z})$ arise in this way, and primitive classes correspond to $\lambda = \pm \lambda_d^{\pm 1}$.

Eisenstein series on $SL_2(\mathbb{Z}) \setminus \mathcal{H}$

$$\theta(s) := 2\pi^{-s} \Gamma(s) \zeta(2s), \qquad \eta_s(n) := \sum_{ab=n} (a/b)^s$$

$$E^{*}(z,s) := \theta(s)E(z,s) := \frac{\theta(s)}{2} \sum_{\substack{m,n \in \mathbb{Z} \\ \gcd(m,n)=1}} \frac{y^{s}}{|mz+n|^{2s}}$$
$$= \theta(s)y^{s} + \theta(1-s)y^{1-s} + 4\sqrt{y} \sum_{n \neq 0} \eta_{s-\frac{1}{2}}(|n|)K_{s-\frac{1}{2}}(2\pi|n|y)e^{2\pi inx}$$

• For any $s \in \mathbb{C} - \{0, 1\}$, $E^*(z, s)$ is real-analytic in $z \in \mathcal{H}$ and invariant under $z \mapsto \gamma z$ for any $\gamma \in SL_2(\mathbb{Z})$.

• For any $z \in \mathcal{H}$, $E^*(z, s)$ is holomorphic in $s \in \mathbb{C} - \{0, 1\}$, invariant under $s \mapsto 1 - s$, and has a simple pole at s = 1 (resp. s = 0) with constant residue 1 (resp. -1).

Dirichlet's class number formula via Eisenstein series

- Λ_d : the set of special points or closed geodesics on $SL_2(\mathbb{Z})\setminus \mathcal{H}$ representing the h(d) classes of forms $\langle a, b, c \rangle$ of discriminant d
- w_d : the number of roots of unity in $\mathbb{Q}(\sqrt{d})$

$$\sum_{z \in \Lambda_d} E^*(z,s) = w_d |d|^{\frac{s}{2}} (2\pi)^{-s} \Gamma(s) \zeta(s) L(s, (\frac{d}{\cdot})), \quad d < 0,$$
$$\sum_{G \in \Lambda_d} \int_G E^*(z,s) \, ds(z) = w_d |d|^{\frac{s}{2}} \pi^{-s} \Gamma\left(\frac{s}{2}\right)^2 \zeta(s) L(s, (\frac{d}{\cdot})), \quad d > 0.$$

Taking residues at s = 1 of both sides we obtain

$$h(d) = w_d |d|^{\frac{1}{2}} (2\pi)^{-1} L(1, (\frac{d}{\cdot})), \qquad d < 0,$$

$$h(d) 2 \ln(\lambda_d) = w_d |d|^{\frac{1}{2}} \qquad L(1, (\frac{d}{\cdot})), \qquad d < 0.$$

Siegel's theorem

• Λ_d : the set of special points or closed geodesics on $SL_2(\mathbb{Z})\setminus \mathcal{H}$ representing the h(d) classes of forms $\langle a, b, c \rangle$ of discriminant d

• w_d : the number of roots of unity in $\mathbb{Q}(\sqrt{d})$

$$h(d) = w_d |d|^{\frac{1}{2}} (2\pi)^{-1} L(1, (\frac{d}{\cdot})), \qquad d < 0,$$

$$h(d) 2 \ln(\lambda_d) = w_d |d|^{\frac{1}{2}} \qquad L(1, (\frac{d}{\cdot})), \qquad d < 0.$$

Siegel's theorem from 1934 states that

$$|d|^{-\varepsilon} \ll_{\varepsilon} L(1, (\frac{d}{\cdot})) \ll_{\varepsilon} |d|^{\varepsilon},$$

so that

$$\begin{split} |d|^{\frac{1}{2}-\varepsilon} \ll_{\varepsilon} & h(d) & \ll_{\varepsilon} |d|^{\frac{1}{2}+\varepsilon}, \qquad d < 0, \\ |d|^{\frac{1}{2}-\varepsilon} \ll_{\varepsilon} & h(d) \ln(\lambda_d) \ll_{\varepsilon} |d|^{\frac{1}{2}+\varepsilon}, \qquad d > 0. \end{split}$$

The spectral decomposition of $L^2(SL_2(\mathbb{Z})\backslash \mathcal{H})$

The space $L^2(SL_2(\mathbb{Z})\backslash\mathcal{H})$ is defined by the inner product

$$\langle g_1, g_2 \rangle := \int_{\mathsf{SL}_2(\mathbb{Z}) \setminus \mathcal{H}} g_1(z) \, \overline{g_2(z)} \, d\mu(z).$$

Smooth and compactly supported functions $g : SL_2(\mathbb{Z}) \setminus \mathcal{H} \to \mathbb{C}$ are dense. They have a decomposition (Selberg, 1956)

$$g(z) = \langle g, 1 \rangle + \sum_{j=1}^{\infty} \langle g, u_j \rangle u_j(z) + \frac{1}{4\pi} \int_{-\infty}^{\infty} \langle g, E(\cdot, \frac{1}{2} + it) \rangle E(z, \frac{1}{2} + it) dt$$

which converges uniformly on compact sets. The functions u_j here form an orthonormal basis of the so-called cuspidal subspace and possess very nice harmonic properties, along with the functions $E(\cdot, \frac{1}{2} + it)$. Precisely, they are simultaneous eigenfunctions of various "averaging operators" on $SL_2(\mathbb{Z})\setminus\mathcal{H}$.

Laplacian and Hecke operators on $L^2(SL_2(\mathbb{Z})\setminus\mathcal{H})$

• g: some
$$u_j$$
 or $E(\cdot, \frac{1}{2} + it)$ with $t \in \mathbb{R}$

• *p*: any prime number

$$\Delta g := -y^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right) =: \left(\frac{1}{4} + t_g^2 \right) g, \qquad t_g \in \mathbb{R}$$

$$T_p g := \frac{1}{\sqrt{p}} \sum_{\substack{ad=p\\0 \leqslant b \leqslant d}}^p g \left(\frac{az+b}{d} \right) =: \left(\alpha_g(p) + \beta_g(p) \right) g, \qquad \alpha_g(p) \beta_g(p) = 1$$

$$T_{-1}g := g(-\overline{z}) =: (-1)^{\rho} g, \qquad \rho \in \{0,1\}$$

$$\begin{split} \Lambda(s,g) &:= \pi^{-s} \Gamma\left(\frac{s+\rho-it_g}{2}\right) \Gamma\left(\frac{s+\rho+it_g}{2}\right) L(s,g) \\ &:= \pi^{-s} \Gamma\left(\frac{s+\rho-it_g}{2}\right) \Gamma\left(\frac{s+\rho+it_g}{2}\right) \prod_p \frac{1}{(1-\alpha_g(p)p^{-s})(1-\beta_g(p)p^{-s})} \\ &= (-1)^{\rho} \Lambda(1-s,g) \end{split}$$

Weyl sums and central twisted *L*-values

• g: some
$$u_j$$
 or $E(\cdot, \frac{1}{2} + it)$ with $t \in \mathbb{R}$

• Λ_d : the set of special points or closed geodesics on $SL_2(\mathbb{Z})\setminus \mathcal{H}$ representing the h(d) classes of forms $\langle a, b, c \rangle$ of discriminant d

$$g(x+iy) = g_{\text{const}}(y) + \sqrt{y} \sum_{n \neq 0} \rho_g(n) K_{it_g}(2\pi |n|y) e^{2\pi i nx}$$

The following identity (developed by Waldspurger, Kohnen–Zagier, Katok–Sarnak, Guo, Zhang, Popa from 1985 to 2006) is deep:

$$\left|\sum_{z\in\Lambda_d}g(z)\right|^2 = c_d |d|^{\frac{1}{2}} |\rho_g(1)|^2 \wedge \left(\frac{1}{2}, g\right) \wedge \left(\frac{1}{2}, g\otimes\left(\frac{d}{\cdot}\right)\right), \ d<0,$$

$$\left|\sum_{G\in\Lambda_d}\int_G g(z)\,ds(z)\right|^2 = c_d\,|d|^{\frac{1}{2}}\,|\rho_g(1)|^2\,\wedge\left(\frac{1}{2},g\right)\wedge\left(\frac{1}{2},g\otimes\left(\frac{d}{\cdot}\right)\right),\,\,d>0.$$

Weyl sums and subconvexity bounds

• g: some
$$u_j$$
 or $E(\cdot, \frac{1}{2} + it)$ with $t \in \mathbb{R}$

By work of Burgess (1963) and Duke-Friedlander-Iwaniec (1994),

$$\exists \ \delta > 0, A > 0 : \ L\left(\frac{1}{2}, g \otimes \left(\frac{d}{\cdot}\right)\right) \ll (1 + |t_g|)^A |d|^{\frac{1}{2} - \delta},$$

hence by crude bounds on $\rho_g(1)$ and $\Lambda(s,g)$ we conclude, for some B > 0,

$$\begin{split} \left|\sum_{z\in\Lambda_d}g(z)\right|^2 &\ll (1+|t_g|)^B |d|^{1-\delta}, \qquad d<0,\\ \left|\sum_{G\in\Lambda_d}\int_G g(z) \, ds(z)\right|^2 &\ll (1+|t_g|)^B \, |d|^{1-\delta}, \qquad d>0. \end{split}$$

Equidistribution on the modular surface

• g: any smooth and compactly supported function on $SL_2(\mathbb{Z}) \setminus \mathcal{H}$

$$g(z) = \langle g, 1 \rangle + \sum_{j=1}^{\infty} \langle g, u_j \rangle u_j(z) + \frac{1}{4\pi} \int_{-\infty}^{\infty} \langle g, E(\cdot, \frac{1}{2} + it) \rangle E(z, \frac{1}{2} + it) dt$$

$$\Delta u_j = \left(\frac{1}{4} + t_j^2\right) u_j, \qquad \Delta E(\cdot, \frac{1}{2} + it) = \left(\frac{1}{4} + t^2\right) E(\cdot, \frac{1}{2} + it)$$

$$\langle g, u_j \rangle \ll_{g,C} (1 + |t_j|)^{-C}, \qquad \langle g, E(\cdot, \frac{1}{2} + it) \rangle \ll_{g,C} (1 + |t|)^{-C}$$

$$\frac{1}{h(d)} \sum_{z \in \Lambda_d} g(z) \to \int_{\mathsf{SL}_2(\mathbb{Z}) \setminus \mathcal{H}} g(z) \, d\mu(z), \qquad d \to -\infty$$
$$\frac{1}{h(d) 2 \ln(\lambda_d)} \sum_{G \in \Lambda_d} \int_G g(z) \, ds(z) \to \int_{\mathsf{SL}_2(\mathbb{Z}) \setminus \mathcal{H}} g(z) \, d\mu(z), \qquad d \to +\infty$$

Refinement: equidistribution in shorter orbits

There is a natural bijection from Λ_d to the narrow ideal class group H_d of $\mathbb{Q}(\sqrt{d})$ which induces an action of H_d on Λ_d . Equidistribution in orbits of size $\gg_{\varepsilon} |d|^{1/2 - \delta/2 + \varepsilon}$ follows from a bound

$$\left|\sum_{\sigma \in H_d} \overline{\psi(\sigma)} g(z_0^{\sigma})\right|^2 \ll (1+|t_g|)^B |d|^{1-\delta}, \qquad d < 0,$$
$$\left|\sum_{\sigma \in H_d} \overline{\psi(\sigma)} \int_{G_0^{\sigma}} g(z) \, ds(z)\right|^2 \ll (1+|t_g|)^B |d|^{1-\delta}, \qquad d > 0,$$

where g is any u_j or $E(\cdot, \frac{1}{2} + it)$ with $t \in \mathbb{R}$, z_0 (resp. G_0) is any element of Λ_d when d < 0 (resp. d > 0), and $\psi : H_d \to \mathbb{C}^{\times}$ is any ideal class character.

Refinement: equidistribution in shorter orbits (cont.)

By deep formulae of Zhang (2001) and Popa (2006) the left hand side equals

$$\left|\sum_{\sigma\in H_d} \overline{\psi(\sigma)} \dots\right|^2 = c_d |d|^{\frac{1}{2}} |\rho_g(1)|^2 \wedge \left(\frac{1}{2}, g \otimes f_{\psi}\right),$$

where f_{ψ} is the Jacquet–Langlands lift of ψ , a modular form on \mathcal{H} of level |d| and nebentypus $\left(\frac{d}{\cdot}\right)$ with the same completed L-function as ψ . If $\psi : H_d \to \mathbb{C}^{\times}$ is real-valued then there is a factorization $d = d_1 d_2$ into fundamental discriminants such that

$$\Lambda(s,g\otimes f_{\psi})=\Lambda(s,g\otimes (\frac{d_1}{\cdot}))\Lambda(s,g\otimes (\frac{d_2}{\cdot})).$$

Otherwise f_{ψ} is a cusp form and the necessary subconvex bounds were proved by Duke–Friedlander–Iwaniec (2002) and Harcos– Michel (2006). Equidistribution follows in orbits of size $\gg |d|^{0.4997}$.