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We give an informal discussion of a recent breakthrough result concerning the gaps
between primes. We begin with the statement of the famous Twin Prime Conjecture.

Conjecture 1 (Euclid). The equation p− p′ = 2 has infinitely many solutions in prime
numbers p, p′.

Theorem 1 (Zhang). There is a constant H > 0 such that the inequality 26 p− p′6H has
infinitely many solutions in prime numbers p, p′. The value H = 70 000 000 is admissible.

Theorem 2 (PolyMath8). In Zhang’s theorem, the value H = 4680 is admissible.

A useful way to think about Conjecture 1 is as follows: for H = {0,2} there are infin-
itely many n ∈ N such that the translate n+H consists of primes. The first idea behind
Theorem 1 is the expectation that by enlarging H the translates n+H will contain more
primes, and the task of detecting at least two primes in them becomes more tractable. En-
larging, however, should be done with care. For example, it would not be wise to take
H = {0,2,4}, because it represents all the residues mod 3, prohibiting three simultaneous
primes in any translate n+H with n > 3. A better choice is H = {0,2,6} where there
is no such congruence obstruction. We call a finite set H ⊂ N admissible if it does not
represent all the residues modulo any prime.

Conjecture 2 (Hardy–Littlewood). Let H ⊂ N be admissible. There are infinitely many
n ∈ N such that the translate n+H consists of primes.

In fact there is a precise quantitative form of this conjecture, supported by heuristic
arguments and computer experiments, but we shall not need it here. This brings us to
the second idea behind Theorem 1: some translates n+H probably contain much more
primes than the others, so it seems worthwhile to introduce some nonnegative weights
ν(n)> 0 in such a way that ν(n) is more likely to be large when n+H is rich in primes.
In fact n+H contains at least two primes infinitely often once we can prove, for any
sufficiently large x,

∑
x6n62x

ν(n) ∑
h∈H

θ(n+h)> log(3x) ∑
x6n62x

ν(n).

Here θ(p) is defined as log p when p is prime, and 0 otherwise. If H consists of k = |H |
elements, then it suffices to show

(1) ∀h ∈H : ∑
x6n62x

ν(n)θ(n+h)>
1
k

log(3x) ∑
x6n62x

ν(n).

Theorem 1 (resp. Theorem 2) relies on the validity of (1) for k = 3 500 000 (resp. k = 632)
and some ν : N→ R>0.

The construction of the original weights ν(n) > 0 is due to Goldston–Pintz–Yıldırım
and is inspired by the work of Selberg. Further refinements were given by Soundarara-
jan, Motohashi–Pintz, Farkas–Pintz–Révész, and the PolyMath8 group. Ideally we would
choose ν(n) to be supported on n ∈ N such that n+H consists of primes. A convenient
analytic alternative would be

ν(n) := ∑
d|P(n)

µ(d) logk
(

P(n)
d

)
, P(n) := ∏

h∈H
(n+h),
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which is (nontrivially) nonnegative and supported on n such that P(n) has at most k distinct
prime factors. These weights lead to serious complications (e.g. large divisors d | P(n)
make the error term unmanageable), which is not surprising as the positivity of the left
hand side of (1) for these weights would already imply a variant of Conjecture 2. To
remedy this, we can introduce a smooth cutoff at d ≈ R (to make the error term more
manageable), increase k slightly to k+ l (to allow more non-primes in n+H ), and square
the resulting expression (to guarantee nonnegativity):

ν(n) :=

(
∑

d|P(n)
µ(d)

(
1− logd

logR

)k+l

+

)2

, P(n) := ∏
h∈H

(n+h).

More generally, we can consider, for any sufficiently smooth g : R→R supported on [0,1],

(2) ν(n) :=

(
∑

d|P(n)
µ(d)g

(
logd
logR

))2

, P(n) := ∏
h∈H

(n+h).

For technical reasons we restrict the weights ν(n) to integers n ∈ N such that P(n)
has no prime factor less than logloglogx. Then the two sides of (1) can be evaluated
asymptotically under an assumption that the primes are very evenly distributed with respect
to all the square-free moduli [d1,d2]6 R2 that come from the d-sum in ν(n) after squaring
out.

Assumption 1. For any A > 0 we have

(3) ∑
q6R2

q square-free

max
a∈(Z/qZ)×

∣∣∣∣∣∣∣ ∑
x6n62x

n≡a (mod q)

θ(n)− x
φ(q)

∣∣∣∣∣∣∣�A
x

logA x
.

If we specify R as a fixed power of x, the criterion (1) becomes

logR
logx

>
1

k(k−1)
·
∫ 1

0 g(k)(t)2 tk−1 dt∫ 1
0 g(k−1)(t)2 tk−2 dt

.

The minimal value of the second fraction on the right hand side equals j2
k−2/4, where

jk−2 ≈ k+ 1.856k1/3 is the first zero of the Bessel function Jk−2. Hence the above ideas
guarantee two simultaneous primes in infinitely many translates of an admissible k-set
H ⊂ N, assuming (3) holds for some R (a fixed power of x) satisfying

logR
logx

>
j2
k−2

4k(k−1)
.

The right hand side tends to 1/4 from above, so it seems that in (3) we need to take
R = x1/4+ϖ for some fixed ϖ > 0, in which case the condition on k boils down to

(4) 1+4ϖ >
j2
k−2

k(k−1)
.

Unfortunately, (3) is only known to hold for R slightly below x1/4, this being the famous
Bombieri–Vinogradov theorem. To overcome this difficulty, we can modify the definition
of ν(n) in such a way that the arising square-free moduli q = [d1,d2] have further special
properties. Then (3) is needed only for these more special moduli, and in fact only for
residues that come from a fixed integer a ∈ Z independent of q:
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Assumption 2. For any A > 0, and for any a ∈ Z coprime to all the special square-free
moduli q 6 x1/2+2ϖ , we have

(5) ∑
q6x1/2+2ϖ

q special square-free

∣∣∣∣∣∣∣ ∑
x6n62x

n≡a (mod q)

θ(n)− x
φ(q)

∣∣∣∣∣∣∣�A
x

logA x
.

In Zhang’s paper “special” means “xδ -smooth”, and his arguments allow to deduce (5)
from 828ϖ + 172δ < 1. In the PolyMath8 paper “special” means “quadruply xδ -densely
divisible”, and (5) is proved under 600ϖ + 180δ < 7. In both cases there is some price
to pay in the criterion (4), namely the left hand side needs to be lowered by an error term
depending on ϖ and δ . In the PolyMath8 paper the analysis of the error term is so efficient
that the resulting increment in k is only 2 (namely k = 632 is admissible, whereas (4) for
ϖ = 7/600 would only allow k > 630).
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