ERRATUM TO "UNIFORM APPROXIMATE FUNCTIONAL EQUATION FOR PRINCIPAL L-FUNCTIONS"

GERGELY HARCOS

In $[\mathrm{H}]$ the auxiliary function $F\left(s, \pi_{\infty}\right)$ was defined by (3.2) as the square-root of a certain quotient of exponential and gamma functions. While the quotient is holomorphic in the half plane $\Re s>-1 /\left(m^{2}+1\right)$, it was erroneously concluded and used in the paper that the same holds for $F\left(s, \pi_{\infty}\right)$. I am indebted to Florin Spinu for bringing this problem to my attention. In this note I correct the error, so that all the theorems and corollaries of the paper hold true in their original form.

The above-mentioned difficulty can be resolved by defining $F\left(s, \pi_{\infty}\right)$ slightly differently as

$$
F\left(s, \pi_{\infty}\right)=\frac{1}{2} C^{-s / 2} N^{s} \frac{L\left(\frac{1}{2}+s, \pi_{\infty}\right) L\left(\frac{1}{2}, \tilde{\pi}_{\infty}\right)}{L\left(\frac{1}{2}-s, \tilde{\pi}_{\infty}\right) L\left(\frac{1}{2}, \pi_{\infty}\right)}+\frac{1}{2} C^{s / 2} .
$$

Here C is the analytic conductor of π at the central point as given by (2.4) in $[\mathrm{H}]$. This new auxiliary function is holomorphic in $\Re s>-1 /\left(m^{2}+1\right)$, and has the same features as the original choice to make the argument work out properly: it is of moderate growth in vertical strips, satisfies the functional equation (3.3) and the symmetry (3.5) in $[\mathrm{H}]$, and $F\left(0, \pi_{\infty}\right)=1$.

In fact, only a few small adjustments need to be made in the rest of the paper. First, the new notation turns (3.14) into

$$
2 C^{-s / 2} F\left(s, \pi_{\infty}\right)-1 \ll_{\sigma}(1+|s|)^{m d \sigma}, \quad \Re s=\sigma .
$$

Correspondingly, (3.22) should read

$$
\pi^{m d s} \frac{L\left(\frac{1}{2}+s, \pi_{\infty}\right)}{L\left(\frac{1}{2}-s, \tilde{\pi}_{\infty}\right)}<_{\sigma, m, d}\left(\frac{\pi^{m d} C}{N}\right)^{\sigma}|s|^{m d \sigma}, \quad \Re s=\sigma .
$$

Second, all 4 occurrences of $C^{-i t / 2} F\left(i t, \pi_{\infty}\right)$ on page 931 should be replaced by $2 C^{-i t / 2} F\left(i t, \pi_{\infty}\right)-1$. Correspondingly, (4.8) becomes

$$
i \Re \sum_{j=1}^{m d}\left\{\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{\mu_{j}}{2}+\frac{i t}{2}\right)-\log \left(\frac{1}{4}+\frac{\mu_{j}}{2}\right)\right\}
$$

Finally, I take the opportunity to record a misprint in $[\mathrm{H}]$. Formula (2.3) should read

$$
L\left(s, \pi_{\infty}\right)=\prod_{j=1}^{m d} \pi^{-\left(s+\mu_{j}\right) / 2} \Gamma\left(\frac{s+\mu_{j}}{2}\right), \quad L\left(s, \tilde{\pi}_{\infty}\right)=\prod_{j=1}^{m d} \pi^{-\left(s+\bar{\mu}_{j}\right) / 2} \Gamma\left(\frac{s+\bar{\mu}_{j}}{2}\right) .
$$

References

[H] G. Harcos, Uniform approximate functional equation for principal L-functions, Int. Math. Res. Not. 2002, 923-932.

The University of Texas at Austin, Mathematics Department, 1 University Station C1200, Austin, TX 78712-0257, USA

E-mail address: gharcos@math.utexas.edu

