Beyond the spherical sup-norm problem

Gergely Harcos

Alfréd Rényi Institute of Mathematics http://www.renyi.hu/~gharcos/

29 June 2022 L-functions, Circle Method and Applications ICTS, Bengaluru, India

Maass forms on the modular surface

Fredrik Strömberg & www.lmfdb.org

Maass forms with $\lambda pprox 10^3$ on the modular surface

Fredrik Strömberg

Maass forms with $\lambda \approx 10^4$ on the modular surface

Fredrik Strömberg

Maass forms with $\lambda pprox 10^5$ on the modular surface

Fredrik Strömberg

Classical mechanics vs. quantum mechanics

Let M be a compact orientable Riemannian manifold, and consider a particle moving freely on M with unit speed.

	classical mechanics	quantum mechanics
phase	SM	$L^2(M)$
space	sphere bundle	Hilbert space
moving	$f:\mathbb{R} o SM$	$\psi: \mathbb{R} \to L^2(M)$
particle	smooth	$\ \psi\ =1$
bounded	a : $\mathit{SM} ightarrow \mathbb{R}$	$Op(a): L^2(M) \to L^2(M)$
observable	smooth	self-adjoint & bounded
time	$G^t:SM o SM$	$U_t: L^2(M) \to L^2(M)$
evolution	geodesic flow	$U_t = e^{-it\sqrt{\Delta}}$

Solutions of the Schrödinger equation

$$\psi(t) = U_t(\psi(0)) = \sum_{j=0}^{\infty} c_j e^{-it\sqrt{\lambda_j}} \phi_j, \qquad (c_j)_{j=0}^{\infty} \in \ell^2(\mathbb{N})$$

Quantum ergodicity on the modular surface (1 of 2)

Theorem (Shnirelman 1974, Colin de Verdière 1985, Zelditch 1987)

Assume that the geodesic flow on SM is ergodic, and let $\{\phi_j\}$ be an orthonormal basis of $L^2(M)$ satisfying $\Delta \phi_j = \lambda_j \phi_j$. Consider $d\omega_j$ defined via $\langle Op(a)\phi_j, \phi_j \rangle = \int_{SM} a \, d\omega_j$ for $a \in C^{\infty}(SM)$. Then $d\omega_i \stackrel{*}{\to} d\omega$ along a subsequence of λ_i 's of density 1.

Proof (sketch).

Assume that $a \in C^{\infty}(SM)$ has space average $\int_{SM} a \, d\omega = 0$. Consider also a fixed time average $a^T := \frac{1}{T} \int_0^T a \circ G^t \, dt$. By Egorov, Cauchy–Schwarz, Weyl, and Birkhoff, we have

$$\frac{1}{N(\lambda,1)} \sum_{\lambda_j \leq \lambda} \left| \int_{SM} a \, d\omega_j \right|^2 = \frac{1}{N(\lambda,1)} \sum_{\lambda_j \leq \lambda} \left| \int_{SM} a^T \, d\omega_j \right|^2 + o(1)$$

$$\leq \frac{1}{N(\lambda,1)} \sum_{\lambda_j \leq \lambda} \int_{SM} |a^T|^2 \, d\omega_j + o(1) = \int_{SM} |a^T|^2 \, d\omega + o(1) < \varepsilon,$$

for $T = T_0(\varepsilon)$ and $\lambda > \lambda_0(\varepsilon)$. Hence the left hand side is o(1).

Quantum ergodicity on the modular surface (2 of 2)

Theorem (Hopf 1936)

Let $M := \operatorname{SL}_2(\mathbb{Z}) \setminus \mathcal{H}^2$ be the modular surface. The geodesic flow on the sphere bundle $SM \cong \operatorname{SL}_2(\mathbb{Z}) \setminus \operatorname{SL}_2(\mathbb{R})$ is ergodic.

Proof (sketch).

Assume that $f \in L^2(SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R}))$ is fixed by the right action of positive diagonal matrices $\binom{a}{a^{-1}}$.

Then, for any fixed $b \in \mathbb{R}$ and for a > 0 tending to infinity,

$$\| \begin{pmatrix} 1 & b \\ 1 \end{pmatrix} f - f \| = \| \begin{pmatrix} 1 & b \\ 1 \end{pmatrix} \begin{pmatrix} a \\ a^{-1} \end{pmatrix} f - \begin{pmatrix} a \\ a^{-1} \end{pmatrix} f \|$$

$$= \| \begin{pmatrix} a^{-1} \\ a \end{pmatrix} \begin{pmatrix} 1 & b \\ 1 \end{pmatrix} \begin{pmatrix} a \\ a^{-1} \end{pmatrix} f - f \|$$

$$= \| \begin{pmatrix} 1 & a^{-1}b \\ 1 \end{pmatrix} f - f \| \to \| f - f \| = 0.$$

Hence any upper triangular matrix in $SL_2(\mathbb{R})$ fixes f. Similarly, any lower triangular matrix in $SL_2(\mathbb{R})$ fixes f. In the end, the entire group $SL_2(\mathbb{R})$ fixes f, and so f is constant almost everywhere. \Box

The spherical sup-norm problem (1 of 2)

Theorem (Iwaniec–Sarnak 1995)

Let ϕ be an L²-normalized Hecke–Maass form on $\mathrm{SL}_2(\mathbb{Z})\setminus\mathcal{H}^2$ of Laplacian eigenvalue λ . Then for any $\varepsilon > 0$ we have $\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{5/24+\varepsilon}$.

Using that $\mathcal{H}^2 \cong \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})$, the functions ϕ above can be thought of as functions on $\mathrm{SL}_2(\mathbb{Z})\backslash\mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})$.

They span the subspace of $L^2_{cusp}(SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R}))$ fixed by the right action of $SO_2(\mathbb{R})$. That is, they span the spherical subspace of the cuspidal subspace.

In adelic language, the functions ϕ fixed by T_{-1} live on

$$\mathrm{PGL}_2(\mathbb{Q})\backslash \mathrm{PGL}_2(\mathbb{A}_{\mathbb{Q}})/\mathrm{PO}_2(\mathbb{R})\prod_{\rho}\mathrm{PGL}_2(\mathbb{Z}_{\rho}).$$

So these "even" functions ϕ are spherical at every place of \mathbb{Q} .

Theorem (Blomer–Harcos–Milićević 2016)

Let ϕ be an L²-normalized Hecke–Maass form on $\operatorname{SL}_2(\mathbb{Z}[i])\setminus \mathcal{H}^3$ of Laplacian eigenvalue λ . Then for any $\varepsilon > 0$ we have $\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{5/12+\varepsilon}$.

Using that $\mathcal{H}^3 \cong \mathrm{SL}_2(\mathbb{C})/\mathrm{SU}_2(\mathbb{C})$, the functions ϕ above can be thought of as functions on $\mathrm{SL}_2(\mathbb{Z}[i])\backslash \mathrm{SL}_2(\mathbb{C})/\mathrm{SU}_2(\mathbb{C})$.

They span the subspace of $L^2_{\text{cusp}}(\text{SL}_2(\mathbb{Z}[i]) \setminus \text{SL}_2(\mathbb{C}))$ fixed by the right action of $\text{SU}_2(\mathbb{C})$. That is, they span the spherical subspace of the cuspidal subspace.

In adelic language, the functions ϕ fixed by T_i live on

$$\mathrm{PGL}_2(\mathbb{Q}(i)) \setminus \mathrm{PGL}_2(\mathbb{A}_{\mathbb{Q}(i)}) / \mathrm{PU}_2(\mathbb{C}) \prod_{\mathfrak{p}} \mathrm{PGL}_2(\mathbb{Z}[i]_{\mathfrak{p}}).$$

So these "even" functions ϕ are spherical at every place of $\mathbb{Q}(i)$.

Spectral decomposition of the automorphic L^2 space

Г	G	K
$\operatorname{SL}_2(\mathbb{Z})$	$\mathrm{SL}_2(\mathbb{R})$	$\mathrm{SO}_2(\mathbb{R})$
$\operatorname{SL}_2(\mathbb{Z}[i])$	$\mathrm{SL}_2(\mathbb{C})$	$\mathrm{SU}_2(\mathbb{C})$
$\mathrm{PGL}_2(\mathbb{Q})$	$\mathrm{PGL}_2(\mathbb{A}_{\mathbb{Q}})$	$\operatorname{PO}_2(\mathbb{R})\prod_p\operatorname{PGL}_2(\mathbb{Z}_p)$
$\operatorname{PGL}_2(\mathbb{Q}(i))$	$\mathrm{PGL}_2(\mathbb{A}_{\mathbb{Q}(i)})$	$\operatorname{PU}_2(\mathbb{C})\prod_{\mathfrak{p}}\operatorname{PGL}_2(\mathbb{Z}[i]_{\mathfrak{p}})$

We have the following Hilbert space decompositions into irreducible *G*-spaces and their spherical (i.e. *K*-invariant) subspaces:

$$L^{2}_{\mathrm{cusp}}(\Gamma \backslash G) = \bigoplus_{\pi} V_{\pi},$$
$$L^{2}_{\mathrm{cusp}}(\Gamma \backslash G/K) = L^{2}_{\mathrm{cusp}}(\Gamma \backslash G)^{K} = \bigoplus_{\pi} V_{\pi}^{K}.$$

For the adelic groups, the above decompositions are unique (multiplicity one), and the spaces V_{π} consist of Hecke eigenforms. The nonzero subspaces V_{π}^{K} are the one-dimensional spaces $\mathbb{C}\phi$, where ϕ is a spherical Hecke–Maass form as before.

The unitary dual of $G = SL_2(\mathbb{R})$

The unitary dual \widehat{G} was determined by Bargman (1947), perhaps inspired by the work of Wigner (1939). The nontrivial irreducible unitary representations of G are infinite dimensional, and the ones relevant here (the tempered ones) come in 4 families:

• spherical/non-spherical principal series π_{it}^{\pm} for $t \in \mathbb{R}_{\geq 0}$;

• holomorphic/antiholomorphic discrete series π_k^{\pm} for $k \in \mathbb{Z}_{\geq 1}$. These representations can be defined explicitly, e.g. by letting G act on $L^2(\mathbb{R})$ in natural but different ways. We can clearly distinguish between the above 4 types by looking at how they decompose into irreducible *K*-spaces (we parametrize \hat{K} by \mathbb{Z}):

$$V_{it}^{+} = \bigoplus_{\substack{\ell \in \mathbb{Z} \\ \ell \equiv 0 \mod 2}} V_{it}^{+,\ell} \qquad V_{it}^{-} = \bigoplus_{\substack{\ell \in \mathbb{Z} \\ \ell \equiv 1 \mod 2}} V_{it}^{-,\ell}$$
$$V_{k}^{+} = \bigoplus_{\substack{\ell \geqslant k \\ \ell \equiv k \mod 2}} V_{k}^{+,\ell} \qquad V_{k}^{-} = \bigoplus_{\substack{\ell \leqslant -k \\ \ell \equiv k \mod 2}} V_{k}^{-,\ell}$$

The summands here are one-dimensional (i.e. isomorphic to \mathbb{C}).

The non-spherical sup-norm problem for $SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R})$

Inspired by the theory of newforms in the level aspect, the natural non-spherical sup-norm problem would concern a minimal weight vector in π_k^+ (or equivalently a maximal weight vector in π_k^-), which is again unique up to scaling. However, such a vector has weight k Laplacian eigenvalue $\frac{k}{2}(1-\frac{k}{2})$, which grows with k. So the weight aspect is not separated from the eigenvalue aspect in this variant of the problem.

To go genuinely beyond the spherical sup-norm problem, we are led to work with $SL_2(\mathbb{C})$ rather than $SL_2(\mathbb{R})$.

If π_k^+ occurs in $L^2_{\text{cusp}}(\Gamma \setminus G)$, then *the absolute value* of its minimal weight vector is invariant under K, and as a function on \mathcal{H}^2 it agrees with $F(x + iy) := y^{k/2} |f(x + iy)|$, where f is a holomorphic cusp form of weight k and level 1 on \mathcal{H}^2 . If f is a Hecke eigenform and $||F||_2 = 1$, then $||F||_{\infty} \ll_{\varepsilon} k^{1/4+\varepsilon}$ by a result of Xia (2007). For co-compact $\Gamma \leq \text{SL}_2(\mathbb{R})$, a similar result was proved by Khayutin–Steiner (2020), improving on Das–Sengupta (2015).

The unitary dual of $G = SL_2(\mathbb{C})$

The unitary dual \widehat{G} was determined by Gelfand–Naimark (1947). The nontrivial irreducible unitary representations of G are infinite dimensional, and the ones relevant for the moment (the tempered ones) come in a single family:

• principal series $\pi_{it,p}$ for $t \in \mathbb{R}_{\geq 0}$ and $p \in \frac{1}{2}\mathbb{Z}$.

These representations can be defined explicitly, e.g. by letting G act on $L^2(\mathbb{C})$ in a natural way.

It is instructive (and crucial for us) to look at how these representations decompose into irreducible *K*-spaces (we parametrize \hat{K} by $\frac{1}{2}\mathbb{Z}_{\geq 0}$), and further into one-dimensional subspaces under the action of the diagonal subgroup of *K*:

$$V_{it,p} = \bigoplus_{\substack{\ell \geqslant |p| \\ \ell \equiv p \bmod 1}} V_{it,p}^{\ell} = \bigoplus_{\substack{\ell \geqslant |p| \\ \ell \equiv p \bmod 1}} \bigoplus_{\substack{|q| \leqslant \ell \\ q \equiv \ell \bmod 1}} V_{it,p}^{\ell,q}.$$

Here dim $V_{it,p}^{\ell} = 2\ell + 1$ and dim $V_{it,p}^{\ell,q} = 1$.

Notation

$$\Gamma := \mathrm{SL}_2(\mathbb{Z}[i]), \qquad G := \mathrm{SL}_2(\mathbb{C}), \qquad \mathcal{K} := \mathrm{SU}_2(\mathbb{C})$$

Theorem (Blomer–Harcos–Maga–Milićević 2021)

Let $\ell \ge 1$ be an integer, $I \subset \mathbb{R}$ and $\Omega \subset G$ be compact sets. Let $V_{\pi} \subset L^2_{\mathrm{cusp}}(\Gamma \setminus G)$ be a cuspidal representation such that $\pi \simeq \pi_{it,p}$, where $t \in I$ and $|p| = \ell$. As usual, we assume that V_{π} consists of Hecke eigenfunctions. Let us choose an orthonormal basis $\{\phi_q : |q| \le \ell\}$ of V_{π}^{ℓ} , with $\phi_q \in V_{\pi}^{\ell,q}$. Then for any $\varepsilon > 0$ we have $\sum_{|q| \le \ell} |\phi_q(g)|^2 \ll_{\varepsilon,I,\Omega} \ell^{8/3+\varepsilon}, \quad g \in \Omega.$

For the individual summands we have

$$\phi_q(g) \ll_{\varepsilon,I,\Omega} \ell^{26/27+\varepsilon}, \qquad g \in \Omega.$$

Finally, for q = 0 (resp. for $q = \pm \ell$ under a technical assumption), we can improve the exponent to $7/8 + \varepsilon$ (resp. to $1/2 + \varepsilon$).

Following Selberg (1956), consider a rapidly decaying continuous function $f \in L^1(G)$, and its action on $L^2(\Gamma \setminus G)$ given by

$$(R(f)\psi)(g) := \int_{G} f(h)\psi(gh) \,\mathrm{d}h = \int_{\Gamma \setminus G} \left(\sum_{\gamma \in \Gamma} f(g^{-1}\gamma h) \right) \psi(h) \,\mathrm{d}h.$$

Assume that R(f) is a positive operator, and $\pi(f)$ acts by a scalar $c(\pi, \ell)$ on V_{π}^{ℓ} . Then R(f) preserves the orthogonal decomposition $V_{\pi}^{\ell} \oplus V_{\pi}^{\ell, \perp}$. Moreover, R(f) composed with the projection to V_{π}^{ℓ} has a simple kernel just like R(f):

$$(R(f)^{\ell}_{\pi}\psi)(g) = \int_{\Gamma \setminus G} \left(c(\pi,\ell) \sum_{|q| \leq \ell} \phi_q(g) \overline{\phi_q(h)} \right) \psi(h) \, \mathrm{d}h.$$

Bounding the sup-norm via an automorphic kernel (2 of 2)

By a simple approximation argument, on the diagonal g = h, the kernel of $R(f)^{\ell}_{\pi}$ is upper bounded by the kernel of R(f):

$$c(\pi,\ell)\sum_{|m{q}|\leqslant\ell}|\phi_{m{q}}(m{g})|^2\leqslant\sum_{\gamma\in \mathsf{\Gamma}}f(m{g}^{-1}\gammam{g}),\qquad m{g}\in \mathsf{G}.$$

To make this work in practice, we consider all functions $f \in L^2(G)$ for which every $\pi_{it,p}(f)$ acts by a scalar on the component $V_{it,p}^{\ell}$, and by zero on the other components $V_{it,p}^m$. These functions form a Hilbert subspace $\mathcal{H}(\tau_{\ell}) \subset L^2(G)$ defined by the conditions

•
$$f(g) = f(kgk^{-1})$$
 for almost every $g \in G$ and $k \in K$;

• $f = \overline{\chi}_{\ell} \star f \star \overline{\chi}_{\ell}$, where χ_{ℓ} is $2\ell + 1$ times the character of τ_{ℓ} .

For $f \in L^1(G) \cap \mathcal{H}(\tau_\ell)$ the scalar $c(\pi, \ell)$ exists, and for $\pi \cong \pi_{it,p}$ it equals $\hat{f}(it, p)/(2\ell + 1)$, where

$$\widehat{f}(it,p) := \operatorname{tr}(\pi_{it,p}(f)) = \int_{G} f(g) \,\varphi_{it,p}^{\ell}(g) \,\mathrm{d}g,$$
$$\varphi_{it,p}^{\ell}(g) := \operatorname{tr}(\pi_{it,p}(\overline{\chi}_{\ell})\pi_{it,p}(g)\pi_{it,p}(\overline{\chi}_{\ell})).$$

Generalized spherical transform

The theory of Gelfand–Naimark (1947 & 1950) yields the Hilbert space isomorphism $\mathcal{H}(\tau_{\ell}) \cong L^2(\widehat{G}(\tau_{\ell}))$ with the Plancherel identity

$$\int_{G} |f(g)|^2 \,\mathrm{d}g = \frac{1}{2\ell+1} \sum_{\substack{|p| \leqslant \ell \\ p \equiv \ell \text{ mod } 1}} \int_0^\infty |\widehat{f}(it,p)|^2 \,(t^2+p^2) \,\mathrm{d}t.$$

In practice we define f(g) in terms of its generalized spherical transform $\hat{f}(it, p)$ using the inversion formula

$$f(g) = \frac{1}{2\ell+1} \sum_{\substack{|p| \leq \ell \\ p \equiv \ell \mod 1}} \int_0^\infty \widehat{f}(it,p) \varphi_{it,p}^{\ell}(g^{-1}) (t^2 + p^2) dt.$$

We need to ensure that f(g) is continuous, rapidly decaying, and of reasonable size. For this we need to understand the spherical trace function $\varphi_{it,p}^{\ell}(g)$ in some detail.

Spherical trace function

The spherical trace function has an integral representation over K involving the diagonal matrix coefficients of τ_{ℓ} . As a result, it extends holomorphically to $(\nu, p, g) \in \mathbb{C} \times \frac{1}{2}\mathbb{Z} \times G$, and it satisfies a soft general bound that we skip for simplicity. In particular,

$$\varphi_{\nu,\ell}^{\ell}(g) = (2\ell+1) \int_{\mathcal{K}} \kappa_{\ell}(k^{-1}gk) \,\mathrm{d}k,$$

where

$$\kappa_\ell \left(egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}
ight) \coloneqq ar{\mathsf{a}}^{2\ell} ig(|\mathsf{a}|^2 + |\mathsf{c}|^2 ig)^{
u-\ell-1}.$$

The spherical trace function also has remarkable symmetries:

$$arphi_{
u,p}^{\ell}(g) = \overline{arphi_{-\overline{
u},p}^{\ell}(g)} = arphi_{
u,p}^{\ell}(g^{-1}),$$
 $arphi_{
u,p}^{\ell}(g) = arphi_{p,
u}^{\ell}(g), \quad
u \equiv p \pmod{1}, \quad |
u|, |p| \leq \ell.$

These properties become transparent by analytically continuing the representations $\pi_{it,p}$ to (non-unitary Frechét) representation $\pi_{\nu,p}$.

Paley–Wiener space and Schwartz space

Now we see that if $f \in L^1(G) \cap \mathcal{H}(\tau_\ell)$ decays rapidly, then its transform \widehat{f} extends holomorphically to $\mathbb{C} \times \frac{1}{2}\mathbb{Z}$ such that

$$\widehat{f}(
u, p) = \widehat{f}(p,
u), \quad
u \equiv p \pmod{1}, \quad |
u|, |p| \leqslant \ell. \quad (*)$$

This means that ν and p are not independent as we thought!

Theorem (Wang 1974)

For $f \in \mathcal{H}(\tau_{\ell})$ and R > 0, the following conditions are equivalent.

• f is smooth, and $f(k_1a_hk_2) = 0$ for |h| > R and $k_1, k_2 \in K$.

2 \widehat{f} extends holomorphically to $\mathbb{C} \times \frac{1}{2}\mathbb{Z}$ such that (*) holds true, and we also have $\widehat{f}(\nu, p) \ll_{C} (1 + |\nu|)^{-C} e^{R|\Re\nu|}$.

Theorem (Blomer–Harcos–Maga–Milićević 2021)

For $f \in \mathcal{H}(\tau_{\ell})$, the following conditions are equivalent.

• f is smooth, and $\frac{\partial^m}{\partial h^m} f(k_1 a_h k_2) \ll_{m,A} e^{-A|h|}$ for $k_1, k_2 \in K$.

② \widehat{f} extends holomorphically to $\mathbb{C} \times \frac{1}{2}\mathbb{Z}$ such that (*) holds true, and we also have $\widehat{f}(\nu, p) \ll_{B,C} (1 + |\nu|)^{-C}$ for $|\Re\nu| \leq B$.

Choice of test function

We ended up using the function $f \in \mathcal{H}(\tau_{\ell})$ whose transform equals

$$\widehat{f}(\nu,p) = \begin{cases} e^{(p^2 - \ell^2 + \nu^2)/2}, & \nu \in \mathbb{C}, \quad p \in \frac{1}{2}\mathbb{Z}, \quad |p| \leq \ell; \\ 0, & \nu \in \mathbb{C}, \quad p \in \frac{1}{2}\mathbb{Z}, \quad |p| > \ell. \end{cases}$$

This provides a positive operator R(f) on $L^2(\Gamma \setminus G)$ such that

$$c(\pi,\ell)\gg 1/\ell$$
 and $f(g)\ll \ell^2 e^{-\log^2\|g\|}$

However, this only yields the baseline bound

$$\sum_{q|\leqslant \ell} |\phi_q(g)|^2 \ll \ell^3.$$

In order to improve on this, we need to amplify π by Hecke operators. This idea was introduced by Iwaniec–Sarnak (1995).

Amplificiation (1 of 2)

Using a standard amplifier, we can bound the sum of $|\phi_q(g)|^2$ by

$$L^{-2+\varepsilon}\ell^{2}\sum_{\substack{\gamma\in M_{2}(\mathbb{Z}[i])\\n=\det \gamma\neq 0\\ ||g^{-1}\tilde{\gamma}g||\leqslant \ell^{\varepsilon}}}\frac{|x_{n}|}{|n|}\sup_{\nu\in I\mathbb{R}}|\varphi_{\nu,\ell}^{\ell}(g^{-1}\tilde{\gamma}g)|+L^{2+\varepsilon}\ell^{-48},$$

where $\tilde{\gamma}$ abbreviates $\gamma/\sqrt{\det \gamma}$ for any choice of $\sqrt{\det \gamma}$, and

- $x_1 \ll L;$
- $x_n \ll 1$ when *n* equals $l_1 l_2$ or $l_1^2 l_2^2$ for two split Gaussian primes l_1, l_2 of length about \sqrt{L} and angle in $(0, \pi/4)$;
- $x_n = 0$ otherwise.

Theorem (Blomer–Harcos–Maga–Milićević 2021)

Let $\ell \ge 1$ be an integer, and let $h = \begin{pmatrix} z & u \\ z^{-1} \end{pmatrix} \in G$ be upper triangular. Then for any $\nu \in i\mathbb{R}$, $k \in K$, $\varepsilon > 0$, we have

$$\varphi_{\nu,\ell}^{\ell}(k^{-1}hk) \ll_{\varepsilon} \min\left(\ell, \frac{\ell^{\varepsilon} \|h\|^6}{|z^2 - 1|^2}, \frac{\ell^{1/2 + \varepsilon} \|h\|^3}{|u|}\right)$$

Amplificiation (2 of 2)

We defined f in terms of the spherical trace function $\varphi_{\nu,p}^{\ell}$ using the inversion formula. Replacing $\varphi_{\nu,p}^{\ell}$ by

$$\varphi_{\nu,\rho}^{\ell,q}(h) := \frac{1}{2\pi} \int_0^{2\pi} \varphi_{\nu,\rho}^\ell \big(h \operatorname{diag}(e^{i\varrho}, e^{-i\varrho}) \big) \, e^{-2qi\varrho} \, \mathrm{d}\varrho$$

in this definition has the effect of picking a single ϕ_q :

$$|\phi_q(g)|^2 \leqslant L^{-2+\varepsilon}\ell^2 \sum_{\substack{\gamma \in \mathcal{M}_2(\mathbb{Z}[i])\\ n = \det \gamma \neq 0\\ \|g^{-1}\tilde{\gamma}g\| \leqslant \ell^{\varepsilon}}} \frac{|x_n|}{|n|} \sup_{\nu \in i\mathbb{R}} |\varphi_{\nu,\ell}^{\ell,q}(g^{-1}\tilde{\gamma}g)| + L^{2+\varepsilon}\ell^{-48}.$$

Theorem (Blomer–Harcos–Maga–Milićević 2021)

Let $\ell, q \in \mathbb{Z}$ be such that $\ell \ge \max(1, |q|)$. Let $\nu \in i\mathbb{R}$ and $h \in G$. Then for any $\varepsilon > 0$ and $\Lambda > 0$, we have

$$\varphi_{\nu,\ell}^{\ell,\boldsymbol{q}}(h) \ll_{\varepsilon,\Lambda} \ell^{\varepsilon} \min\left(1, \frac{\|h\|}{\sqrt{\ell}\operatorname{dist}(h,K)^2\operatorname{dist}(h,\mathcal{D})}\right) + \ell^{-\Lambda}.$$