Equidistribution on the modular surface and automorphic L-functions

Gergely Harcos

11 February, 2008

Integral binary quadratic forms

$$
\langle a, b, c\rangle:=a x^{2}+b x y+c y^{2} \in \mathbb{Z}[x, y]
$$

- discriminant $d:=b^{2}-4 a c \in \mathbb{Z}$
- possible discriminants are $d \equiv 0,1(\bmod 4)$
- form reducible if and only if d is a square
- form positive definite if $d<0$ and $a, c>0$
- form negative definite if $d<0$ and $a, c<0$
- form indefinite if $d>0$

Fundamental discriminants, primitive forms

$$
\begin{aligned}
\langle a, b, c\rangle & :=a x^{2}+b x y+c y^{2} \in \mathbb{Z}[x, y] \\
d & :=b^{2}-4 a c \in \mathbb{Z}
\end{aligned}
$$

- discriminant fundamental if $d \neq d^{\prime} e^{2}$ for all discriminants $d^{\prime}<d$ and $e \in \mathbb{Z}$
- fundamental discriminant implies form $\langle a, b, c\rangle$ is primitive, i.e. $\operatorname{gcd}(a, b, c)=1$
- possible fundamental discriminants are d square-free $\equiv 1(\bmod 4)$ and 4 times square-free $\equiv 2,3(\bmod 4)$; they parametrize the quadratic extensions $\mathbb{Q}(\sqrt{d})$
- first values are $-20,-19,-15,-11,-8$, $-7,-4,-3 ; 5,8,12,13,17,21,24,28$

Equivalence of integral binary quadratic forms

For $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ consider the actions

$$
\begin{array}{rlr}
(x, y) \stackrel{M}{\longmapsto}\left(x^{\prime}, y^{\prime}\right) & \stackrel{\text { df }}{\Longleftrightarrow} & \left(x^{\prime}, y^{\prime}\right)=(\alpha x+\beta y, \gamma x+\delta y) \\
\langle a, b, c\rangle \stackrel{M}{\longmapsto}\left\langle a^{\prime}, b^{\prime}, c^{\prime}\right\rangle & \stackrel{\text { df }}{\Longleftrightarrow} a^{\prime} x^{\prime 2}+b^{\prime} x^{\prime} y^{\prime}+c^{\prime} y^{\prime 2}=a x^{2}+b x y+c y^{2}
\end{array}
$$

- $\langle a, b, c\rangle$ and $\left\langle a^{\prime}, b^{\prime}, c^{\prime}\right\rangle$ as above are called equivalent
- equivalent forms have the same discriminant

Finiteness of class number

Fix fundamental discriminant d, and consider

$$
\begin{array}{ll}
\langle a, b, c\rangle \stackrel{S}{\longmapsto}\langle c,-b, a\rangle, & S:=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \\
\langle a, b, c\rangle \stackrel{T}{\longmapsto}\langle a, b-2 a, c+a-b\rangle, & T:=\left(\begin{array}{lr}
1 & 1 \\
0 & 1
\end{array}\right) .
\end{array}
$$

Applying $T^{ \pm 1}, S$ finitely many times we achieve

$$
|b| \leqslant|a| \leqslant|c|, \quad b^{2}-4 a c=d
$$

Then

$$
|d|=\left|b^{2}-4 a c\right| \geqslant 4|a c|-b^{2} \geqslant 3 b^{2}
$$

shows there are

$$
h(d) \ll \varepsilon|d|^{1 / 2+\varepsilon}
$$

inequivalent forms $\langle a, b, c\rangle$ of discriminant d.

For example, in the case of $d=-23$ we obtain $h(-23)=3$ different classes represented by the forms $\langle 1,1,6\rangle$ and $\langle 2, \pm 1,3\rangle$.

Geometric picture

Conformal automorphisms of the Riemann sphere $\mathbb{C} \cup\{\infty\}$ fixing $\mathbb{R} \cup\{\infty\}$ are given by fractional linear transformations

$$
z \stackrel{g}{\longmapsto} \frac{\alpha z+\beta}{\gamma z+\delta}, \quad g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}) .
$$

Decompose each form of discriminant d as

$$
\begin{gathered}
a x^{2}+b x y+c y^{2}=a(x-u y)(x-w y), \\
u:=\frac{-b-\sqrt{d}}{2 a}, \quad w:=\frac{-b+\sqrt{d}}{2 a},
\end{gathered}
$$

and embed $\mathbb{Q}(\sqrt{d})$ into $\mathbb{C} \cup\{\infty\}$. Then the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on forms induces on the roots precisely the action given by fractional linear transformations above. In particular,

$$
\begin{array}{ll}
(u, w) \stackrel{S}{\longleftrightarrow}(-1 / u,-1 / w), & S:=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \\
(u, w) \stackrel{T}{\longleftrightarrow}(u+1, w+1), & T:=\left(\begin{array}{lr}
1 & 1 \\
0 & 1
\end{array}\right) .
\end{array}
$$

Geometric picture (cont.)

$\mathbb{C}-\mathbb{R}$ is the disjoint union of \mathcal{H} and $\overline{\mathcal{H}}$, where

$$
\mathcal{H}:=\{z=x+i y \in \mathbb{C}: y>0\}
$$

is the upper half-plane equipped with $\mathrm{SL}_{2}(\mathbb{R})$ invariant line element and area element
$d^{2} s(z):=\frac{d x^{2}+d y^{2}}{y^{2}}$ and $d \mu(z):=\frac{3}{\pi} \frac{d x d y}{y^{2}}$.
Geodesics in \mathcal{H} are the half-lines and semicircles orthogonal to \mathbb{R}. The $\mathrm{SL}_{2}(\mathbb{Z})$-orbits in \mathcal{H} form a noncompact surface $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$ of curvature -1 and area 1.

Let $\langle a, b, c\rangle$ run through all forms of discriminant d and consider the roots as before,

$$
u:=\frac{-b-\sqrt{d}}{2 a}, \quad w:=\frac{-b+\sqrt{d}}{2 a}
$$

For $d<0$ the various roots $w \in \mathcal{H}$ give rise to $h(d)$ points in $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$. For $d>0$ the geodesics joining the various pairs $\{u, w\} \subset \mathbb{R}$ give rise to $h(d)$ geodesics in $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$.

Geometric picture (cont.)

Any geodesic $G_{u, w}$ joining the roots of an indefinite form $\langle a, b, c\rangle$ becomes closed when projected to $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$. Namely, for any $g \in$ $\mathrm{SL}_{2}(\mathbb{R})$ mapping the pair $(0, \infty)$ to (u, w) the motions in $\mathrm{SL}_{2}(\mathbb{Z})$ fixing $G_{u, w}$ are given by

$$
g\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
\frac{m-b n}{2} & -n c \\
n a & \frac{m+b n}{2}
\end{array}\right)
$$

where

$$
\lambda=\frac{m+n \sqrt{d}}{2}, \quad m, n \in \mathbb{Z}, \quad m^{2}-d n^{2}=4
$$

runs through the totally positive units in the ring of integers of $\mathbb{Q}(\sqrt{d})$. If $\lambda_{d}>1$ generates the group of totally positive units then the length of the projected geodesic is $2 \ln \left(\lambda_{d}\right)$.

For a fixed λ and a fixed closed geodesic in $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$ the above motions for the various $g \in \mathrm{SL}_{2}(\mathbb{R})$ form a hyperbolic conjugacy class in $\mathrm{SL}_{2}(\mathbb{Z})$. All hyperbolic conjugacy classes in $\mathrm{SL}_{2}(\mathbb{Z})$ arise in this way, and primitive classes correspond to $\lambda= \pm \lambda_{d}^{ \pm 1}$.

$$
\begin{aligned}
& \theta(s):=2 \pi^{-s} \Gamma(s) \zeta(2 s), \quad \eta_{s}(n):=\sum_{a b=n}(a / b)^{s} \\
& E^{*}(z, s):=\theta(s) E(z, s):=\frac{\theta(s)}{2} \sum_{\substack{m, n \in \mathbb{Z} \\
\operatorname{gcd}(m, n)=1}} \frac{y^{s}}{|m z+n|^{2 s}} \\
&=\theta(s) y^{s}+\theta(1-s) y^{1-s}+4 \sqrt{y} \sum_{n \neq 0} \eta_{s-\frac{1}{2}}(|n|) K_{s-\frac{1}{2}}(2 \pi|n| y) e^{2 \pi i n x}
\end{aligned}
$$

- For any $s \in \mathbb{C}-\{0,1\}, E^{*}(z, s)$ is real-analytic in $z \in \mathcal{H}$ and invariant under $z \mapsto \gamma z$ for any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.
- For any $z \in \mathcal{H}, E^{*}(z, s)$ is holomorphic in $s \in \mathbb{C}-\{0,1\}$, invariant under $s \mapsto 1-s$, and has a simple pole at $s=1$ (resp. $s=0$) with constant residue 1 (resp. -1).

Dirichlet's class number formula via Eisenstein series

- \wedge_{d} : the set of special points or closed geodesics on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$ representing the $h(d)$ classes of forms $\langle a, b, c\rangle$ of discriminant d
- w_{d} : the number of roots of unity in $\mathbb{Q}(\sqrt{d})$

$$
\begin{aligned}
\sum_{z \in \wedge_{d}} E^{*}(z, s) & =w_{d}|d|^{\frac{s}{2}}(2 \pi)^{-s} \Gamma(s) \zeta(s) L\left(s,\left(\frac{d}{\square}\right)\right), d<0, \\
\sum_{G \in \wedge_{d}} \int_{G} E^{*}(z, s) d s(z) & =w_{d}|d|^{\frac{s}{2}} \pi^{-s} \Gamma\left(\frac{s}{2}\right)^{2} \zeta(s) L\left(s,\left(\frac{d}{l}\right)\right), d>0 .
\end{aligned}
$$

Taking residues at $s=1$ of both sides we obtain

$$
\begin{array}{rlrl}
h(d) & =w_{d}|d|^{\frac{1}{2}}(2 \pi)^{-1} L(1,(\underline{d})), & & d<0, \\
h(d) 2 \ln \left(\lambda_{d}\right) & =w_{d}|d|^{\frac{1}{2}} & L\left(1,\left(\frac{d}{.}\right)\right), & \\
d<0 .
\end{array}
$$

Siegel's theorem

- \wedge_{d} : the set of special points or closed geodesics on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$ representing the $h(d)$ classes of forms $\langle a, b, c\rangle$ of discriminant d
- w_{d} : the number of roots of unity in $\mathbb{Q}(\sqrt{d})$

$$
\begin{array}{rlrl}
h(d) & =w_{d}|d|^{\frac{1}{2}}(2 \pi)^{-1} L(1,(\underline{d})), & & d<0, \\
h(d) 2 \ln \left(\lambda_{d}\right) & =w_{d}|d|^{\frac{1}{2}} & L\left(1,\left(\frac{d}{.}\right)\right), & \\
d<0 .
\end{array}
$$

Siegel's theorem from 1934 states that

$$
|d|^{-\varepsilon} \ll \varepsilon L(1,(\underline{d})) \ll \varepsilon|d|^{\varepsilon},
$$

so that

$$
\begin{array}{lll}
|d|^{\frac{1}{2}-\varepsilon} \ll \varepsilon \quad h(d) & \ll \varepsilon|d|^{\frac{1}{2}+\varepsilon}, & d<0, \\
|d|^{\frac{1}{2}-\varepsilon} \ll \varepsilon h(d) \ln \left(\lambda_{d}\right) \ll \varepsilon|d|^{\frac{1}{2}+\varepsilon}, & d>0 .
\end{array}
$$

The spectral decomposition of $L^{2}\left(\mathrm{~S}_{2}(\mathbb{Z}) \backslash \mathcal{H}\right)$

The space $L^{2}\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}\right)$ is defined by the inner product

$$
\left\langle g_{1}, g_{2}\right\rangle:=\int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}} g_{1}(z) \overline{g_{2}(z)} d \mu(z)
$$

Smooth and compactly supported functions $g: \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H} \rightarrow \mathbb{C}$ are dense. They have a decomposition (Selberg, 1956)
$g(z)=\langle g, 1\rangle+\sum_{j=1}^{\infty}\left\langle g, u_{j}\right\rangle u_{j}(z)+\frac{1}{4 \pi} \int_{-\infty}^{\infty}\left\langle g, E\left(\cdot, \frac{1}{2}+i t\right)\right\rangle E\left(z, \frac{1}{2}+i t\right) d t$
which converges uniformly on compact sets. The functions u_{j} here form an orthonormal basis of the so-called cuspidal subspace and possess very nice harmonic properties, along with the functions $E\left(\cdot, \frac{1}{2}+i t\right)$. Precisely, they are simultaneous eigenfunctions of various "averaging operators" on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$.

Laplacian and Hecke operators on $L^{2}\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}\right)$

- g : some u_{j} or $E\left(\cdot, \frac{1}{2}+i t\right)$ with $t \in \mathbb{R}$
- p : any prime number

$$
\begin{array}{rlll}
\Delta g & :=-y^{2}\left(\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}\right) \quad=:\left(\frac{1}{4}+t_{g}^{2}\right) g, & t_{g} \in \mathbb{R} \\
T_{p} g & :=\frac{1}{\sqrt{p}} \sum_{\substack{a d=p \\
0 \leqslant b<d}}^{p} g\left(\frac{a z+b}{d}\right)=:\left(\alpha_{g}(p)+\beta_{g}(p)\right) g, & \alpha_{g}(p) \beta_{g}(p)=1 \\
T_{-1} g & :=g(-\bar{z}) & =:(-1)^{\rho} g, & \rho \in\{0,1\} \\
\wedge(s, g) & :=\pi^{-s} \Gamma\left(\frac{s+\rho-i t_{g}}{2}\right) \Gamma\left(\frac{s+\rho+i t_{g}}{2}\right) L(s, g) & \\
& :=\pi^{-s} \Gamma\left(\frac{s+\rho-i t_{g}}{2}\right) \Gamma\left(\frac{s+\rho+i t_{g}}{2}\right) \prod_{p} \frac{1}{\left(1-\alpha_{g}(p) p^{-s}\right)\left(1-\beta_{g}(p) p^{-s}\right)} \\
& =(-1)^{\rho} \wedge(1-s, g)
\end{array}
$$

Weyl sums and central twisted L-values

- $\quad g$: some u_{j} or $E\left(\cdot, \frac{1}{2}+i t\right)$ with $t \in \mathbb{R}$
- \wedge_{d} : the set of special points or closed geodesics on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$ representing the $h(d)$ classes of forms $\langle a, b, c\rangle$ of discriminant d

$$
g(x+i y)=g_{\text {const }}(y)+\sqrt{y} \sum_{n \neq 0} \rho_{g}(n) K_{i t_{g}}(2 \pi|n| y) e^{2 \pi i n x}
$$

The following identity (developed by Waldspurger, Kohnen-Zagier, Katok-Sarnak, Guo, Zhang, Popa from 1985 to 2006) is deep:

$$
\begin{array}{r}
\left|\sum_{z \in \wedge_{d}} g(z)\right|^{2} \\
=c_{d}|d|^{\frac{1}{2}}\left|\rho_{g}(1)\right|^{2} \wedge\left(\frac{1}{2}, g\right) \wedge\left(\frac{1}{2}, g \otimes\left(\frac{d}{l}\right)\right), d<0 \\
\left|\sum_{G \in \wedge_{d}} \int_{G} g(z) d s(z)\right|^{2}
\end{array}=c_{d}|d|^{\frac{1}{2}}\left|\rho_{g}(1)\right|^{2} \wedge\left(\frac{1}{2}, g\right) \wedge\left(\frac{1}{2}, g \otimes\left(\frac{d}{l}\right)\right), d>0 .
$$

Weyl sums and subconvexity bounds

- g : some u_{j} or $E\left(\cdot, \frac{1}{2}+i t\right)$ with $t \in \mathbb{R}$

By work of Burgess (1963) and Duke-Friedlander-Iwaniec (1994),

$$
\exists \delta>0, A>0: L\left(\frac{1}{2}, g \otimes\left(\frac{d}{.}\right)\right) \ll\left(1+\left|t_{g}\right|\right)^{A}|d|^{\frac{1}{2}-\delta},
$$

hence by crude bounds on $\rho_{g}(1)$ and $\Lambda(s, g)$ we conclude, for some $B>0$,

$$
\begin{aligned}
\left|\sum_{z \in \wedge_{d}} g(z)\right|^{2} & \ll\left(1+\left|t_{g}\right|\right)^{B}|d|^{1-\delta}, \\
\left|\sum_{G \in \wedge_{d}} \int_{G} g(z) d s(z)\right|^{2} & \ll\left(1+\left|t_{g}\right|\right)^{B}|d|^{1-\delta},
\end{aligned}
$$

Equidistribution on the modular surface

- g : any smooth and compactly supported function on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$

$$
\begin{array}{r}
g(z)=\langle g, 1\rangle+\sum_{j=1}^{\infty}\left\langle g, u_{j}\right\rangle u_{j}(z)+\frac{1}{4 \pi} \int_{-\infty}^{\infty}\left\langle g, E\left(\cdot, \frac{1}{2}+i t\right)\right\rangle E\left(z, \frac{1}{2}+i t\right) d t \\
\Delta u_{j}=\left(\frac{1}{4}+t_{j}^{2}\right) u_{j}, \quad \Delta E\left(\cdot, \frac{1}{2}+i t\right)=\left(\frac{1}{4}+t^{2}\right) E\left(\cdot, \frac{1}{2}+i t\right) \\
\left\langle g, u_{j}\right\rangle<_{g, C}\left(1+\left|t_{j}\right|\right)^{-C}, \quad\left\langle g, E\left(\cdot, \frac{1}{2}+i t\right)\right\rangle<_{g, C}(1+|t|)^{-C} \\
\frac{1}{h(d)} \sum_{z \in \Lambda_{d}} g(z) \rightarrow \int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}} g(z) d \mu(z), \quad d \rightarrow-\infty \\
\frac{1}{h(d) 2 \ln \left(\lambda_{d}\right)} \sum_{G \in \Lambda_{d}} \int_{G} g(z) d s(z) \rightarrow \int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}} g(z) d \mu(z), \quad d \rightarrow+\infty
\end{array}
$$

Refinement: equidistribution in shorter orbits

There is a natural bijection from Λ_{d} to the narrow ideal class group H_{d} of $\mathbb{Q}(\sqrt{d})$ which induces an action of H_{d} on Λ_{d}. Equidistribution in orbits of size $>_{\varepsilon}|d|^{1 / 2-\delta / 2+\varepsilon}$ follows from a bound

$$
\begin{array}{r}
\left|\sum_{\sigma \in H_{d}} \overline{\psi(\sigma)} g\left(z_{0}^{\sigma}\right)\right|^{2} \ll\left(1+\left|t_{g}\right|\right)^{B}|d|^{1-\delta}, \quad d<0 \\
\left|\sum_{\sigma \in H_{d}} \overline{\psi(\sigma)} \int_{G_{0}^{\sigma}} g(z) d s(z)\right|^{2} \ll\left(1+\left|t_{g}\right|\right)^{B}|d|^{1-\delta}, \quad d>0
\end{array}
$$

where g is any u_{j} or $E\left(\cdot, \frac{1}{2}+i t\right)$ with $t \in \mathbb{R}, z_{0}$ (resp. G_{0}) is any element of Λ_{d} when $d<0$ (resp. $d>0$), and $\psi: H_{d} \rightarrow \mathbb{C}^{\times}$is any ideal class character.

Refinement: equidistribution in shorter orbits (cont.)

By deep formulae of Zhang (2001) and Popa (2006) the left hand side equals

$$
\left|\sum_{\sigma \in H_{d}} \overline{\psi(\sigma)} \ldots\right|^{2}=c_{d}|d|^{\frac{1}{2}}\left|\rho_{g}(1)\right|^{2} \wedge\left(\frac{1}{2}, g \otimes f_{\psi}\right),
$$

where f_{ψ} is the Jacquet-Langlands lift of ψ, a modular form on \mathcal{H} of level $|d|$ and nebentypus $\left(\frac{d}{.}\right)$ with the same completed L-function as ψ. If $\psi: H_{d} \rightarrow \mathbb{C}^{\times}$is real-valued then there is a factorization $d=d_{1} d_{2}$ into fundamental discriminants such that

$$
\wedge\left(s, g \otimes f_{\psi}\right)=\wedge\left(s, g \otimes\left(\frac{d_{1}}{.}\right)\right) \wedge\left(s, g \otimes\left(\frac{d_{2}}{.}\right)\right)
$$

Otherwise f_{ψ} is a cusp form and the necessary subconvex bounds were proved by Duke-Friedlander-Iwaniec (2002) and HarcosMichel (2006). Equidistribution follows in orbits of size $\gg|d|^{0.4997}$.

