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Classical mechanics vs. quantum mechanics

Let M be a compact orientable Riemannian manifold, and consider
a particle moving freely on M with unit speed.

classical mechanics quantum mechanics
phase SM L2(M)
space sphere bundle Hilbert space
moving f:R— SM YR — L2(M)
particle smooth Il =1
bounded a:SM—R Op(a) : L2(M) — L2(M)
observable smooth self-adjoint & bounded
time Gt': SM — SM Us 0 L2(M) — L2(M)
evolution geodesic flow U, = e-itVA

Solutions of the Schrodinger equation

W(t) = Ue(0(0) = Y e ™VNg;, ()20 € A(N)

Jj=0




Quantum ergodicity on the modular surface (1 of 2)

Theorem (Shnirelman 1974, Colin de Verdiere 1985, Zelditch 1987)

Assume that the geodesic flow on SM is ergodic, and let {¢;} be
an orthonormal basis of L?(M) satisfying A¢; = \;¢;. Consider
dwj defined via (Op(a)¢;, ¢j) = [opy adwj for a € C°(SM).
Then dw; % dw along a subsequence of Aj's of density 1.

Proof (sketch).
Assume that a € C*°(SM) has space average fSM adw = 0.

Consider also a fixed time average a’ := + fo ao G'dt.
By Egorov, Cauchy—-Schwarz, Weyl, and Birkhoff, we have

1 2 1 2
§ dwj| = § T dw; 1
N(A1) : /sma Yl TN & /SMa )+ ol
j\

T2 _ aT2w 0 e
“)Z/ 7R duy +o(1) = [ Ja P dw+of) <,

Ai<A
for T = To(e) and XA > Xo(g). Hence the left hand side is o(1). [
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Quantum ergodicity on the modular surface (2 of 2)

Theorem (Hopf 1936)

Let M := SLy(Z)\'H? be the modular surface. The geodesic flow
on the sphere bundle SM = SL(Z)\SL2(R) is ergodic.

Proof (sketch).

Assume that f € L2(SLy(Z)\SLa(R)) is fixed by the right action
of positive diagonal matrices (° ,-1).

Then, for any fixed b € R and for a > 0 tending to infinity,

HC9) =l =11 8) o) F = () 1|

=) (1) C —l)f—fll

=[l(=y2) F=fl = liF = Fl = 0.

Hence any upper triangular matrix in SLy(R) fixes f. Similarly, any

lower triangular matrix in SLa(R) fixes f. In the end, the entire
group SLy(R) fixes f, and so f is constant almost everywhere. [
V.




The spherical sup-norm problem (1 of 2)

Theorem (lwaniec—Sarnak 1995)

Let ¢ be an L2-normalized Hecke—Maass form on SLy(Z)\H? of
Laplacian eigenvalue X\. Then for any € > 0 we have

[plloe <o AD/24F.

Using that H? =2 SL»(R)/SO2(R), the functions ¢ above can be
thought of as functions on SL2(Z)\SL2(R)/SO2(R).

They span the subspace of Lcusp(SLQ(Z)\SL2(R)) fixed by the
right action of SO2(R). That is, they span the spherical subspace
of the cuspidal subspace.

In adelic language, the functions ¢ fixed by T_; live on

PGL,(Q)\PGLy(Ag)/PO2(R HPGL2

So these “even” functions ¢ are spherical at every place of Q.



The spherical sup-norm problem (2 of 2)

Theorem (Blomer—Harcos—Mili¢evi¢ 2016)

Let ¢ be an L2-normalized Hecke—-Maass form on SLo(Z[i])\H3 of
Laplacian eigenvalue X\. Then for any € > 0 we have

190 < A¥/12F.

Using that H3 =2 SL(C)/SU,(C), the functions ¢ above can be
thought of as functions on SL(Z[i])\SL2(C)/SU>(C).

They span the subspace of L2, (SL2(Z[i])\SL2(C)) fixed by the
right action of SU(C). That is, they span the spherical subspace
of the cuspidal subspace.

In adelic language, the functions ¢ fixed by T; live on

PGL,(Q())\PGLa(Ag))/PU2(C) [ [ PGLa(Z[ily)-
P

So these “"even” functions ¢ are spherical at every place of Q(/).



Spectral decomposition of the automorphic L? space

r G K
SL2(Z) SL2(R) SO2(R)
SLo(Z[i]) SL2(C) SU,(C)

PGLy(Q) | PGLa(Ag) | POa(R)]], PGLa(Zp)
PGL2(Q(7)) | PGLa(Ag(y) | PU2(C) [T, PGLa(Z]i],)

We have the following Hilbert space decompositions into irreducible
G-spaces and their spherical (i.e. K-invariant) subspaces:

cusp r\G) = @ V7T7

cusp(r\G/K) - Lgusp r\G @ VK

For the adelic groups, the above decomposmons are unique
(multiplicity one), and the spaces V,; consist of Hecke eigenforms.
The nonzero subspaces Vf are the one-dimensional spaces C¢,
where ¢ is a spherical Hecke—Maass form as before.



The unitary dual of G = SLy(R)

The unitary dual G was determined by Bargman (1947), perhaps
inspired by the work of Wigner (1939). The nontrivial irreducible
unitary representations of G are infinite dimensional, and the ones
relevant here (the tempered ones) come in 4 families:

@ spherical /non-spherical principal series w,-jt[ for t € R>o;

@ holomorphic/antiholomorphic discrete series 7rki for k € Z>;.
These representations can be defined explicitly, e.g. by letting
G act on L2(R) in natural but different ways. We can clearly
distinguish between the above 4 types by looking at how they
decompose into irreducible K-spaces (we parametrize K by Z):

vi= @ Vit Vi= @ Vv
CEZ

(€7 S
/=0 mod 2 /=1 mod 2
JF —_ +’£ I 79‘6
Vi= @ Vi Vi= @D Vi
0>k I<—k
/=k mod 2 /=k mod 2

The summands here are one-dimensional (i.e. isomorphic to C).



The non-spherical sup-norm problem for SLy(Z)\SLy(R)

Inspired by the theory of newforms in the level aspect, the natural
non-spherical sup-norm problem would concern a minimal weight
vector in 7r;r (or equivalently a maximal weight vector in 7, ),
which is again unique up to scaling. However, such a vector has
weight k Laplacian eigenvalue g (1 — g) which grows with k.

So the weight aspect is not separated from the eigenvalue aspect
in this variant of the problem.

To go genuinely beyond the spherical sup-norm problem, we are led
to work with SLa(C) rather than SLa(R).

If 77 occurs in L2, (T\G), then the absolute value of its minimal
weight vector is invariant under K, and as a function on H? it
agrees with F(x + iy) := y*/2|f(x + iy)|, where f is a holomorphic
cusp form of weight k and level 1 on H2. If f is a Hecke eigenform
and ||F||, =1, then ||F||, < k***¢ by a result of Xia (2007).
For co-compact I' < SLy(R), a similar result was proved by
Khayutin—Steiner (2020), improving on Das-Sengupta (2015).



The unitary dual of G = SL,(C)

The unitary dual G was determined by Gelfand—Naimark (1947).

The nontrivial irreducible unitary representations of G are infinite
dimensional, and the ones relevant for the moment (the tempered
ones) come in a single family:

@ principal series 7j; , for t € Ryp and p € %Z.

These representations can be defined explicitly, e.g. by letting
G act on L%(C) in a natural way.

It is instructive (and crucial for us) to look at how these
representations decompose into irreducible K-spaces (we
parametrize K by %220), and further into one-dimensional
subspaces under the action of the diagonal subgroup of K:

S L _ l,q
Viep = @ Viey = @ @ Vit.p:
|pl £2pl lgl<e
{=p mod 1 /=pmod1l g=¢ mod 1

Here dim \/,ép =2¢+1 and dim \/,-?Z =1.



New results

[:=SLy(Z[]]), G:=SLy(C), K :=SU(C).

V,

Theorem (Blomer—Harcos—Maga—Mili¢evi¢ 2021)

Let ¢ > 1 be an integer, | C R and Q C G be compact sets. Let
Vi C L2,,,(T\G) be a cuspidal representation such that m ~ iz p,
where t € | and |p| = (. As usual, we assume that V. consists of
Hecke eigenfunctions. Let us choose an orthonormal basis

{oq : |q| < €} of V¥, with ¢, € VE9. Then for any e > 0 we have

> 164(8)? <en 3T, geq.
lq|<t
For the individual summands we have
bq(g) Ko 120/%7F5, g€

Finally, for g = 0 (resp. for ¢ = £ under a technical assumption),
we can improve the exponent to 7/8 + ¢ (resp. to1/2+¢).




Bounding the sup-norm via an automorphic kernel (1 of 2)

Following Selberg (1956), consider a rapidly decaying continuous
function f € L1(G), and its action on L?(I'\G) given by

(R(F)¥)(e) :=/Gf( )v(gh) dh—/r\G(ng vh) (h) dh.
~er

Assume that R(f) is a positive operator, and 7(f) acts by a scalar
c(m,£) on V. Then R(f) preserves the orthogonal decomposition
Vi VAL, Moreover, R(f) composed with the projection to V*
has a simple kernel just like R(f):

(R(F).)(g) = /r \G< (0 Y bale) >w<h)

lgl<é



Bounding the sup-norm via an automorphic kernel (2 of 2)

By a simple approximation argument, on the diagonal g = h, the
kernel of R(f)% is upper bounded by the kernel of R(f):

™

c(m0) Y loq(@))> <) fle've), g€

lql<e ver
To make this work in practice, we consider all functions f € L?(G)
for which every 7 ,(f) acts by a scalar on the component V%

it,p’
and by zero on the other components \/,-Z’p. These functions form
a Hilbert subspace H(7;) C L?(G) defined by the conditions

o f(g) = f(kgk™1) for almost every g € G and k € K;

o f =%,*fxX,, where xy is 2¢ 4+ 1 times the character of 7.

For f € LY(G) N H(7¢) the scalar c(m, ) exists, and for m & 7z , it
equals (it, p)/(2¢ + 1), where

Flit.p) = tx(mie 1) = [ (&) ehple)

Sﬁfft,p(g) i= b1 (e, p (X ) it p(8) it o (X0)) -



Generalized spherical transform

The theory of Gelfand—Naimark (1947 & 1950) yields the Hilbert
space isomorphism H(7;) = L2(G(¢)) with the Plancherel identity

Lreras =5y S [T iRpR e+ )
¢ lpl<t
¢ mod 1

p=

In practice we define f(g) in terms of its generalized spherical
transform f(it, p) using the inversion formula

fle) = ¥ / Flit, p) ol p (g7 Y) (2 + p2) dt.

Ipl<e
p=¢ mod 1

We need to ensure that f(g) is continuous, rapidly decaying, and
of reasonable size. For this we need to understand the spherical
trace function cpfft’p(g) in some detail.



Spherical trace function

The spherical trace function has an integral representation over K
involving the diagonal matrix coefficients of 7. As a result, it
extends holomorphically to (v, p,g) € C x %Z x G, and it satisfies
a soft general bound that we skip for simplicity. In particular,

ol g) = (20 +1) / (k k) dk,
K

Ko <<i Z)) = 3 (|a]> + |c[?)

The spherical trace function also has remarkable symmetries:

where

orp(8) =0y ,(8) = ¢ (g7,
o o(8) =5, (g), v=p(mod1), |v||p|<L.

These properties become transparent by analytically continuing the
representations 7 , to (non-unitary Frechét) representation 7, p.



Paley—Wiener space and Schwartz space

Now we see that if f € L}(G) N H(7¢) decays rapidly, then its
transform f extends holomorphically to C x 1Z such that

F(v,p) = F(p,v), v=p(mod 1), |v,lp| <Ll ()

This means that v and p are not independent as we thought!

Theorem (Wang 1974)

For f € H(m) and R > 0, the following conditions are equivalent.
@ f is smooth, and f(kiapka) = 0 for |h| > R and ki, ks € K.
@ f extends holomorphically to C x %Z such that (x) holds true,

and we also have f(v, p) <¢ (14 |v|)~CeRI®vI,

.

Theorem (Blomer—Harcos—Maga—Mili¢evi¢ 2021)

For f € H(my), the following conditions are equivalent.
@ f is smooth, and S f(kianks) <ma e Al for ki, ko € K.
@ f extends holomorphically to C x 37 such that (x) holds true,
and we also have ?(1/, p) <g.c (L+|v|)~C€ for |Rv| < B




Choice of test function

We ended up using the function f € H(71;) whose transform equals

/f\( ) e(p2_£2+u2)/2’ = (C’ pE %Z, |p| < év
v,p)=
P 0, veC, peiz |p|>¢

This provides a positive operator R(f) on L?(\G) such that
c(mf)>1/ and  f(g) < (2e~'oF Il

However, this only yields the baseline bound

> lbqlg)? < £2.

lql<e

In order to improve on this, we need to amplify © by Hecke
operators. This idea was introduced by lwaniec—Sarnak (1995).



Amplificiation (1 of 2)

Using a standard amplifier, we can bound the sum of |¢4(g)[? by

_ X 1. _
ey bl ol sup It (g 25g)| + L2420,
Il veir
yEM2(Z[i])

n=dety#0
le~*5ell<es
where 4 abbreviates ~/+/det v for any choice of \/det~, and

0 x1 K L;

@ x, < 1 when n equals i 5 or /12/22 for two split Gaussian
primes 1, b of length about v/L and angle in (0, 7/4);
@ x, = 0 otherwise.

Theorem (Blomer—Harcos—Maga—Mili¢evi¢ 2021)

Let ¢ > 1 be an integer, and let h = (* ,“1) € G be upper

triangular. Then for any v € iR, k € K, ¢ > 0, we have
f8“h|6 £1/2+E||h||3

22 =127yl '

ot (k" hk) < min (4




Amplificiation (2 of 2)

We defined f in terms of the spherical trace function gof;p using
the inversion formula. Replacing cpfiw by

1 [27 . ) )
0, _ ¢ : - 2
©,9(h) = 27r/0 @, p(hdiag(e’?,e7'?)) e72¥2dp

in this definition has the effect of picking a single ¢g:

_ X, ‘ L -
ol <L ) ’!n\‘ sup [0, 7(g "5g)| + L2,
vYEM(Z[i]) veR
n=det v#0
llet7gll<ee

Theorem (Blomer—Harcos—Maga—Mili¢evi¢ 2021)

Let {,q € Z be such that { > max(1,|q|). Let v € iR and h € G.
Then for any € > 0 and A > 0, we have

_ h| -
59(h) <. €€ min (1 | ) +eh
¢y (h) <e ' Vi dist(h, K)? dist(h, D)




