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Abstract

We study connections between the topology of generic character varieties of fundamental groups
of punctured Riemann surfaces, Macdonald polynomials, quiver representations, Hilbert schemes on
C× × C×, modular forms and multiplicities in tensor products of irreducible characters of finite general
linear groups.
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1 Introduction

1.1 Character varieties

Given a non-negative integer g and a k-tuple µ = (µ1, µ2, . . . , µk) of partitions of n, we define the generic
character varietyMµ of type µ as follows (see [10] for more details). Choose a generic tuple (C1, . . . ,Ck)
of semisimple conjugacy classes of GLn(C) such that for each i = 1, 2, . . . , k the multiplicities of the
eigenvalues of Ci are given by the parts of µi.

DefineZµ as

Zµ :=

(a1, b1, . . . , ag, bg, x1, . . . , xk) ∈ (GLn)2g × C1 × · · · × Ck

∣∣∣∣∣∣∣∣
g∏

j=1

(ai, bi)
k∏

i=1

xi = 1

 ,
where (a, b) = aba−1b−1. The group GLn acts diagonally by conjugation on Zµ and we defineMµ as the
affine GIT quotient

Mµ := Zµ//GLn := Spec
(
C[Zµ]GLn

)
.

We prove in [10] that, if non-empty,Mµ is nonsingular of pure dimension

dµ := n2(2g − 2 + k) −
∑
i, j

(µi
j)

2 + 2.

We also defined an a priori rational functionHµ(z,w) ∈ Q(z,w) in terms of Macdonald symmetric functions
(see § 2.1.4 for a precise definition) and we conjecture that the compactly supported mixed Hodge numbers
{hi, j;k

c (Mµ)}i, j,k satisfies hi, j;k
c (Mµ) = 0 unless i = j and

Hc(Mµ; q, t) ?
= (t
√

q)dµHµ

(
−t
√

q,
1
√

q

)
, (1.1.1)

where Hc(Mµ; q, t) :=
∑

i, j hi,i; j
c (Mµ)qit j is the compactly supported mixed Hodge polynomial.

In particular,Hµ(−z,w) should actually be a polynomial with non-negative integer coefficients of degree
dµ in each variable.

In [10] we prove that (1.1.1) is true under the specialization (q, t) 7→ (q,−1), namely,

E(Mµ; q) := Hc(Mµ; q,−1) = q
1
2 dµHµ

(
√

q,
1
√

q

)
. (1.1.2)

This formula is obtained by counting points of Mµ over finite fields (after choosing a spreading out
of Mµ over a finitely generated subalgebra of C). We compute #Mµ(Fq) using a formula involving the
values of the irreducible characters of GLn(Fq) (a formula that goes back to Frobenius [5]). The calculation
shows that Mµ is polynomial count; i.e., there exists a polynomial P ∈ C[T ] such that for any finite
field Fq of sufficiently large characteristic, #Mµ(Fq) = P(q). Then by a theorem of Katz [10, Appendix]
E(Mµ; q) = P(q).

Recall also that the E(Mµ; q) satisfies the following identity

E(Mµ; q) = qdµE(Mµ; q−1). (1.1.3)

In this paper we use Formula (1.1.2) to prove the following theorem.

Theorem 1.1.1. If non-empty, the character varietyMµ is connected.

The proof of the theorem reduces to proving that the coefficient of the lowest power of q inHµ(
√

q, 1/
√

q),
namely q−dµ/2, equals 1. This turns out to require a rather delicate argument, by far the most technical of
the paper, that uses the inequality of § 6 in a crucial way.
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1.2 Relations to Hilbert schemes on C× × C× and modular forms

Here we assume that g = k = 1. Put X = C× × C× and denote by X[n] the Hilbert scheme of n points in X.
Define H[n](z,w) ∈ Q(z,w) by ∑

n≥0

H[n](z,w)T n :=
∏
n≥1

(1 − zwT n)2

(1 − z2T n)(1 − w2T n)
, (1.2.1)

with the convention that H[0](z,w) := 1. It is known by work of Göttsche and Soergel [9] that the mixed
Hodge polynomial Hc

(
X[n]; q, t

)
is given by

Hc

(
X[n]; q, t

)
= (qt2)nH[n]

(
−t
√

q,
1
√

q

)
.

Conjecture 1.2.1. We have
H[n](z,w) = H(n−1,1)(z,w).

This together with the conjectural formula (1.1.1) implies that the Hilbert scheme X[n] and the character
varietyM(n−1,1) should have the same mixed Hodge polynomial. Although this is believed to be true (in the
analogous additive case this is well-known; see Theorem 4.1.1) there is no complete proof in the literature.
(The result follows from known facts modulo some missing arguments in the non-Abelian Hodge theory
for punctured Riemann surfaces; see the comment after Conjecture 4.2.1.) We prove the following results
which give evidence for Conjecture 1.2.1.

Theorem 1.2.2. We have

H[n](0,w) = H(n−1,1) (0,w) ,

H[n](w−1,w) = H(n−1,1)(w−1,w).

The second identity means that the E-polynomials of X[n] and M(n−1,1) agree. As a consequence of
Theorem 1.2.2 we have the following relation between character varieties and quasi-modular forms.

Corollary 1.2.3. We have

1 +
∑
n≥1

H(n−1,1)

(
eu/2, e−u/2

)
T n =

1
u

(
eu/2 − e−u/2

)
exp

2 ∑
k≥2

Gk(T )
uk

k!

 ,
where

Gk(T ) =
−Bk

2k
+

∑
n≥1

∑
d | n

dk−1T n

(with Bk is the k-th Bernoulli number) is the classical Eisenstein series for S L2(Z).
In particular, the coefficient of any power of u in the left hand side is in the ring of quasi-modular

forms, generated by the Gk, k ≥ 2, over Q.

Relation between Hilbert schemes and modular forms was first investigated by Göttsche [8].
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1.3 Quiver representations

For a partition µ = µ1 ≥ · · · ≥ µr > 0 of n we denote by l(µ) = r its length. Given a non-negative
integer g and a k-tuple µ = (µ1, µ2, . . . , µk) of partitions of n we define a comet-shaped quiver Γµ with k
legs of length s1, s2, . . . , sk (where si = l(µi) − 1) and with g loops at the central vertex (see picture in
§3.2). The multi-partition µ defines also a dimension vector vµ of Γµ whose coordinates on the i-th leg are
(n, n − µi

1, n − µ
i
1 − µ

i
2, . . . , n −

∑si
r=1 µ

i
r).

By a theorem of Kac [15] there exists a monic polynomial Aµ(T ) ∈ Z[T ] of degree dµ/2 such that the
number of absolutely indecomposable representations over Fq (up to isomorphism) of Γµ of dimension vµ
equals Aµ(q).

Let us state the main result of this section.

Theorem 1.3.1. We have
Aµ(q) = Hµ(0,

√
q). (1.3.1)

If we assume that vµ is indivisible, i.e., the gcd of all the parts of the partitions µ1, . . . , µk equals 1, then,
as mentioned in [10, Remark 1.4.3], the formula can be proved using the results of Crawley-Boevey and van
den Bergh [1] together with the results in [10]. More precisely the results of Crawley-Boevey and van den
Bergh say that Aµ(q) equals (up to some power of q) the compactly supported Poincaré polynomial of some
quiver variety Qµ (which exists only if vµ is indivisible). In [10] we show that the Poincaré polynomial of
Qµ agrees with Hµ(0,

√
q) up to the same power of q, hence the formula (1.3.1).

The proof of Formula (1.3.1) we give in this paper is completely combinatorial (and works also in the
divisible case). It is based on Hua’s formula [13] for the number of absolutely indecomposable representa-
tions of quivers over finite fields.

The conjectural formula (1.1.1) together with Formula (1.3.1) implies the following conjecture.

Conjecture 1.3.2. We have
Aµ(q) = q−

dµ
2 PHc(Mµ; q),

where PHc(Mµ; q) :=
∑

i hi,i;2i
c (Mµ)qi is the pure part of Hc(Mµ; q, t).

1.4 Characters of general linear groups over finite fields

Given two irreducible complex characters X1,X2 of GLn(Fq) it is a natural and difficult question to un-
derstand the decomposition of the tensor product X1 ⊗ X2 as a sum of irreducible characters. Note that
the character table of GLn(Fq) is known (Green, 1955) and so we can compute in theory the multiplicity
〈X1 ⊗ X2,X〉 of any irreducible character X of GLn(Fq) in X1 ⊗ X2 using the scalar product formula

〈X1 ⊗ X2,X〉 =
1

|GLn(Fq)|

∑
g∈GLn(Fq)

X1(g)X2(g)X(g). (1.4.1)

However it is very difficult to extract any interesting information from this formula. In his thesis Mattig
uses this formula to compute (with the help of a computer) the multiplicities 〈X1 ⊗ X2,X〉 when X1,X2,X

are unipotent characters and when n ≤ 8 (see [?]), and he noticed that 〈X1 ⊗ X2,X〉 is a polynomial in q
with positive integer coefficients.

In [10] we define the notion of generic tuple (X1, . . . ,Xk) of irreducible characters of GLn(Fq). We also
consider the character Λ : GLn(Fq) → C, x 7→ qg·dim CGLn (x) where CGLn (x) denotes the centralizer of x in
GLn(Fq) and where g is a non-negative integer. If g = 1, this is the character of the conjugation action of
GLn(Fq) on the group algebra C[gln(Fq)].

If µ = (µ1, µ2, . . . , µr) is a partition of n, an irreducible character of GLn(Fq) is said to be of type µ if it
is of the form RGLn

Lµ
(α) where Lµ = GLµ1 × GLµ2 × · · · × GLµr and where α is a regular linear character of

Lµ(Fq), see §3.4 for definitions. Characters of this form are called semisimple split.
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In [10] we prove that for a generic tuple (X1, . . . ,Xk) of semisimple split irreducible characters of
GLn(Fq) of type µ, we have

〈Λ ⊗ X1 ⊗ · · · ⊗ Xk, 1〉 = Hµ(0,
√

q). (1.4.2)

Note that in particular this implies that the left hand side only depends on the combinatorial type µ not on
the specific choice of characters.

Together with Formula (1.3.1) we deduce the following formula.

Theorem 1.4.1. We have
〈Λ ⊗ X1 ⊗ · · · ⊗ Xk, 1〉 = Aµ(q).

Using Kac’s results on quiver representations (see §3.1) the above theorem has the following conse-
quence.

Corollary 1.4.2. Let Φ(Γµ) denote the root system associated with Γµ and let (X1, . . . ,Xk) be a generic
k-tuple of irreducible characters of GLn(Fq) of type µ.

We have 〈Λ ⊗ X1 ⊗ · · · ⊗ Xk, 1〉 , 0 if and only if vµ ∈ Φ(Γµ). Moreover 〈Λ ⊗ X1 ⊗ · · · ⊗ Xk, 1〉 = 1 if
and only if vµ is a real root.

In [21] the second author discusses the statement of Corollary 1.4.2 for generic tuples of irreducible
characters of GLn(Fq) which are not necessarily split semisimple.

Acknowledgements. We would like to thank the Mathematisches Forschungsinstitut Oberwolfach for
a research in pairs stay where much of the work was done. During the preparation of this paper TH
was supported by a Royal Society University Research Fellowship at the University of Oxford. EL was
supported by ANR-09-JCJC-0102-01. FRV was supported by NSF grant DMS-0200605, an FRA from the
University of Texas at Austin, EPSRC grant EP/G027110/1, Visiting Fellowships at All Souls and Wadham
Colleges in Oxford and a Research Scholarship from the Clay Mathematical Institute.

2 Preliminaries

We denote by F an algebraic closure of a finite field Fq.

2.1 Symmetric functions

2.1.1 Partitions, Macdonald polynomials, Green polynomials

We denote by P the set of all partitions including the unique partition 0 of 0, by P∗ the set of non-zero
partitions and by Pn be the set of partitions of n. Partitions λ are denoted by λ = (λ1, λ2, . . .), where
λ1 ≥ λ2 ≥ · · · ≥ 0. We will also sometimes write a partition as (1m1 , 2m2 , . . . , nmn ) where mi denotes the
multiplicity of i in λ. The size of λ is |λ| :=

∑
i λi; the length l(λ) of λ is the maximum i with λi > 0.

For two partitions λ and µ, we define 〈λ, µ〉 as
∑

i λ
′
iµ
′
i where λ′ denotes the dual partition of λ. We put

n(λ) =
∑

i>0(i− 1)λi. Then 〈λ, λ〉 = 2n(λ) + |λ|. For two partitions λ = (1n1 , 2n2 , . . . ) and µ = (1m1 , 2m2 , . . . ),
we denote by λ ∪ µ the partition (1n1+m1 , 2n2+m2 , . . . ). For a non-negative integer d and a partition λ, we
denote by d · λ the partition (dλ1, dλ2, . . . ). The dominance ordering for partitions is defined as follows:
µ E λ if and only if µ1 + · · · + µ j ≤ λ1 + · · · + λ j for all j ≥ 1.

Let x = {x1, x2, . . . } be an infinite set of variables and Λ(x) the corresponding ring of symmetric func-
tions. As usual we will denote by sλ(x), hλ(x), pλ(x), and mλ(x), the Schur symmetric functions, the com-
plete symmetric functions, the power symmetric functions and the monomial symmetric functions.

We will deal with elements of the ring Λ(x)⊗ZQ(z,w) and their images under two specializations: their
pure part, z = 0,w =

√
q and their Euler specialization, z =

√
q,w = 1/

√
q.
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For a partition λ, let H̃λ(x; q, t) ∈ Λ(x)⊗ZQ(q, t) be the Macdonald symmetric function defined in Garsia
and Haiman [7, I.11]. We collect in this section some basic properties of these functions that we will need.

We have the duality
H̃λ(x; q, t) = H̃λ′ (x; t, q) (2.1.1)

see [7, Corollary 3.2]. We define the (transformed) Hall-Littlewood symmetric function as

H̃λ(x; q) := H̃λ(x; 0, q). (2.1.2)

In the notation just introduced then H̃λ(x; q) is the pure part of H̃λ(x; z2,w2).
Under the Euler specialization of H̃λ(x; z2,w2) we have [10, Lemma 2.3.4]

H̃λ(x; q, q−1) = q−n(λ)Hλ(q)sλ(xy), (2.1.3)

where yi = qi−1 and Hλ(q) :=
∏

s∈λ(1 − qh(s)) is the hook polynomial [23, I, 3, example 2].
Define the (q, t)-Kostka polynomials K̃νλ(q, t) by

H̃λ(x; q, t) =
∑
ν

K̃νλ(q, t)sν(x). (2.1.4)

These are (q, t) generalizations of the K̃νλ(q) Kostka-Foulkes polynomial in Macdonald [23, III, (7.11)],
which are obtained as qn(λ)Kνλ(q−1) = K̃νλ(q) = K̃νλ(0, q), i.e., by taking their pure part. In particular,

H̃λ(x; q) =
∑
ν

K̃νλ(q)sν(x). (2.1.5)

For a partition λ, we denote by χλ the corresponding irreducible character of S |λ| as in Macdonald [23].
Under this parameterization, the character χ(1n) is the sign character of S |λ| and χ(n1) is the trivial character.
Recall also that the decomposition into disjoint cycles provides a natural parameterization of the conjugacy
classes of S n by the partitions of n. We then denote by χλµ the value of χλ at the conjugacy class of S |λ|
corresponding to µ (we use the convention that χλµ = 0 if |λ| , |µ|). The Green polynomials {Qτ

λ(q)}λ,τ∈P are
defined as

Qτ
λ(q) =

∑
ν

χνλK̃ντ(q) (2.1.6)

if |λ| = |τ| and Qτ
λ = 0 otherwise.

2.1.2 Exp and Log

Let Λ(x1, . . . , xk) := Λ(x1) ⊗Z · · · ⊗Z Λ(xk) be the ring of functions separately symmetric in each set
x1, x2, . . . , xk of infinitely many variables. To ease the notation we will simply write Λk for the ring
Λ(x1, . . . , xk) ⊗Z Q(q, t).

The power series ring Λk[[T ]] is endowed with a natural λ-ring structure in which the Adams operations
are

ψd( f (x1, x2, . . . , xk, q, t; T )) := f (xd
1, x

d
2, . . . , x

d
k , q

d, td; T d).

Let Λk[[T ]]+ be the ideal TΛk[[T ]] of Λk[[T ]]. Define Ψ : Λk[[T ]]+ → Λk[[T ]]+ by

Ψ( f ) :=
∑
n≥1

ψn( f )
n

,

and Exp : Λk[[T ]]+ → 1 + Λk[[T ]]+ by

Exp( f ) = exp(Ψ( f )).
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The inverse Ψ−1 : Λk[[T ]]+ → Λk[[T ]]+ of Ψ is given by

Ψ−1( f ) =
∑
n≥1

µ(n)
ψn( f )

n

where µ is the ordinary Möbius function.
The inverse Log : 1 + Λk[[T ]]→ Λk[[T ]] of Exp is given by

Log( f ) = Ψ−1(log( f )).

Remark 2.1.1. Let f = 1 +
∑

n≥1 fnT n ∈ 1 + Λk[[T ]]+. If we write

log ( f ) =
∑
n≥1

1
n

UnT n, Log ( f ) =
∑
n≥1

VnT n,

then

Vr =
1
r

∑
d|r

µ(d)ψd(Ur/d).

We have the following propositions (details may be found for instance in Mozgovoy [24]).
For g ∈ Λk and n ≥ 1 we put

gn :=
1
n

∑
d|n

µ(d)ψ n
d
(g).

This is the Möbius inversion formula of ψn(g) =
∑

d|n d · gd.

Lemma 2.1.2. Let g ∈ Λk and f1, f2 ∈ 1 + Λk[[T ]]+ such that

log ( f1) =

∞∑
d=1

gd · log (ψd( f2)).

Then
Log ( f1) = g · Log ( f2).

Lemma 2.1.3. Assume that f ∈ Λk[[T ]]+. If it has coefficients in Λ(x1, . . . , xk)⊗ZZ[q, t] ⊂ Λk, then Exp( f )
has also coefficients in Λ(x1, . . . , xk) ⊗Z Z[q, t].

2.1.3 Types

We choose once and for all a total ordering ≥ on P (e.g. the lexicographic ordering) and we continue
to denote by ≥ the total ordering defined on the set of pairs Z∗

≥0 × P
∗ as follows: If λ , µ and λ ≥ µ,

then (d, λ) ≥ (d′, µ), and (d, λ) ≥ (d′, λ) if d ≥ d′. We denote by T the set of non-increasing sequences
ω = (d1, ω

1) ≥ (d2, ω
2) ≥ · · · ≥ (dr, ω

r), which we will call a type. To alleviate the notation we will then
omitt the symbol ≥ and write simply ω = (d1, ω

1)(d2, ω
2) · · · (dr, ω

r). The size of a type ω is |ω| :=
∑

i di|λ
i|.

We denote by Tn the set of types of size n. We denote by md,λ(ω) the multiplicity of (d, λ) in ω. As with
partitions it is sometimes convenient to consider a type as a collection of integers md,λ ≥ 0 indexed by pairs
(d, λ) ∈ Z>0× P

∗. For a type ω = (d1, ω
1)(d2, ω

2) · · · (dr, ω
r), we put n(ω) =

∑
i din(ωi) and [ω] := ∪idi ·ω

i.
When considering elements aµ ∈ Λk indexed by multi-partitions µ = (µ1, . . . , µk) ∈ Pk, we will always

assume that they are homogeneous of degree (|µ1|, . . . , |µk |) in the set of variables x1, . . . , xk.
Let {aµ}µ∈Pk be a family of symmetric functions in Λk indexed by multi-partitions.
We extend its definition to a multi-type ω = (d1,ω

1) · · · (ds,ω
s) with ωp ∈ (Pnp )k, by
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aω :=
∏

p

ψdp (Aωp ).

For a multi-type ω as above, we put

Co
ω :=


µ(d)

d (−1)r−1 (r−1)!∏
µ md,µ(ω)! if d1 = · · · = dr = d.

0 otherwise.

where md,µ(ω) with µ ∈ Pk denotes the multiplicity of (d,µ) in ω.
We have the following lemma (see [10, §2.3.3] for a proof).

Lemma 2.1.4. Let {Aµ}µ∈Pk be a family of symmetric functions in Λk with A0 = 1. Then

Log

∑
µ∈Pk

AµT |µ|
 =

∑
ω

Co
ωAωT |ω| (2.1.7)

where ω runs over multi-types (d1,ω
1) · · · (ds,ω

s).

The formal power series
∑

n≥0 anT n with an ∈ Λk that we will consider in what follows will all have
an homogeneous of degree n. Hence we will typically scale the variables of Λk by 1/T and eliminate T
altogether.

Given any family {aµ} of symmetric functions indexed by partitions µ ∈ P and a multi-partition µ ∈ Pk

as above define
aµ := aµ1 (x1) · · · aµk (xk).

Let 〈·, ·〉 be the Hall pairing on Λ(x), extend its definition to Λ(x1, . . . , xk) by setting

〈a1(x1) · · · ak(xk), b1(x1) · · · bk(xk)〉 = 〈a1, b1〉 · · · 〈ak, bk〉, (2.1.8)

for any a1, . . . , ak; b1, . . . , bk ∈ Λ(x) and to formal series by linearity.

2.1.4 Cauchy identity

Given a partition λ ∈ Pn we define the genus g hook functionHλ(z,w) by

Hλ(z,w) :=
∏
s∈λ

(z2a(s)+1 − w2l(s)+1)2g

(z2a(s)+2 − w2l(s))(z2a(s) − w2l(s)+2)
,

where the product is over all cells s of λ with a(s) and l(s) its arm and leg length, respectively. For details
on the hook function we refer the reader to [12].

Recall the specialization (cf. [10, §2.3.5])

Hλ(0,
√

q) =
qg〈λ,λ〉

aλ(q)
(2.1.9)

where aλ(q) is the cardinality of the centralizer of a unipotent element of GLn(Fq) with Jordan form of type
λ.

It is also not difficult to verify that the Euler specialization ofHλ is

Hλ(
√

q, 1/
√

q) =
(
q−

1
2 〈λ,λ〉Hλ(q)

)2g−2
. (2.1.10)

We have
Hλ(z,w) = Hλ′ (w, z) and Hλ(−z,−w) = Hλ(z,w). (2.1.11)
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Let

Ω(z,w) = Ω(x1, . . . , xk; z,w) :=
∑
λ∈P

Hλ(z,w)
k∏

i=1

H̃λ(xi; z2,w2).

By (2.1.1) and (2.1.11) we have

Ω(z,w) = Ω(w, z) and Ω(−z,−w) = Ω(z,w). (2.1.12)

For µ = (µ1, · · · , µk) ∈ Pk, we let

Hµ(z,w) := (z2 − 1)(1 − w2)
〈
Log Ω(z,w), hµ

〉
. (2.1.13)

By (2.1.12) we have the symmetries

Hµ(z,w) = Hµ(w, z) and Hµ(−z,−w) = Hµ(z,w). (2.1.14)

We may recover Ω(z,w) from the Hµ(z,w)’s by the formula:

Ω(z,w) = Exp

∑
µ∈Pk

Hµ(z,w)
(z2 − 1)(1 − w2)

mµ

 . (2.1.15)

From Formula (2.1.3) and Formula (2.1.10) we have:

Lemma 2.1.5. With the specialization yi = qi−1,

Ω

(
√

q,
1
√

q

)
=

∑
λ∈P

q(1−q)|λ|
(
q−n(λ)Hλ(q)

)2g+k−2
k∏

i=1

sλ(xiy).

Conjecture 2.1.6. The rational function Hµ(z,w) is a polynomial with integer coefficients. It has degree

dµ := n2(2g − 2 + k) −
∑
i, j

(µi
j)

2 + 2

in each variable and the coefficients of Hµ(−z,w) are non-negative.

The function Hµ(z,w) is computed in many cases in [10, §1.5].

2.2 Characters and Fourier transforms

2.2.1 Characters of finite general linear groups

For a finite group H let us denote by ModH the category of finite dimensional C[H] left modules. Let K be
an other finite group. By an H-module-K we mean a finite dimensional C-vector space M endowed with a
left action of H and with a right action of K which commute together. Such a module M defines a functor
RH

K : ModK → ModH by V 7→ M ⊗C[K] V . Let C(H) denotes the C-vector space of all functions H → C
which are constant on conjugacy classes. We continue to denote by RH

K the C-linear map C(K) → C(H)
induced by the functor RH

K (we first define it on irreducible characters and then extend it by linearity to the
whole C(K)). Then for any f ∈ C(K), we have

RH
K ( f )(g) = |K|−1

∑
k∈K

Trace
(
(g, k−1) |M

)
f (k). (2.2.1)

Let G = GLn(Fq) with Fq a finite field. Fix a partition λ = (λ1, . . . , λr) of n and let Fλ = Fλ(Fq) be the
variety of partial flags of Fq-vector spaces

{0} = Er ⊂ Er−1 ⊂ · · · ⊂ E1 ⊂ E0 = (Fq)n
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such that dim(Ei−1/Ei) = λi.
Let G acts on Fλ in the natural way. Fix an element

Xo =
(
{0} = Er ⊂ Er−1 ⊂ · · · ⊂ E1 ⊂ E0 = (Fq)n

)
∈ Fλ

and denote by Pλ the stabilizer of Xo in G and by Uλ the subgroup of elements g ∈ Pλ which induces the
identity on Ei/Ei+1 for all i = 0, 1, . . . , r − 1.

Put Lλ := GLλr (Fq)× · · · ×GLλ1 (Fq). Recall that Uλ is a normal subgroup of Pλ and that Pλ = Lλ nUλ.
Denote by C[G/Uλ] the C-vector space generated by the finite set G/Uλ = {gUλ | g ∈ G}. The group

Lλ (resp. G) acts on C[G/Uλ] as (gUλ) · l = glUλ (resp. as g · (hUλ) = ghUλ). These two actions make
C[G/Uλ] into a G-module-Lλ. The associated functor RG

Lλ
: ModLλ → ModG is the so-called Harish-

Chandra functor.
We have the following well-known lemma.

Lemma 2.2.1. We denote by 1 the identity character of Lλ. Then for all g ∈ G, we have

RG
Lλ (1)(g) = #{X ∈ Fλ | g · X = X}.

Proof. By Formula (2.2.1) we have

RG
Lλ (1)(g) = |Lλ|−1

∑
k∈Lλ

#{hUλ | ghUλ = hkUλ}

= |Lλ|−1
∑
k∈Lλ

#{hUλ | gh ∈ hkUλ}

= |Lλ|−1#{hUλ | gh ∈ hPλ}

= #{hPλ | ghPλ = hPλ}.

We deduce the lemma from last equality by noticing that the map G → Fλ, g 7→ g · Xo induces a bijection
G/Pλ → Fλ. �

We now recall the definition of the type of a conjugacy class C of G (cf. [10, 4.1]). The Frobenius
f : F→ F, x 7→ xq acts on the set of eigenvalues of C. Let us write the set of eigenvalues of C as a disjoint
union

{γ1, γ
q
1, . . . }

∐
{γ2, γ

q
2, . . . }

∐
· · ·

∐
{γr, γ

q
r , . . . }

of 〈 f 〉-orbits, and let mi be the multiplicity of γi. The unipotent part of an element of C defines a unique
partition ωi of mi. Re-ordering if necessary we may assume that (d1, ω

1) ≥ (d2, ω
2) ≥ · · · ≥ (dr, ω

r). We
then call ω = (d1, ω

1) · · · (dr, ω
r) ∈ Tn the type of C.

Put T := L(1,1,...,1). It is the subgroup of diagonal matrices of G. The decomposition of RLλ
T (1) as a sum

of irreducible characters reads
RLλ

T (1) =
∑

χ∈Irr(WLλ )

χ(1) · Uχ,

where WLλ := NLλ (T )/T is the Weyl group of Lλ. We call the irreducible characters {Uχ}χ the unipotent
characters of Lλ. The characterU1 is the trivial character of Lλ. Since WLλ ' S λ1 ×· · ·×S λr , the irreducible
characters of WLλ are χτ := χτ

1
· · · χτ

r
where τ runs over the set of types τ = {(1, τi)}i=1,...,r with τi a partition

of λi. We denote byUτ the unipotent character of Lλ corresponding to such a type τ.
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Theorem 2.2.2. LetUτ be a unipotent character of Lλ and let C be a conjugacy class of type ω. Then

RG
Lλ (Uτ)(C) =

〈
H̃ω(x, q), sτ(x)

〉
.

Proof. The proof is contained in [10] although the formula is not explicitely written there. For the conve-
nience of the reader we now explain how to extract the proof from [10]. For w ∈ Wλ, we denote by RG

Tw
(1)

the corresponding Deligne-Lusztig character of G. Its construction is outlined in [10, 2.6.4]. The character
Uτ of Lλ decomposes as,

Uτ = |Wλ|
−1

∑
w∈Wλ

χτw · R
Lλ
Tw

(1)

where χτw denotes the value of χτ at w. Applying the Harish-Chandra induction RG
Lλ

to both side and using
the transitivity of induction we find that

RG
Lλ (Uτ) = |Wλ|

−1
∑

w∈Wλ

χτw · R
G
Tw

(1).

We are now in position to use the calculation in [10]. Notice that the right handside of the above formula
is the right hand side of the first formula displayed in the proof of [10, Theorem 4.3.1] with (M, θTw , ϕ̃) =

(Lλ, 1, χτ) and so the same calculation to get [10, (4.3.2)] together with [10, (4.3.3)] gives in our case

RG
Lλ (Uτ)(C) =

∑
α

z−1
α χ

τ
α

∑
{β | [β]=[α]}

Qω
β (q)z[α]z−1

β

where the notation are those of [10, 4.3]. We now apply [10, Lemma 2.3.5] to get

RG
Lλ (Uτ)(C) =

〈
H̃ω(x; q), sτ(x)

〉
.

�

If α is the type (1, (λ1)) · · · (1, (λr)), then sα(x) = hλ(x). Hence we have:

Corollary 2.2.3. If C is a conjugacy class of G type ω, then

RG
Lλ (1)(C) =

〈
H̃ω(x, q), hλ(x)

〉
.

Corollary 2.2.4. Put F #
λ,ω(q) := #{X ∈ Fλ | g · X = X} where g ∈ G is an element in a conjugacy class of

type ω. Then

H̃ω(x, q) =
∑
λ

F #
λ,ω(q)mλ(x).

Proof. It follows from Lemma 2.2.1 and Corollary 2.2.3. �

We now recall how to construct from a partition λ = (λ1, . . . , λr) of n a certain family of irreducible
characters of G. Choose r distinct linear characters α1, . . . , αr of F×q . This defines for each i a linear
character α̃i : GLλi (Fq) → C×, g 7→ αi (det(g)), and hence a linear character α̃ : Lλ → C×, (gi) 7→
α̃r(gr) · · · α̃1(g1). This linear character has the following property: for an element g ∈ NG(Lλ), we have
α̃(g−1lg) = α̃(l) for all l ∈ Lλ if and only if g ∈ Lλ. A linear character of Lλ which satifies this property is
called a regular character of Lλ.

It is a well-known fact that RG
Lλ

(α̃) is an irreducible character of G. Note that the irreducible characters
of G are not all obtained in this way (see [22] for the complete description of the irreducible characters of
G in terms of Deligne-Luzstig induction).
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We now recall the definition of generic tuples of irreducible characters (cf. [10, Definition 4.2.2]).
Since in this paper we are only considering irreducible characters of the form RG

Lλ
(α̃), the definition given

in [10, Definition 4.2.2] simplifies.

Definition 2.2.5. Consider irreducible characters RG
Lλ1

(α̃1), . . . ,RG
Lλk

(α̃k) of G as above for a multi-partition
λ = (λ1, . . . , λk) ∈ (Pn)k. Let T be the subgroup of G of diagonal matrices. Note that T ⊂ Lλ for all
partition λ, and so T contains the center Zλ of any Lλ. Consider the linear character α = (α̃1|T ) · · · (α̃k |T ) of

T . Then we say that the tuple
(
RG

Lλ1
(α̃1), . . . ,RG

Lλk
(α̃k)

)
is generic if the restriction α|Zλ of α to any subtori

Zλ, with λ ∈ Pn − {(n)}, is non-trivial and if α|Z(n) is trivial (the center Z(n) ' F
×
q consists of scalar matrices

a.In).

We can show as for conjugacy classes [10, Lemma 2.1.2] that if the characteristic p of Fq and q are
sufficiently large, generic tuples of irreducible characters of a given type λ always exist.

Put g := gln(Fq). For X ∈ g, put

Λ1(X) := #{Y ∈ g | [X,Y] = 0}.

The restriction Λ1 : G → C of Λ1 to G ⊂ g is the character of the representation G → GL (C[g])
induced by the conjugation action of G on g. Fix a non-negative integer g and put Λ := (Λ1)⊗g.

For a multi-partition µ = (µ1, . . . , µk) ∈ (Pn)k and a generic tuple
(
RG

Lµ1
(α̃1), . . . ,RG

Lµk
(α̃k)

)
of irreducible

characters we put
Rµ := RG

Lµ1
(α̃1) ⊗ · · · ⊗ RG

Lµk
(α̃k).

For two class functions f , g ∈ C(G), we define

〈 f , g〉 := |G|−1
∑
h∈G

f (h)g(h).

We have the following theorem [10, Theorem 1.4.1].

Theorem 2.2.6. We have 〈
Λ ⊗ Rµ, 1

〉
= Hµ

(
0,
√

q
)

where Hµ(z,w) is the function defined in §2.1.4.

Corollary 2.2.7. The multiplicity
〈
Λ ⊗ Rµ, 1

〉
depends only on µ and not on the choice of linear characters

(α̃1, . . . , α̃k).

2.2.2 Fourier transforms

Let Fun(g) be the C-vector space of all functions g → C and by C(g) the subspace of functions g → C
which are contant on G-orbits of g for the conjugation action of G on g.

Let Ψ : Fq → C
× be a non-trivial additive character and consider the trace pairing Tr : g × g → C×.

Define the Fourier transform F g : Fun(g)→ Fun(g) by the formula

F g( f )(x) =
∑
y∈g

Ψ (Tr (xy)) f (y)

for all f ∈ Fun(g) and x ∈ g.
The Fourier transform satisfies the following easy property.

Proposition 2.2.8. For any f ∈ Fun(g) we have:

|g| · f (0) =
∑
x∈g

F g( f )(x).
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Let ∗ be the convolution product on Fun(g) defined by

( f ∗ g)(a) =
∑

x+y=a

f (x)g(y)

for any two functions f , g ∈ Fun(g).
Recall that

F g( f ∗ g) = F g( f ) · F g(g). (2.2.2)

For a partition λ of n, let pλ, lλ, uλ be the Lie sub-algebras of g corresponding respectively to the
subgroups Pλ, Lλ, Uλ defined in §2.2, namely lλ =

⊕
i glλi (Fq), pλ is the parabolic sub-algebra of g having

lλ as a Levi sub-algebra and containing the upper triangular matrices. We have pλ = lλ ⊕ uλ.
Define the two functions Rg

lλ
(1),Qg

lλ
∈ C(g) by

Rg
lλ

(1)(x) = |Pλ|
−1#{g ∈ G | g−1xg ∈ pλ},

Qg
lλ

(x) = |Pλ|
−1#{g ∈ G | g−1xg ∈ uλ}.

We define the type of a G-orbit of g similarly as in the group setting (see above Corollary 2.2.3). The
types of the G-orbits of g are then also parameterized by Tn.

Remark 2.2.9. From Lemma 2.2.1, we see that RG
Lλ

(1)(x) = |Pλ|
−1#{g ∈ G | g−1xg ∈ Pλ}, hence Rg

lλ
(1) is the

Lie algebra analogue of RG
Lλ

(1) and the two functions take the same values on elements of same type.

Proposition 2.2.10. We have
F g

(
Qg
lλ

)
= q

1
2 (n2−

∑
i λ

2
i )Rg
lλ

(1).

Proof. Consider the C-linear map Rg
lλ

: C(lλ)→ C(g) defined by

Rg
lλ

( f )(x) = |Pλ|
−1

∑
{g∈G | g−1 xg∈pλ}

f (π(g−1xg))

where π : pλ → lλ is the canonical projection. Then it is easy to see that Qg
lλ

= Rg
lλ

(10) where 10 ∈ C(lλ) is
the characteristic function of 0 ∈ lλ, i.e., 10(x) = 1 if x = 0 and 10(x) = 0 otherwise. The result follows
from the easy fact that F lλ (10) is the identity function 1 on lλ and the fact (see Lehrer [20]) that

F g ◦ Rg
lλ

= q
1
2 (n2−

∑
i λ

2
i )Rg
lλ
◦ F lλ .

�

Remark 2.2.11. For x ∈ g, denote by 1x ∈ Fun(g) the characteristic function of x that takes the value 1 at
x and the value 0 elsewhere. Note that F g(1x) is the linear character g → C, t 7→ Ψ(Tr (xt)) of the abelian
group (g,+). Hence if f : g → C is a function which takes integer values, then F g( f ) is a character (not
necessarily irreducible) of (g,+). Since the Green functions Qg

lλ
take integer values, by Proposition 2.2.10

the function q
1
2 (n2−

∑
i λ

2
i )Rg
lλ

(1) is a character of (g,+).

3 Absolutely indecomposable representations

3.1 Generalities on quiver representations

Let Γ be a finite quiver, I be the set of its vertices and let Ω be the set of its arrows. For γ ∈ Ω, we denote
by h(γ), t(γ) ∈ I the head and the tail of γ. A dimension vector of Γ is a collection of non-negative integers
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v = {vi}i∈I and a representation ϕ of Γ of dimension v over a field K is a collection of K-linear maps
ϕ = {ϕγ : Vt(γ) → Vh(γ)}γ∈Ω with dim Vi = vi. Let RepΓ,v(K) be the K-vector space of all representations of
Γ of dimension v over K. If ϕ ∈ RepΓ,v(K), ϕ′ ∈ RepΓ,v′ (K), then a morphism f : ϕ→ ϕ′ is a collection of
K-linear maps fi : Vi → V ′i , i ∈ I such that for all γ ∈ Ω, we have fh(γ) ◦ ϕγ = ϕ′γ ◦ ft(γ).

We define in the obvious way direct sums ϕ ⊕ ϕ′ ∈ RepK(Γ, v+v′) of representations. A representation
of Γ is said to be indecomposable over K if it is not isomorphic to a direct sum of two non-zero represen-
tations of Γ. If an indecomposable representation of Γ remains indecomposable over any finite extension
of K, we say that it is absolutely indecomposable. Denote by MΓ,v(K) be the set of isomorphism classes of
RepΓ,v(K) and by AΓ,v(K) the subset of absolutely indecomposable representations of RepΓ,v(K).

By a theorem of Kac there exists a polynomial AΓ,v(T ) ∈ Z[T ] such that for any finite field with q
elements AΓ,v(q) = #AΓ,v(Fq). We call AΓ,v the Kac polynomial of (Γ, v).

Let Φ(Γ) ⊂ ZI be the root system associated with the quiver Γ following Kac [15] and let Φ(Γ)+ ⊂ (Z≥0)I

be the subset of positive roots. Let C = (ci j)i, j be the Cartan matrix of Γ, namely

ci j =

2 − 2(the number of edges joining i to itself) if i = j

−(the number of edges joining i to j) otherwise.

Then we have the following well-known theorem (see Kac [15]).

Theorem 3.1.1. AΓ,v(q) , 0 if and only if v ∈ Φ(Γ)+; AΓ,v(q) = 1 if and only if v is a real root. The
polynomial AΓ,v, if non-zero, is monic of degree 1 − 1

2
tvCv.

We have the following conjecture due to Kac [15].

Conjecture 3.1.2. The polynomial AΓ,v(T ) has non-negative coefficients.

By Kac[15], there exists a polynomial MΓ,v(q) ∈ Q[T ] such that MΓ,v(q) := #MΓ,v(Fq) for any finite
field Fq. The following formula is a reformation of Hua’s formula [13].

Theorem 3.1.3. We have

Log

 ∑
v∈(Z≥0)I

MΓ,v(q)Xv

 =
∑

v∈(Z≥0)I−{0}

AΓ,v(q)Xv,

where Xv is the monomial
∏

i∈I Xvi
i for some independent commuting variables {Xi}i∈I . .

Since AΓ,v(q) ∈ Z[q], we see by Theorem 3.1.3 and Lemma 2.1.3, that MΓ,v(q) also has integer coeffi-
cients.

3.2 Comet-shaped quivers

Fix strictly positive integers g, k, s1, . . . , sk and consider the following (comet-shaped) quiver Γ with g loops
on the central vertex and with set of vertices I = {0} ∪ {[i, j] | i = 1, . . . , k ; j = 1, . . . , si}.

[1, 1] [1, 2] [1, s1]

[2, 1] [2, 2] [2, s2]

[k, 1] [k, 2] [k, sk]

0
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Let Ω0 denote the set of arrows γ ∈ Ω such that h(γ) , t(γ).

Lemma 3.2.1. Let K be any field. Let ϕ ∈ RepΓ,v(K) and assume that v0 > 0. If ϕ is indecomposable, then
the linear maps ϕγ, with γ ∈ Ω0, are all injective.

Proof. If γ is the arrow [i, j]→ [i, j − 1], with j = 1, . . . , si and with the convention that [i, 0] = 0, we use
the notation ϕi j : V[i, j] → V[i, j−1] rather than ϕγ : Vt(γ) → Vh(γ). Assume that ϕi j is not injective. We define
a graded vector subspace V′ =

⊕
i∈I V ′i of V =

⊕
i∈I Vi as follows.

If the vertex i is not one of the vertices [i, j], [i, j + 1], . . . , [i, si], we put V ′i := {0}. We put V ′[i, j] :=
Kerϕi j, V ′[i, j+1] := ϕ−1

i( j+1)(V
′
[i, j]), . . . ,V

′
[i,si]

:= ϕ−1
isi

(V ′i(si−1)). Let v′ be the dimension of the graded space
V′ =

⊕
i∈I V ′i which we consider as a dimension vector of Γ. Define ϕ′ ∈ RepΓ,v′ (K) as the restriction

of ϕ to V′. It is a non-zero subrepresentation of ϕ. It is now possible to define a graded vector subspace
V′′ =

⊕
i∈I V ′′i of V such that the restriction ϕ′′ of ϕ to V′′ satifies ϕ = ϕ′′ ⊕ ϕ′: we start by taking any

subspace V ′′[i, j] such that V[i, j] = V ′[i, j] ⊕ V ′′[i, j], then define V ′′[i, j+r] from V ′′[i, j] as V ′[i, j+r] was defined from V[i, j],
and finally put V ′′i := Vi if the vertex i is not one of the vertices [i, j], [i, j + 1], . . . , [i, si]. As v0 > 0, the
subrepresentation ϕ′′ is non-zero, and so ϕ is not indecomposable. �

We denote by Rep∗Γ,v(Fq) be the subspace of representation ϕ ∈ RepΓ,v(Fq) such that ϕγ is injective for
all γ ∈ Ω0, and by M∗

Γ,v(Fq) the set of isomorphism classes of Rep∗Γ,v(Fq). Put M∗
Γ,v(q) = #

{
M∗

Γ,v(Fq)
}
.

Following [2] we say that a dimension vector v of Γ is strict if for each i = 1, . . . , k we have n0 ≥ v[i,1] ≥

v[i,2] ≥ · · · ≥ v[i,si]. Let us denote by S the set of strict dimension vector of Γ.

Proposition 3.2.2.

Log

∑
v∈S

M∗Γ,v(q)Xv

 =
∑

v∈S−{0}

AΓ,v(q)Xv.

Proof. Let us denote by IΓ,v(q) the number of isomorphism classes of indecomposable representations in
RepΓ,v(Fq). By the Krull-Schmidt theorem, a representation of Γ decomposes as a direct sum of indecom-
posable representation in a unique way up to permutation of the summands. Notice that, for v ∈ S, each
summand of an element of Rep∗Γ,v(Fq) lives in some Rep∗Γ,w(Fq) for some w ∈ S. On the other hand, by
Lemma 3.2.1, Rep∗Γ,v(Fq) contains all the indecomposable representations in RepΓ,v(Fq). This implies the
following identity ∑

v∈S

M∗Γ,v(q)Xv =
∏

v∈S−{0}

(1 − Xv)−IΓ,v(q),

where Xv denotes the monomial
∏

i∈I Xvi
i for some fixed independent commuting variables {Xi}i∈I . Exactly

as Hua [13, Proof of Lemma 4.5] does we show from this formal identity that

Log

∑
v∈S

M∗Γ,v(q)Xv

 =
∑

v∈S−{0}

AΓ,v(q) Xv.

�

It follows from Proposition 3.2.2 that since AΓ,v(T ) ∈ Z[T ] the quantity M∗
Γ,v(q) is also the evaluation

of a polynomial with integer coefficients at T = q.
Given a non-increasing sequence u = (n0 ≥ n1 ≥ · · · ) of non-negative integers we let ∆u be the

sequence of successive differences n0 − n1, n1 − n2 . . .. We extend the notation of §2.2.1 and denote by F∆u

the set of partial flags of Fq-vector spaces

{0} ⊆ Er ⊆ · · · ⊆ E1 ⊆ E0 = (Fq)n0

such that dim(Ei) = ni.
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Assume that v ∈ S and let µ = (µ1, . . . , µk), where µi is the partition obtained from ∆vi by reordering,
where vi := (v0 ≥ v[i,1] ≥ · · · ≥ v[i,si]). Consider the set of orbits

Gµ(Fq) :=

Matn0 (Fq)g ×

k∏
i=1

Fµi (Fq)

/ GLv0 (Fq),

where GLv0 (Fq) acts by conjugation on the first g coordinates and in the obvious way on each Fµi (Fq).
Let ϕ ∈ Rep∗Γ,v(Fq) with underlying graded vector space V = V0 ⊕

⊕
i, j V[i, j]. We choose a basis of V0

and we identify V0 with (Fq)v0 . In the chosen basis, the g maps ϕγ, with γ ∈ Ω − Ω0, give an element in
Matv0 (Fq)g. For each i = 1, . . . , k, we obtain a partial flag by taking the images in (Fq)v0 of the V[i, j]’s via
the compositions of the ϕγ’s where γ runs over the arrows of the i-th leg of Γ. We thus have defined a map

Rep∗Γ,v(Fq) −→

Matv0 (Fq)g ×

k∏
i=1

F∆vi (Fq)

/ GLv0 (Fq). (3.2.1)

The target set is clearly in bijection with Gµ(Fq) as F∆vi (Fq) is in bijection with Fµi (Fq). On the other
hand two elements of Rep∗Γ,v(Fq) have the same image if and only if they are isomorphic. Indeed, if
v>i = (v0 > v>[i,1] > · · · > v>[i,ri]

) is the longest strictly decreasing subsequence of vi, then v> is a dimension
vector of the comet-shaped quiver Γ> obtained from (Γ, v) by gluing together the vertices on each leg on
which v has the same coordinate. Then the natural projection Rep∗Γ,v(Fq)→ Rep∗Γ>,v> (Fq) induces a bijection
M∗

Γ,v(Fq) ' M∗
Γ>,v> (Fq) on isomorphism classes whose target is clearly in bijection with the target of the

map (3.2.1). The map (3.2.1) induces thus a bijection M∗
Γ,v(Fq) ' Gµ(Fq).

For a multi-partition µ = (µ1, . . . , µk) define a new comet-shaped quiver Γµ consisting of g loops on a
central vertex and k legs of length l(µi)−1 and let vµ be the dimension vector as in §1.3 (for v and µ as above,
Γµ = Γ>). Applying the above construction to the pair (Γµ, vµ) we obtain a bijection M∗

Γµ,vµ (Fq) ' Gµ(Fq).
Put Gµ(q) := #Gµ(Fq) and let Aµ(q) be the Kac polynomial of the quiver Γµ for the dimension vector vµ.
such that dim(Ei) = ni.

Assume that v ∈ S and let µ = (µ1, . . . , µk), where µi is the partition obtained from ∆vi by reordering,
where vi := (v0 ≥ v[i,1] ≥ · · · ≥ v[i,si]). Consider the set of orbits

Gµ(Fq) :=

Matn0 (Fq)g ×

k∏
i=1

Fµi (Fq)

/ GLv0 (Fq),

where GLv0 (Fq) acts by conjugation on the first g coordinates and in the obvious way on each Fµi (Fq).
Let ϕ ∈ Rep∗Γ,v(Fq) with underlying graded vector space V = V0 ⊕

⊕
i, j V[i, j]. We choose a basis of V0

and we identify V0 with (Fq)v0 . In the chosen basis, the g maps ϕγ, with γ ∈ Ω − Ω0, give an element in
Matv0 (Fq)g. For each i = 1, . . . , k, we obtain a partial flag by taking the images in (Fq)v0 of the V[i, j]’s via
the compositions of the ϕγ’s where γ runs over the arrows of the i-th leg of Γ. We thus have defined a map

Theorem 3.2.3. We have

Log

∑
µ∈Pk

Gµ(q) mµ

 =
∑

µ∈Pk−{0}

Aµ(q) mµ.

Proof. In Proposition 3.2.2 make the change of variables

X0 := x1,1 · · · xk,1, X[i, j] := x−1
i, j xi, j+1, i = 1, 2, . . . , k, j = 1, 2, . . . .

Since the terms on both sides are invariant under permutation of the entries v[i,1], v[i,2], . . . of v we can collect
all terms that yield the same multipartition µ. The resulting sum of Xv gives the monomial symmetric
function mµ(x). �
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Remark 3.2.4. Since Aµ(q) ∈ Z[q], it follows from Theorem 3.2.3 that G(q) ∈ Z[q].

Recall that F denotes an algebraic closure of Fq and f : F→ F, x 7→ xq is the Frobenius endomorphism.

Proposition 3.2.5. We have

log

∑
µ

Gµ(q)mµ

 =

∞∑
d=1

φd(q) · log
(
Ω

(
xd

1, . . . , x
d
k ; 0, qd/2

))
where φn(q) = 1

n
∑

d|n µ(d)(qn/d − 1) is the number of 〈 f 〉-orbits of F× := F − {0} of size n.

Proof. If X is a finite set on which a finite group H acts, recall Burnside’s formula which says that

#X/H =
1
|H|

∑
h∈H

#{x ∈ X | h · x = x}.

Denote by Cn the set of conjugacy classes of GLn(Fq). Applying Burnside’s formula to Gµ(Fq), with
µ ∈ (Pn)k, we find that

Gµ(q) = |GLn(Fq)|−1
∑

g∈GLn(Fq)

Λ(g)
k∏

i=1

#{X ∈ Fµi | g · X = X}

= |GLn(Fq)|−1
∑

g∈GLn(Fq)

Λ(g)
k∏

i=1

RG
Lµi

(1)(g)

=
∑
O∈Cn

Λ(O)
|ZO|

k∏
i=1

RG
Lµi

(1)(O)

For a conjugacy class O of GLn(Fq), let ω(O) denotes its type. By Formula (2.1.9), we have

Λ(O)
|ZO|

= Hω(O)(0,
√

q).

By Corollary 2.2.3, we deduce that

∑
µ

Gµ(q)mµ =
∑
O∈C

Hω(O)(0,
√

q)
k∏

i=1

H̃ω(O)(xi, q)

where C :=
⋃

n≥1 Cn.
We denote by F× the set of 〈 f 〉-orbits of F×. There is a natural bijection from the set C to the set of all

maps F× → P with finite support [23, IV, 2]. If C ∈ C corresponds to α : F× → P, then we may enumerate
the elements of {s ∈ F× |α(s) , 0} as c1, . . . , cr such that ω(α) := (d(c1), α(c1)) · · · (d(cr), α(cr)), where d(c)
denotes the size of c, is the type ω(C).

We have

∑
µ

Gµ(q)mµ =
∑
α∈PF×

Hω(α)(0,
√

q)
k∏

i=1

H̃ω(α)(xi, q)

=
∏
c∈F×

Ω
(
xd(c)

1 , . . . , xd(c)
k ; 0, qd(c)/2

)
=

∞∏
d=1

Ω
(
xd

1, . . . , x
d
k ; 0, qd/2

)φd(q)

�
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Remark 3.2.6. The second formula displayed in the proof of Proposition 3.2.5 shows that

Gµ(q) =
〈
Λ ⊗ Rµ(1), 1

〉
where Rµ(1) := RG

Lµ1
(1) ⊗ · · · ⊗ RG

Lµk
(1).

Theorem 3.2.7. We have
Aµ(q) = Hµ(0,

√
q).

Proof. From Formula (2.1.15) we have∑
µ

Hµ(0,
√

q) mµ = (q − 1) Log
(
Ω(0,

√
q)

)
.

We thus need to see that ∑
µ

Aµ(q) mµ = (q − 1) Log
(
Ω(0,

√
q)

)
. (3.2.2)

From Theorem 3.2.3 we are reduced to prove that

Log

∑
µ

Gµ(q)mµ

 = (q − 1)Log
(
Ω(0,

√
q)

)
.

But this follows from Lemma 2.1.2 and Proposition 3.2.5.
�

3.3 Another formula for Kac polynomials

When the dimension vector vµ is indivisible, it is known by Crawley-Boevey and van den Bergh [1] that
the polynomial Aµ(q) equals (up to some power of q) to the polynomial which counts the number of points
of some quiver variety over Fq.

Here we prove some relation between Aµ(q) and some variety which is closely related to quiver vari-
eties. This relation holds for any µ (in particular vµ can be divisible).

We continue to use the notation G, Pλ, Lλ, Uλ, Fλ of §2.2 and the notation g, pλ, lλ, uλ of §2.2.2.
For a partition λ of n, define

Xλ :=
{
(X, gPλ) ∈ g × (G/Pλ)

∣∣∣ g−1Xg ∈ uλ
}

It is well-known that the image of the projection p : Xλ(F)→ g(F), (X, gPλ) 7→ X is the Zariski closure Oλ′
of the nilpotent adjoint orbit Oλ′ of gln(F) whose Jordan form is given by λ′, and that p is a desingulariza-
tion.

Put

Vµ :=

(a1, b1, . . . , ag, bg, (X1, g1Pµ1 ), . . . , (Xk, gkPµk )
)
∈ g2g × Xµ1 × · · · × Xµk

∣∣∣∣∣∣∣∣
∑

i

[ai, bi] +
∑

j

X j = 0


where [a, b] = ab − ba.

Define Λ∼ : g→ C, z 7→ qgn2
Λ(z). By [10, Proposition 3.2.2] we know that

Λ∼ = F g(F)
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where for z ∈ g,

F(z) := #

(a1, b1, . . . , ag, bg) ∈ g2g

∣∣∣∣∣∣∣∑i

[ai, bi] = z

 .
By Remark 2.2.11, the functions Λ∼ and Rg

lλ
:= q

1
2 (n2−

∑
i λ

2
i )Rg
lλ

are characters of g. Put

Rµ(1) := Rg
lµ1

(1) ⊗ · · · ⊗ Rg
lµk

(1).

For two functions f , g : g→ C, define their inner product as

〈 f , g〉 = |g|−1
∑
X∈g

f (X)g(X).

Proposition 3.3.1. We have
|Vµ| =

〈
Λ∼ ⊗ Rµ(1), 1

〉
.

Proof. Notice that

|Vµ| =
(
F ∗ Qg

lµ1
∗ · · · ∗ Qg

lµk

)
(0).

Hence the result follows from Proposition 2.2.8 and Proposition 2.2.10. �

The proposition shows that |Vµ| is a rational function in q which is an integer for infinitely many values
of q. Hence |Vµ| is a polynomial in q with integer coefficients.

Consider

Vµ(q) :=
|Vµ|

|G|
.

Recall that dµ = n2(2g − 2 + k) −
∑

i, j(µi
j)

2 + 2.

Theorem 3.3.2. We have

Log

∑
µ

q−
1
2 (dµ−2)Vµ(q)mµ

 =
q

q − 1

∑
µ

Aµ(q)mµ.

By Lemma 2.1.2 and Formula (3.2.2) we are reduced to prove the following.

Proposition 3.3.3. We have

log

∑
µ

q−
1
2 (dµ−2)Vµ(q)mµ

 =

∞∑
d=1

ϕd(q) · log
(
Ω

(
xd

1, . . . , x
d
k ; 0, qd/2

))
where ϕn(q) = 1

n
∑

d|n µ(d)qn/d is the number of 〈 f 〉-orbits of F of size n.

Proof. By Proposition 3.3.1, we have

Vµ(q) =
q−n2+ 1

2 (kn2−
∑

i, j(µi
j)

2)

|G|

∑
x∈g

Λ∼(x)Rg
lµ1

(1)(x) · · ·Rg
lµ1

(1)(x).

By Remark 2.2.9 and Corollary 2.2.3, we see that Rg
lλ

(1)(x) =
〈
H̃ω(x; q), hλ(x)

〉
when the G-orbit of x is of

type ω.
We now proceed exactly as in the proof of Proposition 3.2.5 to prove our formula. �
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3.4 Applications to the character theory of finite general linear groups

The following theorem (which is a consequence of Theorem 3.2.7 and Theorem 2.2.6) expresses certain
fusion rules in the character ring of GLn(Fq) in terms of absolutely indecomposable representations of
comet shaped quivers.

Theorem 3.4.1. We have
〈Λ ⊗ Rµ, 1〉 = Aµ(q).

From Theorem 3.4.1 and Theorem 3.1.1 we have the following result.

Corollary 3.4.2. 〈Λ ⊗ Rµ, 1〉 , 0 if and only if vµ ∈ Φ(Γµ)+. Moreover 〈Λ ⊗ Rµ, 1〉 = 1 if and only if vµ is
a real root.

Remark 3.4.3. We will see in §5.2 that vµ is always an imaginary root when g ≥ 1, hence the second
assertion concerns only the case g = 0 (i.e. Λ = 1).

A proof of Theorem 3.4.1 for vµ is indivisible is given in [10] by expressing 〈Λ⊗Rµ, 1〉 as the Poincaré
polynomial of a comet-shaped quiver variety. This quiver variety exists only when vµ is indivisible.

4 Example: Hilbert Scheme of n points on C× × C×

Throughout this section we will have g = k = 1 and µ will be either the partition (n) or (n − 1, 1).
In this section we illustrate our conjectures and formulas in these cases.

4.1 Hilbert schemes: Review

For a nonsingular complex surface S we denote by S [n] the Hilbert scheme of n points in S . Recall that
S [n] is nonsingular and has dimension 2n.

We denote by Y [n] the Hilbert scheme of n points in C2.
Recall (see for instance [26, §5.2]) that hi

c(Y [n]) = 0 unless i is even and that the compactly supported
Poincaré polynomial Pc(Y [n]; q) :=

∑
i h2i

c (Y [n])qi is given by the following explicit formula∑
n≥0

Pc(Y [n]; q)T n =
∏
m≥1

1
1 − qm+1T m . (4.1.1)

which is equivalent to

Log

∑
n≥0

q−n · Pc(Y [n]; q)T n

 =
∑
n≥1

qT n. (4.1.2)

For n ≥ 2, consider the partition µ = (n − 1, 1) of n and let C be a semisimple adjoint orbit of gln(C)
with characteristic polynomial of the form (−1)n(x − α)n−1(x − β) with β = −(n − 1)α and α , 0. Consider
the variety

V(n−1,1) = {(a, b, X) ∈ (gln)2 ×C | [a, b] + X = 0}.

The group GLn acts on V(n−1,1) diagonally by conjugating the coordinates. This action induces a free
action of PGLn onV(n−1,1) and we put

Q(n−1,1) := V(n−1,1)//PGLn = Spec
(
C[V(n−1,1)]PGLn

)
.

The variety Q(n−1,1) is known to be nonsingular of dimension 2n (see for instance [10, §2.2] and the refer-
ences therein).

We have the following well-known theorem.
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Theorem 4.1.1. The two varieties Q(n−1,1) and Y [n] have isomorphic cohomology supporting pure mixed
Hodge structures.

Proof. By [10, Appendix B] it is enough to prove that there is a smooth morphism f : M → C which
satisfies the two following properties:
(1) There exists an action of C× on M such that the fixed point set MC

×

is complete and for all x ∈ X the
limit limλ7→0λx exists.
(2) Q(n−1,1) = f −1(λ) and Y [n] = f −1(0).

Denote by v the dimension vector of Γ(n−1,1) which has coordinate n on the central vertex (i.e., the
vertex supporting the loop) and 1 on the other vertex. It is well-known (see Nakajima [26]) that Y [n] can
be identified with the quiver variety M0,θ(v) where θ is the stability parameter with coordinate −1 on the
central vertex and n on the other vertex. If we let ξ be the parameter with coordinate −α at the central
vertex and α− β at the other vertex, then the variety Q(n−1,1) is isomorphic to the quiver varietyMξ,θ(v) (see
for instance [10] and the references therein). Now we can define as in [10, §2.2] a map f : M → C such
that f −1(0) = M0,θ(v) and f −1(λ) = Mξ,θ(v) and which satisfies the required properties. �

Proposition 4.1.2. We have
Pc(Y [n]; q) = qn · A(n−1,1)(q).

Proof. We have Pc(Q(n−1,1); q) = qn · H(n−1,1)(0,
√

q) by [10, Theorem 1.3.1] and so by Theorem 3.2.7 we
see that Pc(Q(n−1,1); q) = qn · A(n−1,1)(q). Hence the result follows from Theorem 4.1.1. �

Now put X := C∗ × C∗. Unlike Y [n], the mixed Hodge structure on X[n] is not pure. By Göttsche and
Soergel [9] we have the following result.

Theorem 4.1.3. We have hi, j;k
c (X[n]) = 0 unless i = j and

1 +
∑
n≥1

Hc
(
X[n]; q, t)T n =

∏
n≥1

(1 + t2n+1qnT n)2

(1 − qn−1t2nT n)(1 − t2n+2qn+1T n)
(4.1.3)

with Hc

(
X[n]; q, t

)
:=

∑
i,k hi,i;k

c (X[n])qitk.

Define H[n](z,w) such that

Hc

(
X[n]; q, t

)
= (t
√

q)2nH[n]
(
−t
√

q,
1
√

q

)
.

Then Formula (4.1.3) reads ∑
n≥0

H[n](z,w)T n =
∏
n≥1

(1 − zwT n)2

(1 − z2T n)(1 − w2T n)
, (4.1.4)

with the convention that H[0](z,w) = 1. Hence we may re-write Formula (4.1.3) as

Log

∑
n≥0

H[n](z,w)T n

 =
∑
n≥1

(z − w)2T n. (4.1.5)

Specializing Formula (4.1.5) with (z,w) 7→ (0,
√

q) we see from Formula (4.1.2) that

Pc(Y [n]; q) = qn · H[n](0,
√

q). (4.1.6)

We thus have the following result.
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Proposition 4.1.4. We have

PHc(X[n]; T ) = Pc(Y [n]; T ).

where PHc(X[n]; T ) :=
∑

i hi,i;2i
c (X[n])T i is the Poincaré polynomial of the pure part of the cohomology of

X[n].

4.2 A conjecture

The aim of this section is to discuss the following conjecture.

Conjecture 4.2.1. We have
H(n−1,1)(z,w) = H[n](z,w). (4.2.1)

Modulo the conjectural formula (1.1.1), Formula (4.2.1) says that the two mixed Hodge polynomials
Hc(X[n]; q, t) and Hc(M(n−1,1); q, t) agree. This would be a multiplicative analogue of Theorem 4.1.1. Un-
fortunately the proof of Theorem 4.1.1 does not work in the multiplicative case. This is because the natural
family g : X → C with X[n] = g−1(0) andM(n−1,1) = g−1(λ) for 0 , λ ∈ C does not support a C×-action
with a projective fixed point set and so [10, Appendix B] does not apply.

One can still attempt to prove that the restriction map H∗(X;Q) → H∗(g−1(λ);Q) is an isomorphism
for every fibre over λ ∈ C by using a family version of the non-Abelian Hodge theory as developed in
the tamely ramified case in [27]. In other words one would construct a family gDol : XDol → C such that
g−1

Dol(0) would be isomorphic with the moduli space of parabolic Higgs bundles on an elliptic curve C with
one puncture and flag type (n − 1, 1) and meromorphic Higgs field with a nilpotent residue at the puncture,
and g−1

Dol(λ) for λ , 0 would be isomorphic with parabolic Higgs bundles on C with one puncture and
semisimple residue at the puncture of type (n − 1, 1). In this family one should have a C× action satisfying
the assumptions of [10, Appendix B] and so could conclude that H∗(XDol;Q) → H∗(g−1

Dol(λ);Q) is an
isomorphism for every fibre over λ ∈ C. Then a family version of non-Abelian Hodge theory in the tamely
ramified case would yield that the two families XDol and X are diffeomorphic, and so one could conclude the
desired isomorphism H∗(X[n];Q) � H∗(M(n−1,1)) preserving mixed Hodge structures. However a family
version of the non-Abelian Hodge theory in the tamely ramified case (which was initiated in [27]) is not
available in the literature.

Proposition 4.2.2. Conjecture 4.2.1 is true under the specialization z = 0,w =
√

q.

Proof. The left hand side specializes to A(n−1,1)(q) by Theorem 3.2.7, which by (4.1.5) and Proposition 4.1.2
agrees with the right hand side. �

The Young diagram of a partition λ = (λ1, λ2, . . . ) is defined as the set of points (i, j) ∈ Z2 such that
1 ≤ j ≤ λi. We adopt the convention that the coordinate i of (i, j) increases as one goes down and the
second coordinate j increases as one goes to the right.

For λ , 0, we define φλ(z,w) :=
∑

(i, j)∈λ z j−1wi−1, and for λ = 0, we put φλ(z,w) = 0. Define

A1(z,w; T ) :=
∑
λ

Hλ(z,w)φλ(z2,w2)T |λ|,

A0(z,w; T ) :=
∑
λ

Hλ(z,w)T |λ|.

Proposition 4.2.3. We have∑
n≥1

H(n−1,1)(z,w)T n = (z2 − 1)(1 − w2)
A1(z,w; T )
A0(z,w; T )

.
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Proof. The coefficient of the monomial symmetric function m(n−1,1)(x) in a symmetric function in Λ(x)
of homogeneous degree n is the coefficient of u when specializing the variables x = {x1, x2, . . . } to
{1, u, 0, 0 . . . }. Hence, the generating series

∑
n≥1 H(n−1,1)(z,w)T n is the coefficient of u in

(z2 − 1)(1 − w2)Log

∑
λ

Hλ(z,w)H̃λ(1, u, 0, 0, . . . ; z2,w2) T |λ|
 .

We know that
H̃λ(x; z,w) =

∑
ρ

K̃ρλ(z,w)sρ(x),

and sρ(x) =
∑
µEρ Kρµmµ(x) where Kρµ are the Kostka numbers. We have

s(n)(1, u, 0, 0, . . . ) = 1 + u + O(u2)

s(n−1,1)(1, u, 0, 0, . . . ) = u + O(u2)

and
sρ(1, u, 0, 0, . . . ) = O(u2)

for any other partition ρ. Hence,

H̃λ(1, u, 0, 0, . . . ; z,w) = K̃(n)λ(z,w)(1 + u) + K̃(n−1,1)λ(z,w)u + O(u2).

From Macdonald [23, p. 362] we obtain K̃(n)λ(a, b) = 1 and K̃(n−1,1)λ(a, b) = φλ(a, b) − 1. Hence, finally,

H̃λ(1, u, 0, 0, . . . ; z,w) = 1 + φλ(z,w)u + O(u2). (4.2.2)

It follows that (z2 − 1)−1(1 − w2)−1 ∑
n≥1 H(n−1,1)(z,w)T n equals the coefficient of u in

Log

∑
λ

Hλ(z,w)
(
1 + φλ(z2,w2)u + O(u2)

)
T |λ|

 = Log
(
A0(T ) + A1(T )u + O(u2)

)
.

The claim follows from the general fact

Log
(
A0(T ) + A1(T )u + O(u2)

)
= Log A0(T ) +

A1(T )
A0(T )

u + O(u2).

�

Combining Proposition 4.2.3 with (4.1.4) we obtain the following.

Corollary 4.2.4. Conjecture 4.2.1 is equivalent to the following combinatorial identity

1 + (z2 − 1)(1 − w2)
A1(z,w; T )
A0(z,w; T )

=
∏
n≥1

(1 − zwT n)2

(1 − z2T n)(1 − w2T n)
. (4.2.3)

The main result of this section is the following theorem.

Theorem 4.2.5. Formula (4.2.3) is true under the Euler specialization (z,w) 7→
(√

q, 1/
√

q
)
; namely, we

have
H(n−1,1)(z, z−1) = H[n](z, z−1). (4.2.4)

Equivalently, the two varietiesM(n−1,1) and X[n] have the same E-polynomial.
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Proof. Consider the generating function

F := (1 − z)(1 − w)
∑
λ

φλ(z,w)T |λ|.

It is straightforward to see that for λ , 0 we have

(1 − z)(1 − w)φλ(z,w) = 1 +

l(λ)∑
i=1

(wi − wi−1)zλi − wl(λ)

= 1 +
∑
i≥1

(wi − wi−1)zλi .

Interchanging summations we find

F =
∑
i≥1

(wi − wi−1)
∑
λ,0

zλi T |λ| +
∑
λ,0

T |λ|.

To compute the sum over λ for a fixed i we break the partitions as follows:

λ1 ≥ λ2 ≥ · · · ≥ λi−1 ≥ λi ≥ λi+1 ≥ · · ·︸            ︷︷            ︸
ρ

and we put

ρ := (λi, λi+1, . . . )

µ := (λ1 − λi, λ2 − λi, . . . , λi−1 − λi)

Notice that µ′1 = l(µ) < i, ρ1 = l(ρ′) = λi and |λ| = |µ| + |ρ| + l(ρ′)(i − 1).
We then have ∑

λ

zλi T |λ| =
∑
µ1<i

T |µ|
∑
ρ

zl(ρ)T |ρ|+(i−1)l(ρ)

(changing ρ to ρ′ and µ to µ′). Each sum can be written as an infinite product, namely

∑
λ

zλi T |λ| =
i−1∏
k=1

(1 − T k)−1
∏
n≥1

(1 − zT n+i−1)−1.

So

F =
∑
λ,0

T |λ| +
∑
i≥1

(wi − wi−1)

 i−1∏
k=1

(1 − T k)−1
∏
n≥1

(1 − zT n+i−1)−1 − 1


=

∑
λ,0

T |λ| +
∏
n≥1

(1 − zT n)−1
∑
i≥1

(wi − wi−1)
i−1∏
k=1

(1 − zT k)
(1 − T k)

−
∑
i≥1

(wi − wi−1).

The last sum telescopes to 1 and we find

F =
∑
λ

T |λ| +
∏
n≥1

(1 − zT n)−1(w − 1)
∑
i≥1

wi−1
i−1∏
k=1

(1 − zT k)
(1 − T k)

. (4.2.5)

By the Cauchy q-binomial theorem the sum equals

1
(1 − w)

∏
n≥1

(1 − wzT n)
(1 − wT n)

.



26

Also ∑
λ

T |λ| =
∏
n≥1

(1 − T n)−1.

If we divide Formula (4.2.5) by this we finally get

1 − (1 − z)(1 − w)
∏
n≥1

(1 − T n)
∑
λ

φλ(z,w)T |λ| =
∏
n≥1

(1 − wzT n)(1 − T n)
(1 − zT n)(1 − wT n)

.

Putting now (z,w) = (q, 1/q) we find that

1 − (1 − q)(1 − 1/q)
∏
n≥1

(1 − T n)
∑
λ

φλ(q, 1/q)T |λ| =
∏
n≥1

(1 − T n)2

(1 − qT n)(1 − q−1T n)
. (4.2.6)

From Formula (2.1.10) we haveHλ(
√

q, 1/
√

q) = 1 and so

A1

(
√

q,
1
√

q
; T

)
=

∑
λ

φλ

(
q,

1
q

)
T |λ|

A0

(
√

q,
1
√

q
; T

)
=

∑
λ

T |λ| =
∏
n≥1

(1 − T n)−1

Hence, under the specialization (z,w) 7→ (
√

q, 1/
√

q) , the left hand side of Formula (4.2.3) agrees with the
left hand side of Formula (4.2.6).

Finally, it is straightforward to see that if we put (z,w) = (
√

q, 1/
√

q), then the right hand side of
Formula (4.2.3) agrees with the right hand side of Formula (4.2.6), hence the theorem.

�

4.3 Connection with modular forms

For a positive, even integer k let Gk be the standard Eisenstein series for S L2(Z)

Gk(T ) =
−Bk

2k
+

∑
n≥1

∑
d | n

dk−1T n, (4.3.1)

where Bk is the k-th Bernoulli number.
For k > 2 the Gk’s are modular forms of weight k; i.e., they are holomorphic (including at infinity) and

satisfy

Gk

(
aτ + b
cτ + d

)
= (cτ + d)kGk(τ)

for
(
a b
c d

)
∈ S L2(Z) , T = e2πiτ , =τ > 0 .

(4.3.2)

For k = 2 we have a similar transformation up to an additive term.

G2

(
aτ + b
cτ + d

)
= (cτ + d)2G2(τ) −

c
4πi

(cτ + d). (4.3.3)

The ring Q[G2, G4, G6] is called the ring of quasi-modular forms (see [16]).

Theorem 4.3.1. We have

1 +
∑
n≥1

H(n−1,1)

(
eu/2, e−u/2

)
T n =

1
u

(
eu/2 − e−u/2

)
exp

2 ∑
k≥2

Gk(T )
uk

k!

 .
In particular, the coefficient of any power of u on the left hand side is in the ring of quasi-modular forms.
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Remark 4.3.2. The relation between the E-polynomial of the Hilbert scheme of points on a surface and
theta functions goes back to Göttsche [8].

Proof. Consider the classical theta function

θ(w) = (1 − w)
∏
n≥1

(1 − qnw)(1 − qnw−1)
(1 − qn)2 , (4.3.4)

with simple zeros at qn, n ∈ Z and functional equations

i) θ(qw) = −w−1θ(w)

ii) θ(w−1) = −w−1θ(w)
(4.3.5)

We have the following expansion

1
θ(w)

=
1

1 − w
+

∑
n,m>0

n.m mod 2

(−1)n q
nm
2 w

m−n−1
2 (4.3.6)

This is classical but not that well known. For a proof see, for example, [14, Chap.VI, p. 453], where it is
deduced from a more general expansion due to Kronecker. Namely,

θ(uv)
θ(u)θ(v)

=
∑

m,n≥0

qmnumvn −
∑

m,n≥1

qmnu−mv−n.

(To see this set v = u−
1
2 and use the functional equation (4.3.5) to get

1
θ(w)

=
1

1 − w
+

∑
m,n≥1

qmn(wm− 1
2 (n+1)

− wm+
1
2 (n−1)),

which is equivalent to (4.3.6).) It is not hard, as was shown to us by J. Tate, to give a direct proof us-
ing (4.3.5).

From (4.3.6) we deduce, switching q to T and w to q, that∏
n≥1

(1 − T n)2

(1 − qT n)(1 − q−1T n)
= 1 +

∑
r,s>0

r.s mod 2

(−1)rT
rs
2

(
q

s−r−1
2 − q

2−r+1
2

)
(4.3.7)

which combined with Theorem 4.2.5 gives

H(n−1,1)

(
√

q,
1
√

q

)
=

∑
rs=2n

r.s mod 2

(−1)r
(
q

s−r−1
2 − q

2−r+1
2

)
(4.3.8)

We compute the logarithm of the left hand side of (4.3.7) and get∑
m,n≥1

(qm + q−m − 2)
T mn

m

Applying (q d
dq )k and then setting q = 1 we obtain∑

m,n≥1

(mk + (−m)k)
T mn

m
,

which vanishes identically if k is odd. For k even, it equals

2
∑
n≥1

∑
d|n

dk−1 T n.
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Comparing with (4.3.1) we see that this series equals 2Gk, up to the constant term.
Note that if q = eu then

q
d

dq
=

d
du

, q = 1↔ u = 0.

Hence ,

log
(
1 +

∑
n≥1

H(n−1,1)(eu/2, e−u/2)T n
)

=
∑
k≥2
even

(
2Gk +

Bk

k

) uk

k!
.

On the other hand, it is easy to check that

u exp
(∑

k≥2

Bk

k
uk

k!

)
= eu/2 − e−u/2

(Bk = 0 if k > 1 is odd.) This proves the claim. �

5 Connectedness of character varieties

5.1 The main result

Let µ be a multi-partition (µ1, . . . , µk) of n and letMµ be a genus g generic character variety of type µ as
in §1.1.

Theorem 5.1.1. The character varietyMµ is connected (if not empty).

Let us now explain the strategy of the proof.
We first need the following lemma.

Lemma 5.1.2. If Mµ is not empty, its number of connected components equals the constant term in
E(Mµ; q).

Proof. The number of connected components of Mµ is dim H0(Mµ,C) which is also equal to the mixed
Hodge number h0,0;0(Mµ).

Poincaré duality implies that

hi, j;k(Mµ) = hdµ−i,dµ− j;2dµ−k
c (Mµ).

From Formula (1.1.3) we thus have

E(Mµ; q) =
∑

i

∑
k

(−1)khi,i;k(Mµ)

 qi,

On the other hand the mixed Hodge numbers hi, j;k(X) of any complex non-singular variety X are zero
if (i, j, k) < {(i, j, k)| i ≤ k, j ≤ k, k ≤ i + j}, see [3]. Hence h0,0;k(Mµ) = 0 if k > 0.

We thus deduce that the constant term of E(Mµ; q) is h0,0;0(Mµ). �

From the above lemma and Formula (1.1.2) we are reduced to prove that the coefficient of the lowest
power q−

dµ
2 of q in Hµ(

√
q, 1/

√
q) is equal to 1.

The strategy to prove this goes in two steps. First, 5.3.1 we analyze the lowest power of q in Aλµ(q),
where

Ω
(√

q, 1/
√

q
)

=
∑
λ,µ

Aλµ(q) mµ.

Then in §5.3.2 we see how these combine in Log
(
Ω

(√
q, 1/

√
q
))

. In both case, Lemma 5.2.8 and Lemma 5.3.6,
we will use in an essential way the inequality of §6. Though very similar, the relation between the partitions
νp in these lemmas and the matrix of numbers xi, j in §6 is dual to each other (the νp appear as rows in one
and columns in the other).
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5.2 Preliminaries

For a multi-partition µ ∈ (Pn)k we define

∆(µ) := 1
2 dµ − 1 = 1

2 (2g − 2 + k)n2 − 1
2

∑
i, j

(
µi

j

)2
. (5.2.1)

Remark 5.2.1. Note that when g = 0 the quantity −2∆(µ) is Katz’s index of rigidity of a solution to
X1 · · · Xk = I with Xi ∈ Ci (see for example [19][p. 91]).

From µ we define as above Theorem 3.2.3 a comet-shaped quiver Γ = Γµ as well as a dimension vector
v = vµ of Γ. We denote by I the set of vertices of Γ and by Ω the set of arrows. Recall that µ and v are
linearly related (v0 = n and v[i, j] = n−

∑ j
r=1 µ

i
r for j > 1 and conversely, µi

1 = n−v[i,1] and µi
j = v[i, j−1]−v[i, j]

for j > 1). Hence ∆ yields an integral-valued quadratic from on ZI . Let (·, ·) be the associated bilinear form
on ZI so that

(v, v) = 2∆(µ). (5.2.2)

Let e0 and e[i, j] be the fundamental roots of Γ (vectors in ZI with all zero coordinates except for a 1 at the
indicated vertex). We find that

(e0, e0) = 2g − 2, (e[i, j], e[i, j]) = −2, (e0, e[i,1]) = 1 (e[i, j], e[i, j+1]) = 1,

for i = 1, 2, . . . , k, j = 1, 2, . . . , si − 1 and all other pairings are zero. In other words, ∆ is the negative of the
Tits quadratic form of Γ (with the natural orientation of all edges pointing away from the central vertex).

With this notation we define

δ = δ(µ) := (e0, v) = (2g − 2 + k)n −
k∑

i=1

µi
1. (5.2.3)

Remark 5.2.2. In the case of g = 0 the quantity δ is called the defect by Simpson (see [28, p.12]).

Note that δ ≥ (2g − 2)n is non-negative unless g = 0. On the other hand,

(e[i, j], v) = µi
j − µ

i
j+1 ≥ 0. (5.2.4)

We now follow the terminology of [15].

Lemma 5.2.3. The dimension vector v is in the fundamental set of imaginary roots of Γ if and only if
δ(µ) ≥ 0.

Proof. Note that v[i, j] > 0 if j < l(µi) and v[i, j] = 0 for j ≥ l(µi); since n > 0 the support of v is then
connected. We already have (e[i, j], v) ≥ 0 by (5.2.4), hence v is in the fundamental set of imaginary roots
of Γ if and only if δ ≥ 0 (see [15]). �

For a partition µ ∈ Pn we define
σ(µ) := nµ1 −

∑
j

µ2
j

and extend to a multipartition µ ∈ (Pn)k by

σ(µ) :=
k∑

i=1

σ(µi).

Remark 5.2.4. Again for g = 0 this is called the superdefect by Simpson.

We say that µ ∈ Pn is rectangular if and only if all of its (non-zero) parts are equal, i.e., µ = (tn/t) for
some t | n. We extend this to multi-partitions: µ = (µ1, . . . , µk) ∈ (Pn)k is rectangular if each µi is (the µi’s
are not required to be of the same length). Note that µ is rectangular if and only if the associated dimension
vector v satisfies (e[i, j], v) = 0 for all [i, j] by (5.2.4).
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Lemma 5.2.5. For µ ∈ (Pn)k we have
σ(µ) ≥ 0

with equality if and only if µ is rectangular.

Proof. For any µ ∈ Pn we have nµ1 = µ1
∑

j µ j ≥
∑

j µ
2
j and equality holds if and only if µ1 = µ j. �

Since
2∆(µ) = n δ(µ) + σ(µ) (5.2.5)

we find that
dµ ≥ n δ(µ) + 2 (5.2.6)

and in particular dµ ≥ 2 if δ(µ) ≥ 0.
If Γ is affine it is known that the positive imaginary roots are of the form tv∗ for an integer t ≥ 1 and

some v∗. We will call v∗ the basic positive imaginary root of Γ. The affine star-shaped quivers are given
in the table below; their basic positive imaginary root is the dimension vector associated to the indicated
multi-partition µ∗. These µ∗, and hence also any scaled version tµ∗ for t ≥ 1, are rectangular. Moreover,
∆(µ∗) = 0 and in fact, µ∗ generates the one-dimensional radical of the quadratic form ∆ so that ∆(µ∗, ν) = 0
for all ν.

Proposition 5.2.6. Suppose that µ = (µ1, . . . , µk) ∈ (Pn)k has δ(µ) ≥ 0. Then dµ = 2 if and only if Γ is of
affine type, i.e., Γ is either the Jordan quiver J (one loop on one vertex), D̃4, Ẽ6, Ẽ7 or Ẽ8, and µ = tµ∗ (all
parts scaled by t) for some t ≥ 1, where µ∗, given in the table below, corresponds to the basic imaginary
root of Γ.

Proof. By (5.2.5) and Lemma 5.2.5 dµ = 2 when δ(µ) ≥ 0 if and only if δ(µ) = 0 and µ is rectangular. As
we observed above δ(µ) ≥ (2g − 2)n. Hence if δ(µ) = 0 then g = 1 or g = 0. If g = 1 then necessarily
µi = (n) and Γ is the Jordan quiver J.

If g = 0 then δ = 0 is equivalent to the equation

k∑
i=1

1
li

= k − 2, (5.2.7)

where li := n/ti is the length of µi = (tn/ti
i ). In solving this equation, any term with li = 1 can be ignored. It

is elementary to find all of its solutions; they correspond to the cases Γ = D̃4, Ẽ6, Ẽ7 or Ẽ8.
We summarize the results in the following table

Γ li n µ∗

J (1) 1 (1)
D̃4 (2, 2, 2, 2) 2 (1, 1), (1, 1), (1, 1), (1, 1)
Ẽ6 (3, 3, 3) 3 (1, 1, 1), (1, 1, 1), (1, 1, 1)
Ẽ7 (2, 4, 4) 4 (2, 2), (1, 1, 1, 1), (1, 1, 1, 1)
Ẽ8 (2, 3, 6) 6 (3, 3), (2, 2, 2), (1, 1, 1, 1, 1, 1)

(5.2.8)

where we listed the cases with smallest possible positive values of n and k and the corresponding multi-
partition µ∗. �

Proposition 5.2.6 is due to Kostov, see for example [28, p.14].
We will need the following result about ∆.
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Proposition 5.2.7. Let µ ∈ (Pn)k and νp = (ν1,p, . . . , νk,p) ∈
(
Pnp

)k
for p = 1, . . . , s be non-zero multi-

partitions such that up to permutations of the parts of νi,p we have

µi =

s∑
p=1

νi,p, i = 1, . . . , k.

Assume that δ(µ) ≥ 0. Then
s∑

p=1

∆(νp) ≤ ∆(µ).

Equality holds if and only if
(i) s = 1 and µ = ν1.
or
(ii) Γ is affine and µ, νi, . . . , νs correspond to positive imaginary roots.

We start with the following. For partitions µ, ν define

σµ(ν) := µ1|ν|
2 − |µ|

∑
i

ν2
i .

Note that σµ(µ) = |µ|σ(µ).

Lemma 5.2.8. Let ν1, . . . , νs and µ be non-zero partitions such that up to permutation of the parts of each
νp we have

∑s
p=1 ν

p = µ. Then
s∑

p=1

σµ(νp) ≤ σµ(µ).

Equality holds if and only if:
(i) s = 1 and µ = ν1.
or
(ii) ν1, . . . , νs and µ all are rectangular of the same length.

Proof. This is just a restatement of the inequality of §6 with xi,k = νk
σk(i), for the appropriate permutations

σk, where 1 ≤ i ≤ l(µ), 1 ≤ k ≤ s. �

Lemma 5.2.9. If the partitions µ, ν are rectangular of the same length then

σµ(ν) = 0.

Proof. Direct calculation. �

Proof of Proposition 5.2.7. From the definition (5.2.1) we get

2n∆(µ) = δ(µ)n2 +

k∑
i=1

σµi (µi)

and similarly

2n∆(νp) = δ(µ)n2
p +

k∑
i=1

σµi (νi,p), p = 1, . . . , s

hence

2n
s∑

p=1

∆(νp) = δ(µ)
s∑

p=1

n2
p +

k∑
i=1

s∑
p=1

σµi (νi,p).
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Since n =
∑s

p=1 np and δ(µ) ≥ 0 we get from Lemma 5.2.8 that

s∑
p=1

∆(νp) ≤ ∆(µ)

as claimed.
Clearly, equality cannot occur if δ(µ) > 0 and s > 1. If δ(µ) = 0 and s > 1 it follows from Lem-

mas 5.2.8, 5.2.9 and (5.2.5) that ∆(µ) = ∆(νp) = 0 for p = 1, 2, . . . , s. Now (ii) is a consequence of
Proposition 5.2.6. �

5.3 Proof of Theorem 5.1.1

5.3.1 Step I

Let

Aλµ(q) := q(1−g)|λ|
(
q−n(λ)Hλ(q)

)2g+k−2
k∏

i=1

〈
hµi (xi), sλ(xiy)

〉
, (5.3.1)

so that by Lemma 2.1.5
Ω

(√
q, 1/

√
q
)

=
∑
λ,µ

Aλµ(q) mµ.

It is easy to verify thatAλµ is in Q(q).
For a non-zero rational function A ∈ Q(q) we let vq (A) ∈ Z be its valuation at q. We will see shortly

that Aλµ is nonzero for all λ,µ; let v(λ) := vq

(
Aλµ(q)

)
. The first main step toward the proof of the

connectedness is the following theorem.

Theorem 5.3.1. Let µ = (µ1, µ2, . . . , µk) ∈ Pn
k with δ(µ) ≥ 0. Then

i) The minimum value of v(λ) as λ runs over the set of partitions of size n, is

v((1n)) = −∆(µ).

ii) There are two cases as to where this minimum occurs.

Case I: The quiver Γ is affine and the dimension vector associated to µ is a positive imaginary root tv∗

for some t | n. In this case, the minimum is reached at all partitions λ which are the union of n/t copies of
any λ0 ∈ Pt.

Case II: Otherwise, the minimum occurs only at λ = (1n).

Before proving the theorem we need some preliminary results.

Lemma 5.3.2. 〈hµ(x), sλ(xy)〉 is non-zero for all λ and µ.

Proof. We have sλ(xy) =
∑
ν Kλνmν(xy) [23, I 6 p.101] and mν(xy) =

∑
µ Cνµ(y) mµ(x) for some Cνµ(y).

Hence
〈hµ(x), sλ(xy)〉 =

∑
ν

KλνCνµ(y). (5.3.2)

For any set of variables xy = {xiy j}1≤i,1≤ j we have

Cνµ(y) =
∑

mρ1 (y) · · ·mρr (y), (5.3.3)

where the sum is over all partitions ρ1, . . . , ρr such that |ρp| = µp and ρ1 ∪ · · · ∪ ρr = ν. In particular the
coefficients of Cνµ(y) as power series in q are non-negative. We can take, for example, ρp = (1µp ) and then
ν = (1n). Since Kλν ≥ 0 [23, I (6.4)] for any λ, ν and Kλ,(1n) = n!/hλ [23, I 6 ex. 2], with hλ =

∏
s∈λ h(s) the

product of the hook lengths, we see that 〈hµ(x), sλ(xy)〉 is non-zero and our claim follows. �



33

In particularAλµ is non-zero for all λ and µ. Define

v(λ, µ) := vq

(
〈hµ(x), sλ(xy)〉

)
. (5.3.4)

Lemma 5.3.3. We have

−v(λ) = (2g − 2 + k)n(λ) + (g − 1)n −
k∑

i=1

v(λ, µi).

Proof. Straightforward. �

Lemma 5.3.4. For µ = (µ1, µ2, . . . , µr) ∈ Pn we have

v(λ, µ) = min{n(ρ1) + · · · + n(ρr) | |ρp| = µp, ∪pρ
p E λ}. (5.3.5)

Proof. For Cνµ(y) non-zero let vm(ν, µ) := vq

(
Cνµ(y)

)
. When yi = qi−1 we have vq(mρ(y)) = n(ρ) for any

partition ρ. Hence by (5.3.3)

vm(ν, µ) = min{n(ρ1) + · · · + n(ρr) | |ρp| = µp, ∪pρ
p = ν}.

Since Kλν ≥ 0 for any λ, ν, Kλν > 0 if and only if ν E λ [6, Ex 2, p.26], and the coefficients of Cνµ(y) are
non-negative, our claim follows from (5.3.2). �

For example, if λ = (1n) then necessarily ρp = (1µp ) and hence ρ1 ∪ · · · ∪ ρr = λ. We have then

v ((1n) , µ) =

r∑
p=1

(
µp

2

)
= − 1

2 n + 1
2

r∑
p=1

µ2
p. (5.3.6)

Similarly,
v(λ, (n)) = n(λ) (5.3.7)

by the next lemma.

Lemma 5.3.5. If β E α then n(α) ≤ n(β) with equality if and only if α = β.

Proof. We will use the raising operators Ri j see [23, I p.8]. Consider vectors w with coefficients in Z and
extend the function n to them in the natural way

n(w) :=
∑
i≥1

(i − 1)wi.

Applying a raising operator Ri j, where i < j, has the effect

n(Ri jw) = n(w) + i − j.

Hence for any product R of raising operators we have n(Rw) < n(w) with equality if and only if R is the
identity operator. Now the claim follows from the fact that β E α implies there exist such and R with
α = Rβ. �

Recall [23, (1.6)] that for any partition λ we have 〈λ, λ〉 = 2n(λ)+ |λ| =
∑

i(λ′i)
2, where λ′ = (λ′1, λ

′
2, . . . )

is the dual partition. Note also that (λ ∪ µ)′ = λ′ + µ′. Define

‖λ‖ :=
√
〈λ′, λ′〉 =

√∑
i

λ2
i .

The following inequality is a particular case of the theorem of §6.
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Lemma 5.3.6. Fix µ = (µ1, µ2, . . . , µr) ∈ Pn. Then for every (ν1, ..., νr) ∈ Pµ1 × · · · × Pµr we have

µ1

∥∥∥∥∥∥∥∑p

νp

∥∥∥∥∥∥∥
2

− n
∑

p

‖νp‖
2
≤ µ1n2 − n ‖µ‖2 . (5.3.8)

Moreover, equality holds in (5.3.8) if and only if either:
(i) The partition µ is rectangular and all partitions νp are equal.
or
(ii) For each p = 1, 2, . . . , r we have νp = (µp).

Proof. Our claim is a consequence of the theorem of §6. Taking xps = ν
p
s we have cp :=

∑
s xps =

∑
s ν

p
s =

µp and c := maxp cp = µ1. �

The following fact will be crucial for the proof of connectedness.

Proposition 5.3.7. For a fixed µ = (µ1, µ2, . . . , µr) ∈ Pn we have

µ1n(λ) − nv(λ, µ) ≤ µ1n2 − n ‖µ‖2 , λ ∈ Pn.

Equality holds only at λ = (1n) unless µ is rectangular µ = (tn/t), in which case it also holds when λ is the
union of n/t copies of any λ0 ∈ Pt.

Proof. Given ν E λ write µ1n(λ) − nv(λ, µ) as

µ1n(λ) − nv(λ, µ) = µ1(n(λ) − n(ν)) + µ1n(ν) − nv(λ, µ) (5.3.9)

By Lemma 5.3.5 the first term is non-negative. Hence

µ1n(λ) − nv(λ, µ) ≤ µ1n(ν) − nv(λ, µ), ν E λ.

Combinining this with (5.3.5) yields

max
|λ|=n

[
µ1n(λ) − nv(λ, µ)

]
≤ max
|ρp |=µp

[
µ1n(ρ1 ∪ ρ2 ∪ · · · ∪ ρr) − (n(ρ1) + · · · + n(ρr))n

]
. (5.3.10)

Take νp to be the dual of ρp for p = 1, 2, . . . , r. Then the right hand side of (5.3.10) is precisely

µ1

∥∥∥∥∥∥∥∑p

νp

∥∥∥∥∥∥∥
2

− n
∑

p

‖νp‖
2 ,

which by Lemma 5.3.6 is bounded above by µ1n2 − n ‖µ‖2 with equality only where either ρp = (1µp ) (case
(ii)) or all ρp are equal and µ = (tn/t) for some t (case (i)).

Combining this with Lemma 5.3.5 we see that to obtain the maximum of the left hand side of (5.3.10)
we must also have ρ1 ∪ · · · ∪ ρr = λ. In case (i) then, λ is the union of n/t copies of λ0, the common value
of ρp, and in case (ii), λ = (1n). �

Proof of Theorem 5.3.1. We first prove (ii). Using Lemma 5.3.3 we have

−v(λ) = (2g− 2 + k)n(λ) + (g− 1)n−
k∑

i=1

v(λ, µi) =
δ

n
n(λ) + (g− 1)n +

1
n

k∑
i=1

[
µi

1n(λ) − nv(λ, µi)
]
. (5.3.11)

The terms n(λ) and
∑n

i=1

[
µi

1n(λ) − nv(λ, µi)
]

are all maximal at λ = (1n) (the last by Proposition 5.3.7).
Hence −v(λ) is also maximal at (1n), since δ ≥ 0. Now n(λ) has a unique maximum at (1n) by Lemma 5.3.5,
hence −v(λ) reaches its maximum at other partitions if and only if δ = 0 and for each i we have µi = (tn/ti

i )
for some positive integer ti | n (again by Proposition 5.3.7). In this case the maximum occurs only for λ the
union of n/t copies of a partition λ0 ∈ Pt, where t = gcd ti. Now (ii) follows from Proposition 5.2.6.

To prove (i) we use Lemma 5.3.3 and (5.3.6) and find that v((1n)) = −∆(µ) as claimed. �
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Lemma 5.3.8. Let µ = (µ1, µ2, . . . , µk) ∈ Pn
k with δ(µ) ≥ 0. Suppose that v(λ) is minimal. Then the

coefficient of qv(λ) inAλµ is 1.

Proof. We use the notation of the proof of Lemma 5.3.4. Note that the coefficient of the lowest power of
q inHλ(

√
q, 1/

√
q)

(
q−n(λ)Hλ(q)

)k
is 1 (see (2.1.10)). Also, the coefficient of the lowest power of q in each

mλ(y) is always 1; hence so is the coefficient of the lowest power of q in Cνµ(y).
In the course of the proof of Proposition 5.3.7 we found that when v(λ) is minimal, and ρ1, . . . , ρr

achieve the minimum in the right hand side of (5.3.5), then λ = ρ1 ∪ · · · ∪ ρr. Hence by Lemma 5.3.4, the
coefficient of the lowest power of q in 〈hµ(x), sλ(xy)〉 =

∑
νEλ KλνCνµ(y) equals the coefficient of the lowest

power of q in KλλCλµ(y) = Cλµ(y) which we just saw is 1. This completes the proof. �

5.3.2 Leading terms of Log Ω

We now proceed to the second step in the proof of connectedness where we analyze the smallest power of
q in the coefficients of Log

(
Ω

(√
q, 1/

√
q
))

. Write

Ω
(√

q, 1/
√

q
)

=
∑
µ

Pµ(q) mµ (5.3.12)

with Pµ(q) :=
∑
λAλµ andAλµ as in (5.3.1).

Then by Lemma 2.1.4 we have

Log
(
Ω

(√
q, 1/

√
q
))

=
∑
ω

C0
ωPω(q) mω(q)

where ω runs over multi-types (d1,ω
1) · · · (ds,ω

s) with ωp ∈ (Pnp )k and Pω(q) :=
∏

p Pωp (qdp ),mω(x) :=∏
p mωp (xdp )..

Now if we let γµω := 〈mω, hµ〉 then we have

Hµ
(√

q, 1/
√

q
)

=
(q − 1)2

q

∑
ω∈Tk

C0
ωPω(q)γµω

 .
By Theorem 5.3.1, vq (Pω(q)) = −d

∑s
p=1 ∆(ωp) for a multi-type ω = (d,ω1) · · · (d,ωs).

Lemma 5.3.9. Let ν1, . . . , νs be partitions. Then

〈mν1 · · ·mνs , hµ〉 , 0

if and only if µ = ν1 + · · · + νs up to permutation of the parts of each νp for p = 1, . . . , s.

Proof. It follows immediately from the definition of the monomial symmetric function. �

Let v be the dimension vector associated to µ.

Theorem 5.3.10. If v is in the fundamental set of imaginary roots of Γ then the character varietyMµ is
non-empty and connected.

Proof. Assume v is in the fundamental set of roots of Γ. By Lemma 5.2.3 this is equivalent to δ(µ) ≥ 0.
Note that mν(xd) = mdν(x) for any partition ν and positive integer d. Suppose ω = (d,ω1) · · · (d,ωs)

is a multi-type for which γµω is non-zero. Let νp = dωp for p = 1, . . . , s (scale every part by d). These
multi-partitions are then exactly in the hypothesis of Proposition 5.2.7 by Lemma 5.3.9. Hence

d
s∑

p=1

∆(ωp) ≤ d2
s∑

p=1

∆(ωp) =

s∑
p=1

∆(νp) ≤ ∆(µ). (5.3.13)
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Suppose Γ is not affine. Then by Proposition 5.2.7 we have equality of the endpoints in (5.3.13) if and only
if s = 1, ν1 = µ and d = 1, in other words, if and only if ω = (1,µ). Hence, since C0

(1,µ) = 1, the coefficient

of the lowest power of q in Hµ
(√

q, 1/
√

q
)

equals the coefficient of the lowest power of q in Pµ(q) which
is 1 by Lemma 5.3.8 and Theorem 5.3.1, Case II. This proves our claim in this case.

Suppose now Γ is affine. Then by Proposition 5.2.7 we have equality of the endpoints in (5.3.13) if and
only if µ = tµ∗ and ω = (1, t1µ∗), . . . , (1, tsµ

∗) for a partition (t1, t2, . . . , ts) of t and d = 1. Combining this
with Lemma 5.3.8 and Theorem 5.3.1, Case I we see that the lowest order terms in q in Log

(
Ω

(√
q, 1/

√
q
))

are
L :=

∑
C0
ωp(t1) · · · p(ts) mtµ∗ ,

where the sum is over types ω as above. Comparison with Euler’s formula

Log

∑
n≥0

p(n) T n

 =
∑
n≥1

T n,

shows that L reduces to
∑

t≥1 mtµ∗ . Hence the coefficient of the lowest power of q in Hµ
(√

q, 1/
√

q
)

is
also 1 in this case finishing the proof. �

Proof of Theorem 5.1.1. If g ≥ 1, the dimension vector v is always in the fundamental set of imaginary
roots of Γ. If g = 0 the character variety if not empty if and only if v is a strict root of Γ and if v is real then
Mµ is a point [2, Theorem 8.3]. If v is imaginary then it can be taken by the Weyl group to some v′ in the
fundamental set and the two corresponding varietiesMµ andMµ′ are isomorphic for appropriate choices
of conjugacy classes [2, Theorem 3.2, Lemma 4.3 (ii)], hence Theorem 5.1.1.

�

6 Appendix by Gergely Harcos

Theorem 6.0.11. Let n, r be positive integers, and let xik (1 ≤ i ≤ n, 1 ≤ k ≤ r) be arbitrary nonnegative
numbers. Let ci :=

∑
k xik and c := maxi ci. Then we we have

c
∑

k

(∑
i

xik

)2
−

(∑
i

ci

)(∑
i,k

x2
ik

)
≤ c

(∑
i

ci

)2
−

(∑
i

ci

)(∑
i

c2
i

)
.

Assuming mini ci > 0, equality holds if and only if we are in one of the following situations
(i) xik = x jk for all i, j, k,
(ii) there exists some l such that xik = 0 for all i and all k , l.

Remark 6.0.12. The assumption mini ci > 0 does not result in any loss of generality, because the values i
with ci = 0 can be omitted without altering any of the sums.

Proof. Without loss of generality we can assume c = c1 ≥ · · · ≥ cn, then the inequality can be rewritten as(∑
i

ci

)(∑
j

∑
k,l

x jk x jl −
∑

j,k

x2
jk

)
≤ c

(∑
i, j

∑
k,l

xik x jl −
∑
i, j

∑
k

xik x jk

)
.

Here and later i, j will take values from {1, . . . , n} and k, l,m will take values from {1, . . . , r}. We simplify
the above as (∑

i

ci

)(∑
j

∑
k,l
k,l

x jk x jl

)
≤ c

(∑
i, j

∑
k,l
k,l

xik x jl

)
,

then we factor out and also utilize the symmetry in k, l to arrive at the equivalent form∑
i, j

ci

∑
k,l
k<l

x jk x jl ≤
∑
i, j

c
∑
k,l
k<l

xik x jl.
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We distribute the terms in i, j on both sides as follows:∑
i

ci

∑
k,l
k<l

xik xil +
∑
i, j
i< j

(
ci

∑
k,l
k<l

x jk x jl + c j

∑
k,l
k<l

xik xil

)
≤

∑
i

c
∑
k,l
k<l

xik xil +
∑
i, j
i< j

c
∑
k,l
k<l

(xik x jl + x jk xil).

It is clear that
ci

∑
k,l
k<l

xik xil ≤ c
∑
k,l
k<l

xik xil, 1 ≤ i ≤ n,

therefore it suffices to show that

ci

∑
k,l
k<l

x jk x jl + c j

∑
k,l
k<l

xik xil ≤ c
∑
k,l
k<l

(xik x jl + x jk xil), 1 ≤ i < j ≤ n.

We will prove this in the stronger form

ci

∑
k,l
k<l

x jk x jl + c j

∑
k,l
k<l

xik xil ≤ ci

∑
k,l
k<l

(xik x jl + x jk xil), 1 ≤ i < j ≤ n.

We now fix 1 ≤ i < j ≤ n and introduce xk := xik, x′k := x jk. Then the previous inequality reads(∑
m

xm

)(∑
k,l
k<l

x′k x′l
)

+

(∑
m

x′m
)(∑

k,l
k<l

xk xl

)
≤

(∑
m

xm

)∑
k,l
k<l

(xk x′l + x′k xl),

that is, ∑
k,l,m
k<l

(xmx′k x′l + xk xlx′m) ≤
∑
k,l,m
k<l

(xk xmx′l + xlxmx′k).

The right hand side equals∑
k,l,m
k<l

(xk xmx′l + xlxmx′k) =
∑
k,l,m
l,k

xk xmx′l =
∑
k,l,m
m,k

xk xlx′m =
∑
k,m
m,k

x2
k x′m +

∑
k,l,m
l,k
m,k

xk xlx′m

=
∑
k,m
m,k

x2
k x′m +

∑
k,m
m,k

xk xmx′m +
∑
k,l,m
l,k

m,k,l

xk xlx′m

=
∑
k,m
m,k

x2
k x′m +

∑
k,m
k<m

xk xmx′m +
∑
k,m
m<k

xk xmx′m + 2
∑
k,l,m
k<l

m,k,l

xk xlx′m

=
∑
k,m
m,k

x2
k x′m +

∑
k,l
k<l

xk xlx′l +
∑
k,l
k<l

xk xlx′k + 2
∑
k,l,m
k<l

m,k,l

xk xlx′m

=
∑
k,m
m,k

x2
k x′m +

∑
k,l,m
k<l

xk xlx′m +
∑
k,l,m
k<l

m,k,l

xk xlx′m,

therefore it suffices to prove ∑
k,l,m
k<l

xmx′k x′l ≤
∑
k,m
m,k

x2
k x′m +

∑
k,l,m
k<l

m,k,l

xk xlx′m.

This is trivial if x′m = 0 for all m. Otherwise
∑

m x′m > 0, hence ci ≥ c j yields

λ :=
(∑

m

xm

)(∑
m

x′m
)−1
≥ 1.
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Clearly, we are done if we can prove

λ2
∑
k,l,m
k<l

xmx′k x′l ≤ λ
∑
k,m
m,k

x2
k x′m + λ

∑
k,l,m
k<l

m,k,l

xk xlx′m.

We introduce x̃m := λx′m, then ∑
m

x̃m =
∑

m

xm,

and the last inequality reads ∑
k,l,m
k<l

xm x̃k x̃l ≤
∑
k,m
m,k

x2
k x̃m +

∑
k,l,m
k<l

m,k,l

xk xl x̃m.

By adding equal sums to both sides this becomes∑
k,l,m
k<l

xm x̃k x̃l +
∑
k,l,m
k<l

xk xl x̃m ≤
∑
k,m
m,k

x2
k x̃m +

∑
k,l,m
k<l

m,k,l

xk xl x̃m +
∑
k,l,m
k<l

xk xl x̃m,

which can also be written as(∑
m

xm

)(∑
k,l
k<l

x̃k x̃l

)
+

(∑
m

x̃m

)(∑
k,l
k<l

xk xl

)
≤

∑
k

x2
k

(∑
m

m,k

x̃m

)
+

∑
k,l
k<l

xk xl

(∑
m

m,k

x̃m +
∑

m
m,l

x̃m

)
.

The right hand side equals∑
k

x2
k

(∑
m

m,k

x̃m

)
+

∑
k,l
k<l

xk xl

(∑
m

m,k

x̃m +
∑

m
m,l

x̃m

)
=

∑
k

x2
k

(∑
m

m,k

x̃m

)
+

∑
k,l
l<k

xk xl

(∑
m

m,l

x̃m

)
+

∑
k,l
k<l

xk xl

(∑
m

m,l

x̃m

)

=
∑

k

x2
k

(∑
m

m,k

x̃m

)
+

∑
k,l
k,l

xk xl

(∑
m

m,l

x̃m

)

=
∑
k,l

xk xl

(∑
m

m,l

x̃m

)
=

(∑
k

xk

)(∑
m,l
m,l

xl x̃m

)
,

hence the previous inequality is the same as(∑
m

xm

)(∑
k,l
k<l

x̃k x̃l

)
+

(∑
m

x̃m

)(∑
k,l
k<l

xk xl

)
≤

(∑
k

xk

)(∑
m,l
m,l

xl x̃m

)
.

The first factors are equal and positive, hence after renaming m, l to k, l when m < l and to l, k when m > l
on the right hand side we are left with proving∑

k,l
k<l

(x̃k x̃l + xk xl) ≤
∑
k,l
k<l

(x̃k xl + xk x̃l).

This can be written in the elegant form ∑
k,l
k<l

(x̃k − xk)(x̃l − xl) ≤ 0.

However,

0 =

(∑
k

(x̃k − xk)
)2

=
∑
k,l

(x̃k − xk)(x̃l − xl) =
∑

k

(x̃k − xk)2 + 2
∑
k,l
k<l

(x̃k − xk)(x̃l − xl),
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so that ∑
k,l
k<l

(x̃k − xk)(x̃l − xl) = −
1
2

∑
k

(x̃k − xk)2 ≤ 0

as required.
We now verify, under the assumption mini ci > 0, that equation in the theorem holds if and only if

xik = x jk for all i, j, k or there exists some l such that xik = 0 for all i and all k , l. The “if” part is easy, so
we focus on the “only if” part. Inspecting the above argument carefully, we can see that equation can hold
only if for any 1 ≤ i < j ≤ n the numbers xk := xik, x′k := x jk satisfy

λ
∑
k,l,m
k<l

xmx′k x′l =
∑
k,l,m
k<l

xmx′k x′l =
∑
k,m
m,k

x2
k x′m +

∑
k,l,m
k<l

m,k,l

xk xlx′m,

where λ is as before. If x′k x′l = 0 for all k < l, then x2
k x′m = 0 for all k , m, i.e. xk x′l = 0 for all k , l.

Otherwise λ = 1 and xk = x̃k = x′k for all k by the above argument. In other words, equation in the theorem
can hold only if for any i , j we have xik x jl = 0 for all k , l or we have xik = x jk for all k. If there exist j, l
such that x jk = 0 for all k , l, then x jl > 0 and for any i , j both alternatives imply xik = 0 for all k , l,
hence we are done. Otherwise the first alternative cannot hold for any i , j, so we are again done. �
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