Beyond the spherical sup-norm problem

Gergely Harcos

Alfréd Rényi Institute of Mathematics
http://www.renyi.hu/~gharcos/
29 June 2022
L-functions, Circle Method and Applications
ICTS, Bengaluru, India

Maass forms on the modular surface

Fredrik Strömberg \& www.Imfdb.org

Fredrik Strömberg

Fredrik Strömberg

Fredrik Strömberg

Classical mechanics vs. quantum mechanics

Let M be a compact orientable Riemannian manifold, and consider a particle moving freely on M with unit speed.

	classical mechanics	quantum mechanics		
phase space	SM sphere bundle	$L^{2}(M)$ Hilbert space		
moving particle	$\begin{aligned} & f: \mathbb{R} \rightarrow S M \\ & \quad \text { smooth } \end{aligned}$	$\begin{aligned} \psi & : \mathbb{R} \rightarrow L^{2}(M) \\ & \\|\psi\\|=1 \end{aligned}$		
bounded observable	$\begin{gathered} a: S M \rightarrow \mathbb{R} \\ \text { smooth } \end{gathered}$	$\mathrm{Op}(a): L^{2}(M) \rightarrow L^{2}(M)$ self-adjoint \& bounded		
time evolution	$\begin{aligned} & G^{t}: S M \rightarrow S M \\ & \text { geodesic flow } \end{aligned}$	$\begin{gathered} U_{t}: L^{2}(M) \rightarrow L^{2}(M) \\ U_{t}=e^{-i t \sqrt{\Delta}} \end{gathered}$		

Solutions of the Schrödinger equation

$$
\psi(t)=U_{t}(\psi(0))=\sum_{j=0}^{\infty} c_{j} e^{-i t \sqrt{\lambda_{j}}} \phi_{j}, \quad\left(c_{j}\right)_{j=0}^{\infty} \in \ell^{2}(\mathbb{N})
$$

Quantum ergodicity on the modular surface (1 of 2)

Theorem (Shnirelman 1974, Colin de Verdière 1985, Zelditch 1987)
Assume that the geodesic flow on SM is ergodic, and let $\left\{\phi_{j}\right\}$ be an orthonormal basis of $L^{2}(M)$ satisfying $\Delta \phi_{j}=\lambda_{j} \phi_{j}$. Consider $d \omega_{j}$ defined via $\left\langle\operatorname{Op}(a) \phi_{j}, \phi_{j}\right\rangle=\int_{S M}$ ad ω_{j} for $a \in C^{\infty}(S M)$. Then $d \omega_{j} \xrightarrow{*} d \omega$ along a subsequence of λ_{j} 's of density 1 .

Proof (sketch).

Assume that $a \in C^{\infty}(S M)$ has space average $\int_{S M}$ ad $\omega=0$.
Consider also a fixed time average $a^{T}:=\frac{1}{T} \int_{0}^{T} a \circ G^{t} d t$.
By Egorov, Cauchy-Schwarz, Weyl, and Birkhoff, we have

$$
\begin{aligned}
& \frac{1}{N(\lambda, 1)} \sum_{\lambda_{j} \leqslant \lambda}\left|\int_{S M} a d \omega_{j}\right|^{2}=\frac{1}{N(\lambda, 1)} \sum_{\lambda_{j} \leqslant \lambda}\left|\int_{S M} a^{T} d \omega_{j}\right|^{2}+o(1) \\
\leqslant & \frac{1}{N(\lambda, 1)} \sum_{\lambda_{j} \leqslant \lambda} \int_{S M}\left|a^{T}\right|^{2} d \omega_{j}+o(1)=\int_{S M}\left|a^{T}\right|^{2} d \omega+o(1)<\varepsilon
\end{aligned}
$$

for $T=T_{0}(\varepsilon)$ and $\lambda>\lambda_{0}(\varepsilon)$. Hence the left hand side is $o(1)$.

Quantum ergodicity on the modular surface (2 of 2)

Theorem (Hopf 1936)

Let $M:=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}^{2}$ be the modular surface. The geodesic flow on the sphere bundle $S M \cong \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R})$ is ergodic.

Proof (sketch).

Assume that $f \in L^{2}\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R})\right)$ is fixed by the right action of positive diagonal matrices $\left({ }^{a}{ }_{a}{ }^{-1}\right)$.
Then, for any fixed $b \in \mathbb{R}$ and for $a>0$ tending to infinity,

$$
\begin{aligned}
\left\|\left(\begin{array}{rl}
1 & b \\
1
\end{array}\right) f-f\right\| & =\left\|\left(\begin{array}{cc}
1 & b \\
1
\end{array}\right)\binom{a}{a^{-1}} f-\binom{a}{a^{-1}} f\right\| \\
& =\left\|\left(\begin{array}{cc}
a^{-1} & a
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)\binom{a}{a^{-1}} f-f\right\| \\
& =\left\|\left(\begin{array}{cc}
1 & a^{-1} b
\end{array}\right) f-f\right\| \rightarrow\|f-f\|=0 .
\end{aligned}
$$

Hence any upper triangular matrix in $\mathrm{SL}_{2}(\mathbb{R})$ fixes f. Similarly, any lower triangular matrix in $\mathrm{SL}_{2}(\mathbb{R})$ fixes f. In the end, the entire group $\mathrm{SL}_{2}(\mathbb{R})$ fixes f, and so f is constant almost everywhere.

The spherical sup-norm problem (1 of 2)

Theorem (Iwaniec-Sarnak 1995)

Let ϕ be an L^{2}-normalized Hecke-Maass form on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}^{2}$ of Laplacian eigenvalue λ. Then for any $\varepsilon>0$ we have

$$
\|\phi\|_{\infty} \ll \varepsilon \lambda^{5 / 24+\varepsilon} .
$$

Using that $\mathcal{H}^{2} \cong \mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}_{2}(\mathbb{R})$, the functions ϕ above can be thought of as functions on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}_{2}(\mathbb{R})$.

They span the subspace of $L_{\text {cusp }}^{2}\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R})\right)$ fixed by the right action of $\mathrm{SO}_{2}(\mathbb{R})$. That is, they span the spherical subspace of the cuspidal subspace.

In adelic language, the functions ϕ fixed by T_{-1} live on

$$
\mathrm{PGL}_{2}(\mathbb{Q}) \backslash \mathrm{PGL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathrm{PO}_{2}(\mathbb{R}) \prod_{p} \mathrm{PGL}_{2}\left(\mathbb{Z}_{p}\right)
$$

So these "even" functions ϕ are spherical at every place of \mathbb{Q}.

The spherical sup-norm problem (2 of 2)

Theorem (Blomer-Harcos-Milićević 2016)

Let ϕ be an L^{2}-normalized Hecke-Maass form on $\mathrm{SL}_{2}(\mathbb{Z}[i]) \backslash \mathcal{H}^{3}$ of Laplacian eigenvalue λ. Then for any $\varepsilon>0$ we have

$$
\|\phi\|_{\infty} \ll \varepsilon \lambda^{5 / 12+\varepsilon} .
$$

Using that $\mathcal{H}^{3} \cong \mathrm{SL}_{2}(\mathbb{C}) / \mathrm{SU}_{2}(\mathbb{C})$, the functions ϕ above can be thought of as functions on $\mathrm{SL}_{2}(\mathbb{Z}[i]) \backslash \mathrm{SL}_{2}(\mathbb{C}) / \mathrm{SU}_{2}(\mathbb{C})$.

They span the subspace of $L_{\text {cusp }}^{2}\left(\mathrm{SL}_{2}(\mathbb{Z}[i]) \backslash \mathrm{SL}_{2}(\mathbb{C})\right)$ fixed by the right action of $\mathrm{SU}_{2}(\mathbb{C})$. That is, they span the spherical subspace of the cuspidal subspace.

In adelic language, the functions ϕ fixed by T_{i} live on

$$
\operatorname{PGL}_{2}(\mathbb{Q}(i)) \backslash \mathrm{PGL}_{2}\left(\mathbb{A}_{\mathbb{Q}(i)}\right) / \mathrm{PU}_{2}(\mathbb{C}) \prod_{\mathfrak{p}} \mathrm{PGL}_{2}\left(\mathbb{Z}[i]_{\mathfrak{p}}\right) .
$$

So these "even" functions ϕ are spherical at every place of $\mathbb{Q}(i)$.

Spectral decomposition of the automorphic L^{2} space

Γ	G	K
$\mathrm{SL}_{2}(\mathbb{Z})$	$\mathrm{SL}_{2}(\mathbb{R})$	$\mathrm{SO}_{2}(\mathbb{R})$
$\mathrm{SL}_{2}(\mathbb{Z}[i])$	$\mathrm{SL}_{2}(\mathbb{C})$	$\mathrm{SU}_{2}(\mathbb{C})$
$\mathrm{PGL}_{2}(\mathbb{Q})$	$\mathrm{PGL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$	$\mathrm{PO}_{2}(\mathbb{R}) \prod_{p} \mathrm{PGL}_{2}\left(\mathbb{Z}_{p}\right)$
$\mathrm{PGL}_{2}(\mathbb{Q}(i))$	$\mathrm{PGL}_{2}\left(\mathbb{A}_{\mathbb{Q}}(i)\right)$	$\mathrm{PU}_{2}(\mathbb{C}) \prod_{p} \mathrm{PGL}_{2}\left(\mathbb{Z}[]_{\mathrm{p}}\right)$

We have the following Hilbert space decompositions into irreducible G-spaces and their spherical (i.e. K-invariant) subspaces:

$$
\begin{gathered}
L_{\text {cusp }}^{2}(\Gamma \backslash G)=\bigoplus_{\pi} V_{\pi}, \\
L_{\text {cusp }}^{2}(\Gamma \backslash G / K)=L_{\text {cusp }}^{2}(\Gamma \backslash G)^{K}=\bigoplus_{\pi} V_{\pi}^{K} .
\end{gathered}
$$

For the adelic groups, the above decompositions are unique (multiplicity one), and the spaces V_{π} consist of Hecke eigenforms. The nonzero subspaces V_{π}^{K} are the one-dimensional spaces $\mathbb{C} \phi$, where ϕ is a spherical Hecke-Maass form as before.

The unitary dual of $G=\mathrm{SL}_{2}(\mathbb{R})$

The unitary dual \widehat{G} was determined by Bargman (1947), perhaps inspired by the work of Wigner (1939). The nontrivial irreducible unitary representations of G are infinite dimensional, and the ones relevant here (the tempered ones) come in 4 families:

- spherical/non-spherical principal series $\pi_{i t}^{ \pm}$for $t \in \mathbb{R}_{\geqslant 0}$;
- holomorphic/antiholomorphic discrete series $\pi_{k}^{ \pm}$for $k \in \mathbb{Z}_{\geqslant 1}$. These representations can be defined explicitly, e.g. by letting G act on $L^{2}(\mathbb{R})$ in natural but different ways. We can clearly distinguish between the above 4 types by looking at how they decompose into irreducible K-spaces (we parametrize \widehat{K} by \mathbb{Z}):

$$
\begin{aligned}
V_{i t}^{+}=\bigoplus_{\substack{\ell \in \mathbb{Z} \\
\ell \equiv 0 \bmod 2}} V_{i t}^{+, \ell} & V_{i t}^{-}=\bigoplus_{\substack{\ell \in \mathbb{Z} \\
\ell \equiv 1 \bmod 2}} V_{i t}^{-, \ell} \\
V_{k}^{+}=\bigoplus_{\substack{\ell \geqslant k \\
\ell \equiv k \bmod 2}} V_{k}^{+, \ell} & V_{k}^{-}=\bigoplus_{\substack{\ell \leqslant-k \\
\ell \equiv k \bmod 2}} V_{k}^{-, \ell}
\end{aligned}
$$

The summands here are one-dimensional (i.e. isomorphic to \mathbb{C}).

Inspired by the theory of newforms in the level aspect, the natural non-spherical sup-norm problem would concern a minimal weight vector in π_{k}^{+}(or equivalently a maximal weight vector in π_{k}^{-}), which is again unique up to scaling. However, such a vector has weight k Laplacian eigenvalue $\frac{k}{2}\left(1-\frac{k}{2}\right)$, which grows with k. So the weight aspect is not separated from the eigenvalue aspect in this variant of the problem.

To go genuinely beyond the spherical sup-norm problem, we are led to work with $\mathrm{SL}_{2}(\mathbb{C})$ rather than $\mathrm{SL}_{2}(\mathbb{R})$.
If π_{k}^{+}occurs in $L_{\text {cusp }}^{2}(\Gamma \backslash G)$, then the absolute value of its minimal weight vector is invariant under K, and as a function on \mathcal{H}^{2} it agrees with $F(x+i y):=y^{k / 2}|f(x+i y)|$, where f is a holomorphic cusp form of weight k and level 1 on \mathcal{H}^{2}. If f is a Hecke eigenform and $\|F\|_{2}=1$, then $\|F\|_{\infty}<_{\varepsilon} k^{1 / 4+\varepsilon}$ by a result of Xia (2007). For co-compact $\Gamma \leqslant \mathrm{SL}_{2}(\mathbb{R})$, a similar result was proved by Khayutin-Steiner (2020), improving on Das-Sengupta (2015).

The unitary dual of $G=\mathrm{SL}_{2}(\mathbb{C})$

The unitary dual \widehat{G} was determined by Gelfand-Naimark (1947). The nontrivial irreducible unitary representations of G are infinite dimensional, and the ones relevant for the moment (the tempered ones) come in a single family:

- principal series $\pi_{i t, p}$ for $t \in \mathbb{R}_{\geqslant 0}$ and $p \in \frac{1}{2} \mathbb{Z}$.

These representations can be defined explicitly, e.g. by letting G act on $L^{2}(\mathbb{C})$ in a natural way.

It is instructive (and crucial for us) to look at how these representations decompose into irreducible K-spaces (we parametrize \widehat{K} by $\frac{1}{2} \mathbb{Z}_{\geqslant 0}$), and further into one-dimensional subspaces under the action of the diagonal subgroup of K :

$$
V_{i t, p}=\bigoplus_{\substack{\ell \geqslant|p| \\ \ell \equiv p \bmod 1}} V_{i t, p}^{\ell}=\bigoplus_{\substack{\ell \geqslant|p| \\ \ell \equiv p \bmod 1}} \bigoplus_{\substack{|q| \leqslant \ell \\ q \equiv \ell \bmod 1}} V_{i t, p}^{\ell, q}
$$

Here $\operatorname{dim} V_{i t, p}^{\ell}=2 \ell+1$ and $\operatorname{dim} V_{i t, p}^{\ell, q}=1$.

New results

Notation

$$
\Gamma:=\mathrm{SL}_{2}(\mathbb{Z}[i]), \quad G:=\mathrm{SL}_{2}(\mathbb{C}), \quad K:=\mathrm{SU}_{2}(\mathbb{C})
$$

Theorem (Blomer-Harcos-Maga-Milićević 2021)

Let $\ell \geqslant 1$ be an integer, $I \subset \mathbb{R}$ and $\Omega \subset G$ be compact sets. Let $V_{\pi} \subset L_{\text {cusp }}^{2}(\Gamma \backslash G)$ be a cuspidal representation such that $\pi \simeq \pi_{i t, p}$, where $t \in I$ and $|p|=\ell$. As usual, we assume that V_{π} consists of Hecke eigenfunctions. Let us choose an orthonormal basis $\left\{\phi_{q}:|q| \leqslant \ell\right\}$ of V_{π}^{ℓ}, with $\phi_{q} \in V_{\pi}^{\ell, q}$. Then for any $\varepsilon>0$ we have

$$
\sum_{|q| \leqslant \ell}\left|\phi_{q}(g)\right|^{2}<_{\varepsilon, l, \Omega} \ell^{8 / 3+\varepsilon}, \quad g \in \Omega
$$

For the individual summands we have

$$
\phi_{q}(g)<_{\varepsilon, l, \Omega} \ell^{26 / 27+\varepsilon}, \quad g \in \Omega
$$

Finally, for $q=0$ (resp. for $q= \pm \ell$ under a technical assumption), we can improve the exponent to $7 / 8+\varepsilon$ (resp. to $1 / 2+\varepsilon$).

Following Selberg (1956), consider a rapidly decaying continuous function $f \in L^{1}(G)$, and its action on $L^{2}(\Gamma \backslash G)$ given by

$$
(R(f) \psi)(g):=\int_{G} f(h) \psi(g h) \mathrm{d} h=\int_{\Gamma \backslash G}\left(\sum_{\gamma \in \Gamma} f\left(g^{-1} \gamma h\right)\right) \psi(h) \mathrm{d} h .
$$

Assume that $R(f)$ is a positive operator, and $\pi(f)$ acts by a scalar $c(\pi, \ell)$ on V_{π}^{ℓ}. Then $R(f)$ preserves the orthogonal decomposition $V_{\pi}^{\ell} \oplus V_{\pi}^{\ell, \perp}$. Moreover, $R(f)$ composed with the projection to V_{π}^{ℓ} has a simple kernel just like $R(f)$:

$$
\left(R(f)_{\pi}^{\ell} \psi\right)(g)=\int_{\Gamma \backslash G}\left(c(\pi, \ell) \sum_{|q| \leqslant \ell} \phi_{q}(g) \overline{\phi_{q}(h)}\right) \psi(h) \mathrm{d} h .
$$

Bounding the sup-norm via an automorphic kernel (2 of 2)

By a simple approximation argument, on the diagonal $g=h$, the kernel of $R(f)_{\pi}^{\ell}$ is upper bounded by the kernel of $R(f)$:

$$
c(\pi, \ell) \sum_{|q| \leqslant \ell}\left|\phi_{q}(g)\right|^{2} \leqslant \sum_{\gamma \in \Gamma} f\left(g^{-1} \gamma g\right), \quad g \in G .
$$

To make this work in practice, we consider all functions $f \in L^{2}(G)$ for which every $\pi_{i t, p}(f)$ acts by a scalar on the component $V_{i t, p}^{\ell}$, and by zero on the other components $V_{i t, p}^{m}$. These functions form a Hilbert subspace $\mathcal{H}\left(\tau_{\ell}\right) \subset L^{2}(G)$ defined by the conditions

- $f(g)=f\left(\mathrm{kgk}^{-1}\right)$ for almost every $g \in G$ and $k \in K$;
- $f=\bar{\chi}_{\ell} \star f \star \bar{\chi}_{\ell}$, where χ_{ℓ} is $2 \ell+1$ times the character of τ_{ℓ}.

For $f \in L^{1}(G) \cap \mathcal{H}\left(\tau_{\ell}\right)$ the scalar $c(\pi, \ell)$ exists, and for $\pi \cong \pi_{i t, p}$ it equals $\hat{f}(i t, p) /(2 \ell+1)$, where

$$
\begin{aligned}
\widehat{f}(i t, p) & :=\operatorname{tr}\left(\pi_{i t, p}(f)\right)=\int_{G} f(g) \varphi_{i t, p}^{\ell}(g) \mathrm{d} g \\
\varphi_{i t, p}^{\ell}(g) & :=\operatorname{tr}\left(\pi_{i t, p}\left(\bar{\chi}_{\ell}\right) \pi_{i t, p}(g) \pi_{i t, p}\left(\bar{\chi}_{\ell}\right)\right)
\end{aligned}
$$

The theory of Gelfand-Naimark (1947 \& 1950) yields the Hilbert space isomorphism $\mathcal{H}\left(\tau_{\ell}\right) \cong L^{2}\left(\widehat{G}\left(\tau_{\ell}\right)\right)$ with the Plancherel identity

$$
\int_{G}|f(g)|^{2} \mathrm{~d} g=\frac{1}{2 \ell+1} \sum_{\substack{|p| \leqslant \ell \\ p \equiv \ell \bmod 1}} \int_{0}^{\infty}|\widehat{f}(i t, p)|^{2}\left(t^{2}+p^{2}\right) \mathrm{d} t
$$

In practice we define $f(g)$ in terms of its generalized spherical transform $\widehat{f}(i t, p)$ using the inversion formula

$$
f(g)=\frac{1}{2 \ell+1} \sum_{\substack{|p| \leqslant \ell \\ p \equiv \ell \bmod 1}} \int_{0}^{\infty} \widehat{f}(i t, p) \varphi_{i t, p}^{\ell}\left(g^{-1}\right)\left(t^{2}+p^{2}\right) \mathrm{d} t .
$$

We need to ensure that $f(g)$ is continuous, rapidly decaying, and of reasonable size. For this we need to understand the spherical trace function $\varphi_{i t, p}^{\ell}(g)$ in some detail.

Spherical trace function

The spherical trace function has an integral representation over K involving the diagonal matrix coefficients of τ_{ℓ}. As a result, it extends holomorphically to $(\nu, p, g) \in \mathbb{C} \times \frac{1}{2} \mathbb{Z} \times G$, and it satisfies a soft general bound that we skip for simplicity. In particular,

$$
\varphi_{\nu, \ell}^{\ell}(g)=(2 \ell+1) \int_{K} \kappa_{\ell}\left(k^{-1} g k\right) \mathrm{d} k
$$

where

$$
\kappa_{\ell}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right):=\bar{a}^{2 \ell}\left(|a|^{2}+|c|^{2}\right)^{\nu-\ell-1} .
$$

The spherical trace function also has remarkable symmetries:

$$
\begin{gathered}
\varphi_{\nu, p}^{\ell}(g)=\overline{\varphi_{-\bar{\nu}, p}^{\ell}(g)}=\varphi_{\nu, p}^{\ell}\left(g^{-1}\right), \\
\varphi_{\nu, p}^{\ell}(g)=\varphi_{p, \nu}^{\ell}(g), \quad \nu \equiv p(\bmod 1), \quad|\nu|,|p| \leqslant \ell .
\end{gathered}
$$

These properties become transparent by analytically continuing the representations $\pi_{i t, p}$ to (non-unitary Frechét) representation $\pi_{\nu, p}$.

Paley-Wiener space and Schwartz space

Now we see that if $f \in L^{1}(G) \cap \mathcal{H}\left(\tau_{\ell}\right)$ decays rapidly, then its transform \widehat{f} extends holomorphically to $\mathbb{C} \times \frac{1}{2} \mathbb{Z}$ such that

$$
\begin{equation*}
\widehat{f}(\nu, p)=\widehat{f}(p, \nu), \quad \nu \equiv p(\bmod 1), \quad|\nu|,|p| \leqslant \ell \tag{*}
\end{equation*}
$$

This means that ν and p are not independent as we thought!

Theorem (Wang 1974)

For $f \in \mathcal{H}\left(\tau_{\ell}\right)$ and $R>0$, the following conditions are equivalent.
(1) f is smooth, and $f\left(k_{1} a_{h} k_{2}\right)=0$ for $|h|>R$ and $k_{1}, k_{2} \in K$.
(2) \widehat{f} extends holomorphically to $\mathbb{C} \times \frac{1}{2} \mathbb{Z}$ such that ($*$) holds true, and we also have $\widehat{f}(\nu, p) \ll C(1+|\nu|)^{-C} e^{R|\Re \nu|}$.

Theorem (Blomer-Harcos-Maga-Milićević 2021)

For $f \in \mathcal{H}\left(\tau_{\ell}\right)$, the following conditions are equivalent.
(1) f is smooth, and $\frac{\partial^{m}}{\partial h^{m}} f\left(k_{1} a_{h} k_{2}\right)<_{m, A} e^{-A|h|}$ for $k_{1}, k_{2} \in K$.
(2) \widehat{f} extends holomorphically to $\mathbb{C} \times \frac{1}{2} \mathbb{Z}$ such that ($*$) holds true, and we also have $\widehat{f}(\nu, p)<_{B, C}(1+|\nu|)^{-C}$ for $|\Re \nu| \leqslant B$.

We ended up using the function $f \in \mathcal{H}\left(\tau_{\ell}\right)$ whose transform equals

$$
\widehat{f}(\nu, p)=\left\{\begin{array}{lll}
e^{\left(p^{2}-\ell^{2}+\nu^{2}\right) / 2}, & \nu \in \mathbb{C}, & p \in \frac{1}{2} \mathbb{Z}, \\
0, & \nu \in \mathbb{C}, & p \in \frac{1}{2} \mathbb{Z},
\end{array}|p|>\ell ;\right.
$$

This provides a positive operator $R(f)$ on $L^{2}(\Gamma \backslash G)$ such that

$$
c(\pi, \ell) \gg 1 / \ell \quad \text { and } \quad f(g) \ll \ell^{2} e^{-\log ^{2}\|g\|} .
$$

However, this only yields the baseline bound

$$
\sum_{|q| \leqslant \ell}\left|\phi_{q}(g)\right|^{2} \ll \ell^{3} .
$$

In order to improve on this, we need to amplify π by Hecke operators. This idea was introduced by Iwaniec-Sarnak (1995).

Amplificiation (1 of 2)

Using a standard amplifier, we can bound the sum of $\left|\phi_{q}(g)\right|^{2}$ by

$$
L^{-2+\varepsilon} \ell^{2} \sum_{\substack{\gamma \in \mathrm{M}_{2}(\mathbb{Z}[i]) \\ n=\operatorname{det} \\\|\neq 0\\\| g^{-1} \tilde{\gamma} g \| \leqslant \ell^{\varepsilon}}} \frac{\left|x_{n}\right|}{|n|} \sup _{\nu \in \mathbb{R}}\left|\varphi_{\nu, \ell}^{\ell}\left(g^{-1} \tilde{\gamma} g\right)\right|+L^{2+\varepsilon} \ell^{-48},
$$

where $\tilde{\gamma}$ abbreviates $\gamma / \sqrt{\operatorname{det} \gamma}$ for any choice of $\sqrt{\operatorname{det} \gamma}$, and

- $x_{1} \ll L$;
- $x_{n} \ll 1$ when n equals $I_{1} I_{2}$ or $I_{1}^{2} I_{2}^{2}$ for two split Gaussian primes I_{1}, l_{2} of length about \sqrt{L} and angle in ($0, \pi / 4$);
- $x_{n}=0$ otherwise.

Theorem (Blomer-Harcos-Maga-Milićević 2021)

Let $\ell \geqslant 1$ be an integer, and let $h=\binom{z}{z^{-1}} \in G$ be upper triangular. Then for any $\nu \in i \mathbb{R}, k \in K, \varepsilon>0$, we have

$$
\varphi_{\nu, \ell}^{\ell}\left(k^{-1} h k\right)<_{\varepsilon} \min \left(\ell, \frac{\ell^{\varepsilon}\|h\|^{6}}{\left|z^{2}-1\right|^{2}}, \frac{\ell^{1 / 2+\varepsilon}\|h\|^{3}}{|u|}\right)
$$

Amplificiation (2 of 2)

We defined f in terms of the spherical trace function $\varphi_{\nu, p}^{\ell}$ using the inversion formula. Replacing $\varphi_{\nu, p}^{\ell}$ by

$$
\varphi_{\nu, p}^{\ell, q}(h):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi_{\nu, p}^{\ell}\left(h \operatorname{diag}\left(e^{i \varrho}, e^{-i \varrho}\right)\right) e^{-2 q i \varrho} \mathrm{~d} \varrho
$$

in this definition has the effect of picking a single ϕ_{q} :

$$
\left|\phi_{q}(g)\right|^{2} \leqslant L^{-2+\varepsilon} \ell^{2} \sum_{\substack{\left.\gamma \in \mathrm{M}_{2}(\mathbb{Z}[i]) \\ n=0 \operatorname{lit}\right) \\\|\neq 0\\\| g^{-1} \tilde{\gamma} g \| \leqslant \ell^{\varepsilon}}} \frac{\left|x_{n}\right|}{|n|} \sup _{\substack{ \\\hline i \mathbb{R}}}\left|\varphi_{\nu, \ell}^{\ell, q}\left(g^{-1} \tilde{\gamma} g\right)\right|+L^{2+\varepsilon} \ell^{-48} .
$$

Theorem (Blomer-Harcos-Maga-Milićević 2021)

Let $\ell, q \in \mathbb{Z}$ be such that $\ell \geqslant \max (1,|q|)$. Let $\nu \in i \mathbb{R}$ and $h \in G$.
Then for any $\varepsilon>0$ and $\wedge>0$, we have

$$
\varphi_{\nu, \ell}^{\ell, q}(h)<_{\varepsilon, \Lambda} \ell^{\varepsilon} \min \left(1, \frac{\|h\|}{\sqrt{\ell} \operatorname{dist}(h, K)^{2} \operatorname{dist}(h, \mathcal{D})}\right)+\ell^{-\Lambda} .
$$

