ADDENDUM TO "HYBRID BOUNDS FOR TWISTED L-FUNCTIONS"

VALENTIN BLOMER AND GERGELY HARCOS

The aim of this addendum to our paper $[\mathrm{BH}]$ is two-fold. Firstly we show that the same method yields a more general version of Theorems 1 and 2 in $[\mathrm{BH}]$. Secondly we correct an error in the proof of Proposition 3 in [BH].

Starting with the former, we observe that Theorems 1 and 2 in $[\mathrm{BH}]$ hold almost verbatim without the assumption that f has trivial nebentypus.

Theorem 1'. Let f be a primitive (holomorphic or Maaß) cusp form of archimedean parameter μ as in $[\mathrm{BH},(1.2)]$, level N and arbitrary nebentypus, and let χ be a primitive character modulo q. Then for $\Re s=1 / 2$ and for any $\varepsilon>0$ the twisted L-function $L(f \otimes \chi, s)$ satisfies

$$
L(f \otimes \chi, s)<_{\mu, \varepsilon}(N|s| q)^{\varepsilon} N^{\frac{4}{5}}(|s| q)^{\frac{1}{2}-\frac{1}{40}},
$$

where the implied constant depends only on ε and μ.
Theorem 2'. Let f be a primitive (holomorphic or Maaß) cusp form of archimedean parameter μ, level N and arbitrary nebentypus, and let χ be a primitive character modulo q. Then for $\Re s=1 / 2$ and for any $\varepsilon>0$ the twisted L-function satisfies

$$
L(f \otimes \chi, s)<_{\varepsilon}\left(|s|^{\frac{1}{4}}|\mu|^{\frac{1}{2}} N^{\frac{1}{4}}(N, q)^{\frac{1}{8}} q^{\frac{3}{8}}+|s|^{\frac{1}{2}}|\mu| N^{\frac{1}{2}}(N, q)^{\frac{1}{4}} q^{\frac{1}{4}}\right)(|s||\mu| N q)^{\varepsilon}
$$

if f is holomorphic, and

$$
L(f \otimes \chi, s)<_{\varepsilon}\left(|s|^{\frac{1}{4}}(1+|\mu|)^{3} N^{\frac{1}{4}}(N, q)^{\frac{1}{8}} q^{\frac{3}{8}}+|s|^{\frac{1}{2}}(1+|\mu|)^{\frac{7}{2}} N^{\frac{1}{2}}(N, q)^{\frac{1}{4}} q^{\frac{1}{4}}\right)(|s|(1+|\mu|) N q)^{\varepsilon}
$$

otherwise.
Remark 1. The factor $(N, q)^{\frac{1}{8}}$ can be improved to $(N, q)^{\frac{1}{8}} /\left(\frac{N}{N_{\psi}}, q\right)^{\frac{1}{4}}$, where $N_{\psi} \mid N$ is the conductor of the nebentypus. In particular, this factor can be omitted as long as $N_{\psi}^{2} \mid N$, and this recovers [BH, Theorem 2] when $N_{\psi}=1$.
Remark 2. Together with the convexity bound, we obtain

$$
L(f \otimes \chi, s)<_{\varepsilon}(|s|(1+|\mu|) N q)^{\varepsilon}|s|^{\frac{1}{2}}(1+|\mu|)^{3} N^{\frac{1}{2}} q^{\frac{3}{8}} .
$$

Recently there has been a lot of interest in such bounds. In [FKM, Section 1.4], Theorem 2' (with an unspecified dependence on f and s and in the case of trivial nebentypus) has been derived from a general result on exponential sums in Hecke eigenvalues of modular forms. Hoffstein [Ho] has devised an alternative method based on double Dirichlet series to derive Theorem 2' for holomorphic f and with an unspecified dependence on f and s. Finally, Munshi $[\mathrm{Mu}]$ and $\mathrm{Wu}[\mathrm{Wu}]$ have improved the exponent in Theorem 1'.

We indicate the minor modifications to prove Theorem 2'. Then Theorem 1 ' follows as in $[\mathrm{BH}$, Section 8]; we only remark that there is a small typo in $[\mathrm{BH},(8.8)]: N_{0}$ should be N.

Let f be a newform of level N and nebentypus character ψ of conductor $N_{\psi} \mid N$. The case $N_{\psi}=1$ corresponds to the situation in [BH]. In [BH, (3.1)] we define

$$
\begin{equation*}
D:=3\left[N, N_{\psi} q\right] . \tag{1}
\end{equation*}
$$

[^0]We claim that in $[\mathrm{BH},(3.9)]$ we can prove the slightly stronger bound

$$
\begin{equation*}
\mathcal{Q}_{k}^{\text {holo }}(\ell) \ll_{\varepsilon}\left(\frac{1}{\sqrt{\ell}}+\left(\frac{\ell^{\frac{1}{4}}\left(\frac{N}{N_{\psi}}, q\right)^{\frac{1}{2}}(N, q)^{\frac{1}{2}}}{q^{\frac{1}{2}} N^{\frac{1}{2}}}+\frac{\ell^{\frac{1}{2}}\left(\frac{N}{N_{\psi}}, q\right)(N, q)^{1 / 2}}{q^{\frac{1}{2}} N}\right)\left(\frac{1+|\tau|}{k}+1\right)\right)((1+|\tau|) D \ell)^{\varepsilon} \tag{2}
\end{equation*}
$$

and similarly for $\mathcal{Q}(\ell)$. Then we can proceed with the analysis on $[\mathrm{BH}, \mathrm{pp} .65-66]$, with the only change that we use the new value of D in (1) and in the definition of L we replace $(N, q)^{\frac{3}{4}}$ by $\left(\frac{N}{N_{\psi}}, q\right)^{\frac{1}{2}}(N, q)^{\frac{1}{4}}$. Hence it remains to show (2).

For $(\ell, D)=1$ we define the twisted divisor sum

$$
\alpha_{1 / 2+i \tau}^{(\chi, \psi)}(\ell)=\sum_{\ell_{1} \ell_{2}=\ell} \psi\left(\ell_{1}\right) \chi\left(\ell_{1}\right) \overline{\chi\left(\ell_{2}\right)}\left(\frac{\ell_{2}}{\ell_{1}}\right)^{i \tau}
$$

and the twisted Kloosterman-type sum

$$
S_{\psi}\left(m_{1}, m_{2},-\ell ; c\right):=\sum_{\substack{a_{1}, a_{2}(c) \\ a_{1} a_{2}=\ell(c)}} \psi\left(a_{2}\right) e\left(\frac{m_{1} a_{1}+m_{2} a_{2}}{c}\right)
$$

If ψ is trivial, this coincides with the definition on [BH, p. 68]. Now [BH, (4.8)] holds in our more general setting if we replace $\alpha_{1 / 2+i \tau}^{(\chi)}(\ell)$ by $\alpha_{1 / 2+i \tau}^{(\chi, \psi)}(\ell)$ in the diagonal term and $S\left(m_{1}, m_{2},-\ell ; c\right)$ by $S_{\psi}\left(m_{1}, m_{2},-\ell ; c\right)$ in the off-diagonal term. This follows exactly as in [By, (5.3)], but for the convenience of the reader we provide the computation for the off-diagonal term. The off-diagonal term of the trace formula is

$$
\sum_{m_{1}, m_{2}} \frac{\left(m_{2} / m_{1}\right)^{i \tau}}{\left(m_{1} m_{2}\right)^{u}} \chi\left(m_{1}\right) \overline{\chi\left(m_{2}\right)} \sum_{D \mid c} \frac{1}{c} \sum_{d \mid\left(\ell, m_{1}\right)} \psi(d) S_{\psi}\left(m_{2}, m_{1} \ell / d^{2} ; c\right) \phi\left(\frac{4 \pi \sqrt{m_{1} m_{2} \ell / d^{2}}}{c}\right)
$$

We keep m_{1}, m_{2} fixed, and manipulate the two inner sums over c and d. Since $(\ell, D)=1$, we can write these two sums as

$$
\begin{aligned}
& \sum_{d \mid\left(\ell, m_{1}\right)} \sum_{d D \mid c} \frac{d}{c} \psi(d) S_{\psi}\left(m_{2}, m_{1} \ell / d^{2} ; c / d\right) \phi\left(\frac{4 \pi \sqrt{m_{1} m_{2} \ell / d^{2}}}{c / d}\right) \\
= & \sum_{D \mid c} \frac{1}{c} \phi\left(\frac{4 \pi \sqrt{m_{1} m_{2} \ell}}{c}\right) \sum_{d \mid\left(\ell, m_{1}, c\right)} d \psi(d) S_{\psi}\left(m_{2}, m_{1} \ell / d^{2} ; c / d\right) .
\end{aligned}
$$

We keep c fixed and consider the innermost sum over d. It equals

$$
\begin{aligned}
& \sum_{d \mid\left(\ell, m_{1}, c\right)} d \psi(d) \sum_{a(c / d)}^{*} \psi(a) e\left(\frac{a m_{2}+\bar{a} m_{1} \ell / d^{2}}{c / d}\right) \\
= & \sum_{d \mid\left(\ell, m_{1}, c\right)} d \sum_{a(c / d)}^{*} \sum_{\substack{b(c / d) \\
a b \equiv \ell / d(c / d)}} \psi(a d) e\left(\frac{a d m_{2}+b m_{1}}{c}\right) \\
= & \sum_{d \mid\left(\ell, m_{1}, c\right)} \sum_{\substack{a(c) \\
(a, c)=d a b \equiv \ell(c)}} \sum_{\substack{b(c) \\
a b}} \psi(a) e\left(\frac{a m_{2}+b m_{1}}{c}\right) .
\end{aligned}
$$

If $d \mid(\ell, c)$ and $(a, c)=d$, then the b-sum vanishes unless $d \mid m_{1}$. Hence we can drop the condition $d \mid m_{1}$ in the first sum, because it is automatic. Next, if $(a, c)=d$, then the congruence $a b \equiv$ $\ell(c)$ forces $d \mid \ell$, hence we can also drop the condition $d \mid \ell$, so that the previous display equals $S_{\psi}\left(m_{1}, m_{2},-\ell ; c\right)$ as desired.

In Step 4 on [BH, p. 69], we apply [By, Lemma 2] to our new situation. Here we see that the display after $[\mathrm{By},(1.3)]$ has an additional factor $\psi\left(a_{2}\right)$, and hence the second display after [By, (1.4)] has an additional factor

$$
\begin{equation*}
\psi\left(-m_{2}+c_{2} q / N\right) \tag{3}
\end{equation*}
$$

in the notation of $[\mathrm{By}]$. In the notation of $[\mathrm{BH}], q / N$ in (3) equals c / q, which in turn is divisible by D / q. Our definition of D in (1) ensures that (3) is independent of c_{2}, hence the only change in the display $[\mathrm{BH},(4.10)]$ is an extra factor $\psi\left(-m_{2}\right)$ inside the sum. Now (1) implies that the second line of $[\mathrm{BH},(4.12)]$ becomes

$$
(\ell q)^{\varepsilon}\left(\frac{\ell}{q}\right)^{\frac{1}{2}}\left(\frac{1+|\tau|}{a}+1\right)\left(\frac{\left(\frac{N}{N_{\psi}}, q\right)(N, q)^{1 / 2}}{N}+\frac{\left(\frac{N}{N_{\psi}}, q\right)^{1 / 2}(N, q)^{1 / 2}}{\ell^{\frac{1}{4}} N^{\frac{1}{2}}}\right)
$$

and similarly for $[\mathrm{BH},(4.13)]$. The rest remains unchanged. This proves (2).
Finally, we would like to correct an error in the proof of [BH, Proposition 3]. On [BH, p. 75] it is assumed that V is independent of t. This is a priori not the case. Instead of the approximate functional equation $[\mathrm{BH},(2.12)]$ one should use the uniform approximate functional equation of [BH1, Proposition 1]. This introduces an error of $D^{1 / 2} T^{-A}$ in (7.2) and the argument goes through as claimed.

We also remark that $[\mathrm{BH},(7.3)]$ holds only on the support of the test function ψ (which is all that is needed), and for the display after $[\mathrm{BH},(7.4)]$ one has to first write V as an inverse Mellin transform to separate variables.

References

[BH] V. Blomer, G. Harcos, Hybrid bounds for twisted L-functions, J. Reine Angew. Math. 621 (2008), 53-79.
[BH1] V. Blomer, G. Harcos, A hybrid asymptotic formula for the second moment of Rankin-Selberg L-functions, Proc. London Math. Soc. 105 (2012), 473-505.
[By] V. A. Bykovskiŭ, A trace formula for the scalar product of Hecke series and its applications, translated in J. Math. Sci (New York) 89 (1998), 915-932.
[FKM] E. Fouvry, E. Kowalski, P. Michel, Algebraic twists of modular forms and Hecke orbits, arXiv:1207.0617
[Ho] J. Hoffstein, Multiple Dirichlet series and shifted convolutions, arXiv:1110.4868
$[\mathrm{Mu}] \quad \mathrm{R}$. Munshi, The circle method and bounds for L-functions - I, arXiv:1202.4068
[Wu] H. Wu, Burgess-like subconvex bounds for $G L_{2} \times G L_{1}$, arXiv:1209.5950
Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen, Germany
E-mail address: blomer@uni-math.gwdg.de
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127, Budapest H-1364, Hungary

E-mail address: gharcos@renyi.hu

[^0]: Valentin Blomer was supported by the Volkswagen Foundation and ERC Starting Grant 258713. Gergely Harcos was supported by OTKA grants K 101855 and K 72731 and ERC Advanced Grant 228005.

