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GENERALIZED NESTED DISSECTION*

RICHARD J. LIPTON,- DONALD J. ROSES AND ROBERT ENDRE TARJAN

Abstract. J. A. George has discovered a method, called nested dissection, for solving a system of linear
equations defined on an n k k square grid in O(n log n) and space 0(n3/2) time. We generalize this
method without degrading the time and space bounds so that it applies to any system of equations defined on a
planar or almost-planar graph. Such systems arise in the solution of two-dimensional finite element problems.
Our method uses the fact that planar graphs have good separators.

More generally, we show that sparse Gaussian elimination is efficient for any class of graphs which have
good separators, and conversely that graphs without good separators (including "almost all" sparse graphs)
are not amenable to sparse Gaussian elimination.

1. Introduction. Suppose we wish to solve by Gaussian elimination the system of
linear equations

(1) Ax=b

where A is an n n symmetric positive definite matrix, x is an n 1 vector of variables,
and b is an n 1 vector of constants. The solution process consists of two steps. First, we
factor A by means of row operations into

(2) A LDL7"

where L is lower triangular and D is diagonal. Next, we solve the simplified systems
Lz b, Dy z, and LT’x y.

If A is dense (i.e., A contains mostly nonzero elements) then the time required for
factoring A is O(n3) and the time required for solving the simplified systems is O(n2). If
A is sparse (i.e., A contains mostly zero elements), we may be able to save time and
storage space by avoiding explicit manipulation of zeros. One difficulty with obtaining
such a savings is that the factoring process may create nonzeros in L (and LT’) in
positions where A contains zeros. These new nonzeros are called fill-in.

One way to reduce the fill-in is to permute the rows and columns of A, i.e., to
transform A into

(3) A PAPT"

where P is a permutation matrix, and to solve the reordered system. Since A is positive
definite, the reordered system is numerically stable with respect to the LDL7-factoriza_
tion [9].

In order to characterize the fill-in associated with a given permutation matrix P, we
represent the class of matrices PAPT" by an undirected graph G (V, F_,). The graph G
contains one vertex V for each row (and column) in A, and one edge {i,}E for
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each pair of nonzero, off-diagonal elements aq aji # 0 in A. Each permutation matrix
P corresponds to a numbering of the vertices of G; i.e., to a one-to-one mapping
r" V->{1, 2,..., n}. Corresponding to the factorization PAPT =LDLT is a graph
G* (V, E*) such that {i, ]} E* iff > ] and the element of L in row zr(i) and column
r(]) is nonzero. See [18], [19], [20], [25] for a discussion of the properties of this
graph-theoretic model of sparse Gaussian elimination. The following lemma charac-
terizes the fill-in E* associated with an ordering zr.

LEMMA 1 [20]. Assuming no cancellation of nonzeros in the factoring of PAP,
{v, w}E* iff v 4: w and there is a path v= vi, v2,"’,/)k+m---147 such that 7r(vi)<
min {,r(v), ,r(w)} ]’or 2<-i<=k. (Note that a path consisting of a single edge {v, w}E
satisfies this condition.)

The running time and storage space required by sparse Gaussian elimination are
functions of m, the number of nonzeros in L, and of d(i), the number of edges {i, j} in G*
with rr(i) < 7r(]). Note that d(i) is the number of nonzeros in column of L (and row of

"- d(i). For purposes of analysis and implementation, we canL), and that m =1
divide sparse elimination into the following four steps.

Step 1 Find a good ordering
The time and space required by this step depend upon the method used.

Step 2 (Symbolic factorization.) Compute the nonzero positions in L, assuming
no lucky cancellation of nonzeros.
Time: O(m) using the algorithm of [20].
Space: O(m).

Step 3 (Numeric factorization.) Compute L.
Time" O("-1

d(i)(d(i)+ 3)) using an algorithm such as described in [6],i=1

[12], [22], [25]. The number of multiplications performed during this step
-,n--1 ,4is /-,,=1 ,(i)(d(i)+ 3) [19].

Space" O(m).
Step 4 (Backsolving.) Solve Lz b, Dy z and LTx y.

Time" O(m) [19].
Space" O(m).

The reason for separating the factorization into two steps (symbolic and numeric) is
that all known ways of implementing sparse Gaussian elimination which compute the
numeric factorization without first finding the fill-in positions have a time bound for
overhead which is more than a constant factor greater than the number of multi-
plications. If the system of equations is to be solved for only one right-hand side b, it is
possible to combine at least part of Step 4 (solving Lz b and Dy z) with Step 3.

The efficiency of sparse Gaussian elimination depends upon Step 1; that is,
upon finding an ordering zr which reduces the size of the fill-in m and the multiplication
count 1/2 7;d(i)(d(i)+ 3). Finding such a good ordering for an arbitrary graph seems to
be a very hard, perhaps even NP-complete problem. However, for some special cases
good ordering schemes are known. One such scheme is the nested dissection method of
J. A. George [11], which allows the solution of systems whose graph is an n k k
square grid graph in O(n3/2) time and O(n log n) space. George’s scheme uses the fact
that removal of O(k) vertices from a k x k square grid leaves four square grids, each
roughly k/2 k/2 [21].

In this paper we generalize George’s idea. Let S be a class of graphs closed under
the subgraph relation (i.e., if G2 S and G1 is a subgraph of G2 then G1 S). The class S
satisfies an f(n)-separator theorem if there are constants 1/2 <- c < 1,/3 > 0 for which any
n-vertex graph (3 in S has the following property: the vertices of G can be partitioned
into three sets A, B, C such that no vertex in A is adjacent to any vertex in B,
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[A I, IB[--< cn, and _CI <- f(n). Our main result is that all systems of equations whose
graphs satisfy a /n-separator theorem can be solved in 0(n3/2) time and O(n log n)
space using a "divide and conquer" method [1] to generate the ordering. From
separator theorems proved in [16], we obtain a method for solving any system of
equations whose graph is planar or almost-planar in O(n3/2) time and O(n log n) space.
Such systems arise in the solution of two-dimensional finite element problems [26].
Section 2 presents these results.

More generally, divide and conquer gives a good ordering scheme for any class of
graphs satisfying an f(n)-separator theorem; the fill-in and multiplication count
produced by the ordering depend upon f(n). At the end of 2 we list fill-in and
multiplication bounds for various values of f(n) other than f(n)= x/.

Section 3 presents some relationships between Gaussian elimination, good
separators, sparsity, and random graphs. We give a lower bond on the cost of Gaussian
elimination in terms of the size of separators in the problem graph. We prove that
graphs with good separators are sparse. Finally, we show that "almost all" sparse graphs
have no good ordering for Gaussian elimination. Section 4 discussed the significance of
the results in 2 and 3.

2. Generalized nested dissection. Let S be a class of graphs closed under subgraph
on which a n-separator theorem holds, let a,/3 be the constants associated with the
separator theorem, and let G (V, E) be an n-vertex graph in S. The following
recursive algorithm numbers the vertices of G so that sparse Gaussian elimination is
efficient. The algorithm assumes that of the vertices of G are already assigned
numbers, each of which is greater than b, and that the remaining vertices of G are to be
numbered consecutively from a to b.

NUMBERING ALGORITHM. If G contains no more than no (/3/(1- a))2 vertices,
number the unnumbered vertices arbitrarily from a to b. Otherwise, find sets A, B, C
satisfying the x/-separator theorem. Let A contain unnumbered vertices, B contain ]
unnumbered vertices, and C contain k unnumbered vertices.

Number the unnumbered vertices in C arbitrarily from b-k + 1 to b. Delete all
edges with both endpoints in C. Apply the algorithm recursively to the subgraph
induced by B LI C to number the unnumbered vertices in B from b- k -j + 1 to b- k.
Apply the algorithm recursively to the subgraph induced by A U C to number the
unnumbered vertices in A from a b k-j- + 1 to a + i- 1 b- k -j.

If G initially has no numbered vertices, then applying this algorithm to G with
a 1, b n, and 0 will number the vertices of G from 1 to n. We are interested in
three properties of this algorithm" its running time, the size of the fill-in produced by the
ordering it generates, and the multiplication count of the generated ordering.

THEOREM 1. Suppose that a vertex partition satisfying the x/--separator theorem can
be found in O(m + n) time on an n-vertex, m-edge graph. Then the numbering algorithm
requires O((m + n)log n) time.

Proof. Let t(m, n) be the maximum time required by the numbering algorithm on
any graph in S with n vertices and rn edges. Then

t(m, n) -< C 2 if n --< no,
(4)

t(m, n)<= c2(m + n)+ max {t(ml, nl) + t(m2, n2)} otherwise,

Throughout this paper, c, Co, Cl, denote suitable positive constants.
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where no (/3/(1-o))2 and the maximum is taken over values of m l, n l, m2, n2
satisfying

ml + m2---< m,
(5)

n <=nl +nz<=n+flx, and (1 c)n ni cn +/3x/ for 1, 2.

A proof by induction similar to the one below for the fill-in bound shows that
t(m, n) is O((tn + n) log n). I-]

THEOREM 2. Let G be any n-vertex graph numbered by the algorithm. The total size
of the fill-in associated with the numbering is at most c3n log2 n + O(n), where

(6) c3 f12(1/2+ 2,f-a/(1 v/-a))/log2(1/a).
Proof. We shall prove that the fill-in is O(n log n). A more careful but lengthier

analysis [15] gives the bound claimed in the theorem.
Suppose the recursive numbering algorithm is applied to an n-vertex graph G with

vertices previously numbered. Assume n > no and let A, B, C be the vertex partition
generated by the algorithm. If C contains k unnumbered vertices, then the maximum
number of fill-in edges whose lower numbered endpoint is in C is

(7) k(k 1)/2 + kl < [32n/2 + fllx/-.
By Lemma 1, two vertices v and w are joined by a fill-in edge if and only if there is a

path from v to w through vertices numbered less than both v and w. Thus no fill-in edge
joins a vertex in A with a vertex in B. Let f(l, n) be the maximum number of fill-in edges
whose lower numbered endpoint is numbered by the algorithm (and not previously
numbered). Then

(8)
f(l, n)<-_ n(n- 1)/2 if n _<- no, and

f(l, n)<=fl2n/2 +/3/x/+max {/(11, nl)+ f(12, n2)}

otherwise, where the maximum is taken over values satisfying

11 + 12 < + 2/3

(9) n -< nl + n2 -< n + flx/,
(1--a)n<--_ni<--an+13x/- for 1, 2.

(o)

We claim that for all n _-> 1,

f(l, n)<= C4(1 + n) log2 n + cslx/-
where C4 and c5 are suitably large positive constants, to be chosen later. The desired
bound of O(n log n)on fill-in size follows from the claim.

We prove the claim by induction on n. Assume n -< n3, where n3 => no is a value to be
chosen later. Then

(11) f(l, n) <= n(n 1)/2 <= (n3/2)(n 1)-< c4(1+ n)log2 n + csln,
if c4 n3/2.

Let n > n3 and suppose the claim is true for values smaller than n. Then f(/, n)_-<
[3:Zn/2 +/3/x/+(/1, nl) +(12, n2) for suitable values of 11, nl, 12, nz.

Let e=(1-a-13/4no+l). Since 4no+l>x/oo->/3/(1-c), we have a+
/v/no+ 1 <1, and e >0. Thus ni<=an +[34-<-(a +[3/x/-)n _-< (1-e)n <n for i= 1,2,
and the claim holds for n and n2 by the induction hypothesis.
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Hence

f(l, n) <--_ ,82n/2 + ,lx/-+ c4(11 + n x) log2 n + (lz + nz) log2 nz) + cs(Ixx/ + I,/)
(12)

<=2n/2 +lxn+ c4(n +l+ 3/34)log2 ((1- e)n)
+ c5(1 + 2/34-)4an +4-.

Since 4an + B4-d<- 4-n+/3/(2/) 4-n+ c6, we have

f(l, n) <-_ c4(n + l) log2 n + (csx/+/3)lx/+ 2n/2 + 3c4/3x/ log2 n + 2cs/3/nn
(13)

+ C5C6(1 + 2/3/) + c4(n + 1) log2 (1 e).

Suppose we choose n3 large enough so that n>n3 implies 3/3xnlog2 n_-<

n log2 (1/(1- e))/2, choose c5 large enough so that c54+/3 =<cs, i.e., cs>=/(1-a),
and choose c4 large enough so that
Ca log2 (1/(1 e))/2. Then f(l, n) < c4(n + I) log2 n + csl4- as desired, and the claim
follows by induction.

THEOREM 3. Let G be any n-vertex graph numbered by the algorithm. The total
multiplication count associated with the numbering is at most c713/2q O(n(log n)2),
where

(14) c7 =/3(+/3v/--(2 + x/-/(1 +4-a)+4a/(1-a))/(1-4-))/(1-a)
with 6 a3/2+ (1 a)3/2.

Proof. We shall prove that the number of multiplications is O(n3/2). A more
careful analysis [15] gives the bound claimed in the theorem.

Consider the number of multiplications associated with the ordering. The number
of multiplications associated with a given vertex v is d(v)(d(v)+ 3)/2, where d(v) is the
number of fill-in edges whose lower-numbered vertex is v. Thus a bound on the number
of multiplications associated with a separator C generated by one call of the recursive
numbering algorithm is

(i + l)(i + + 3)/2 _-< Y (i +/)2/2 + 3,82n/4 + 3Ix/n/2
=0 =0

(15) _-</33n 3/2/6 + ln/2 + Bl:n/2 + 3/32n/4 + 31/-/2.
Let g(l, n) be the maximum number of multiplications associated with vertices not

previously numbered when the recursive numbering algorithm is applied to a graph in
having n vertices, of which are previously numbered. Then

(16)
g(l, n) <- n(n- 1)(2n- 1.)/12 + 3n(n- 1)/4= n(n- 1)(n +4)/6 if n _-< no, and

g(l, n) <-3n3/2/6 + #In/2 +12n/2 +3 n/4 + 3N4-/2
+max {g(ll, nl)+ g(12, n)}

otherwise, where the maximum is taken over values satisfying

11+12 <-1+2n,
(17) n

(1 o)n <= ni <- an + x/- for 1, 2.

We claim that for all n -> 1,

(18) g(l, n) <= csn 3/Z + c91n + clotn,

and
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where c8, c9, and C1o are suitably large constants, to be chosen later. The desired bound
of 0(n3/2)on multiplications follows from the claim.

We prove the claim by induction on n. For n _-< nn, where n4 no is a value to be
selected later,

(19) g(l, n) <= n(n 1)(n + 4)/6 <= n4(n4 1)(n4+4)/6<=c8n3/2,
if c8 is sufficiently large.

Let n > n4 and suppose the claim is true for values smaller than n. Then, analogous
to (12), we have

(20)
g(l, n) <- c n 3/2 + c121n + c13124n+ c8(n31/2 + n/2 )

+ c9(l,nl + ln) + Co(1214+ 1224)
for suitable values of 11, n l, 12,

For fixed nl+ n2, the function n31/2 + n/2 is maximized when one of n l, n2 is as
small as possible and the other is as large as possible. Thus

n/2 + n 23/2 =< [(1

)3/2 3/2(1n3/2[(1 e + cr + fl/(a x/))3/2]
(21 ) < ti 3/2[(1 0)3/2 -I- O 3/2(1 -I- fl/O (X/--))2]

--< n3/2[(1 or)3/2 + c3/2(1 + 3fl/(otn))]
_-< [a 3/2 + (1 a)/2]n3/ + 3134-n

since a =>1/2 implies/3(axn) </3/(a 4no)-</3/((1 a)gno) 1.
Also

(22)
lln + 12n2 <= (I + 2/3x/)(an +/3,/)

<--_ aln + 2afln3/2 + Ix/-+ 2fl 2n

and

x/n + x/-2 <= ( + 2134-n)24an + 134-

(23) <= + 2f14- 2(4an+ [3/(2x/a))
<-_ 4-t4-+ 4flx/-ln + 4fl2x/n 3/2

__
(1 + 2flx/n)2fl/(2v/).

Letting a 3/2 + (1 a)3/2 and combining the above inequalities with the bound
on g (l, n) gives

g(l, n) (Cll + C8 + 2C9afl +4clo[32x/-a)n 3/2

(24) +(c2+c92 +4Co13/-)ln+(c13+Co/-)12xn
12-[-C14(C8 -[- C9 -[- C10)n -[- C14(C9 -[- Co)14-+ c14c10

where c14 is a suitably large constant depending only on a and/3.
Suppose we choose tin large enough so that n > n4 implies c4_-<

max {(1-)n/2/2, (1-a)n/2/2, (1-4a)n/2/2}, choose Co large enough so that
C13q-ClO(1 +x/)/2--<--C10, choose C9 large enough so that C12+C9(1 +a)/2+
Co(4+4x/-)C9, and choose cs large enough so that c1+c8(1+)/2+
C14(C9 q" Cl0)"- 2C9a + 4Co/32x/< c8. Then g(l, n)<= C8n3/2 + C91ti + Col2x/- as desired,
and the claim follows by induction.
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THEOREM 4. LetG be any planar graph. Then G has an elimination ordering which
produces a fill-in of size Cart log n +O(n) and a multiplication count of c7na/2d
O(n(log n)2), where Ca<= 129 and c7<=4002. Such an ordering can be found in
O(n log n) time.

Proof. By Corollary 2 of [16], planar graphs satisfy a vn-separator theorem with
a and/3 2x/. Furthermore the appropriate vertex partition can be found in O(n)
time. Plugging into the bounds of Theorems 1-3 gives the result.

A finite element graph is any graph formed from a planar embedding of a planar
graph by adding all possible diagonals to each face. (The finite element graph has a
clique corresponding to each face of the embedded planar graph.) The embedded
planar graph is called the skeleton of the finite element graph and each of its faces is an
element of the finite element graph.

THEOREM 5. Let G be any n-vertex finite element graph with no element having
more than k boundary vertices. Then G has an elimination ordering which produces a

fill-in o]size O(k2n log n) and multiplication count O(kan3/). Such an ordering can be
found in O(n log n) time.

Proofi By Corollary 4 of [16], any n-vertex finite element graph with no element
having more than k boundary vertices satisfies a x/-separator theorem with a and
/3 4 [k/2J. Furthermore the appropriate vertex partition can be found in O(n) time.
Plugging into the bounds of Theorems 1-3 gives the result.

Although planar and almost-planar graphs seem to be the most interesting case,
analogues to Theorems 2-5 hold for other classes of graphs. For instance, the following
theorems can be proved using the same methods as in the proofs of Theorems 2-5.

THEOREM 6. Let S be any class of graphs closed under subgraph on which an n
separator theorem holds for tr> 1/2. Then for any n-vertex graph G in S, there is an
elimination ordering with O(n2’) fill-in size and O(n3) multiplication count.

The class of d-dimensional hypercubic grid graphs satisfies Theorem 6 for tr

d-/.
THEOREM 7. Let S be any class o] graphs closed under subgraph on which an n

separator theorem holds ]:or < tr < 1/2. Then for any n-vertex graph G in S there is an
elimination ordering with O(n) fill-in size and O(n3) multiplication count.

THEOREM 8. Let S be any class of graphs closed under subgraph on which a 3n
separator theorem holds. Then ]:or any n-vertex graph G in S, there is an elimination
ordering with O(n) fill-in size and O(n log2 n) multiplication count.

THEOREM 9. Let S be any class of graphs closed under subgraph on which an n
separator theorem holds for tr < . Then ]:or any n-vertex graph G in S, there is an
elimination ordering with O(n) fill-in size and multiplication count.

3. Gaussian elimination, separators, and sparsity. In this section we explore
additional relationships between sparse Gaussian elimination, good separators, and
sparse graphs. We have shown that the existence of good separators in a graph and its
subgraphs allows us to carry out sparse Gaussian elimination efficiently. It is natural to
ask whether the converse is true; that is, whether the existence of good separators is
necessary for efficient sparse elimination. To prove a result of this kind, we need a
strengthened version of a lemma in [5].

LEMMA 2. Let G (V, E) be an n-vertex graph satisfying the ]ollowingproperty for
some 1: every set of verticesA such that n/3 <= IA] <= 2n/3 is adjacent to at least vertices in
V- A. Then if 7r is any ordering of V, G* contains a clique of at least vertices.

Proof. G must have a connected component containing at least n/3 vertices.
Otherwise there is a set A violating the hypothesis of the lemma, formed as follows. Let
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A . Add connected components to A one at a time untiloA contains at least n/3
vertices. Then A contains less than 2n/3 vertices and is adjacent to no vertices in V- A.

Let r(v,)= for 1 -< _-< n and for 1 _-< k =< n let C, C2, Ck be the connected
components of the subgraph of G induced by the vertices {Va, v2, , Vk}. Let k be the
smallest integer such that cC2k_! , ?./.3, fOrck-lsOme ]; such a k exists by the previous
paragraph. Then IC1k-1 ], pk-ll < n/3. Furthermore,. since C must
contain Vk, we can choose q and the labeling of the Ck-1 so that

q

gt/3 Icki -l 2n/3
i=1

with vk adjacent to some vertex in C-1 for 1 -< -< q.
Let A U=a C-1. Let C be the set of vertices in V-A adjacent to at least one

vertex in A. By the hypothesis of the lemma, IcI-> l. Furthermore each element v C
has 7r(v)=> k. Any two vertices v, w e C-{vk} are adjacent in G*= by Lemma 1, since
they are both adjacent to at least one vertex in C. Similarly vk and any vertex
w e C-{vk} are adjacent in G*=, since for some both vk and w are adjacent to at least
one vertex in C-1. Thus C forms a clique in G*.

A weaker form of Lemma 2, in which the degrees of all vertices are assumed to be
bounded, appears in [5].

THEOREM 10. Let G (V, E) be a graph satis]’ying the hypothesis of Lemma 2.
Then any ordering of Vproduces a fill-in o]" size at least 1(1- 1)/2 and a multiplication
count o]" at least l(l- 1)(/+ 4)/6.

Proof. The proof is immediate from Lemma 2.
Theorem 10 and the results in 2 imply that generalized nested dissection is the

best method of sparse elimination (to within a constant factor in running time and
storage space) on large classes of graphs. For instance we have the following result,
adapted from 16].

FIG. 1. A 5 x 5 square grid graph.

THEOREM 1 1. For any k, let G (V, E) be a k k square grid graph (Fig. 1). LetA
be any subset of Vsuch that n/3 <-IAI <-2n/3, where n k 2. Let Cbe the set of vertices in
V-A adjacent to at least one vertex in A. Then ICI >- n/3.

Proof. Without loss of generality, suppose that the number r of rows of G which
contain vertices in A is at least as large as the number c of columns of G which contain
vertices in A. Then n/3 <= IAI <- rc <- rE and r >- x/n/3.

Let r* be the number of rows of G which contain only vertices in A. Then
kr* <-IA] <- 2n/3, and r <- 2k/3. If r* 0, then ]C >-_ r >- x/n/3. If r* # 0, then k _-> r _-> c
k and ICI >- r- r* k r* >- k/3 //3.
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By Theorems 10 and 11, k k square grid graphs have an (n3/2) multiplication
count for any ordering 13]. By using more sophisticated techniques, one can derive an
f(n log n) lower bound on the fill-in for such graphs [13]. For d-dimensional hyper-
cubic grid graphs, Theorem 10 gives an (n2(d-1)/d) lower bound on fill-in and an
(n3(d-1)/d) lower bound on multiplications, agreeing with the upper bounds in
Theorem 6. See [5].

We turn now to the relationship between good separators and sparsity. Our first
result shows that only sparse graphs have good separators.

THEOREM 12. Let S be any class ofgraphs closed under subgraph and satisfying an
n/(logz n)l+-separator theorem for fixed a, fl, and e > O. If G is a graph in S having n
vertices and m edges, then m is O(n).

Proof. Let t(n) be the maximum number of edges in any n-vertex graph in S. Let G
be an n-vertex graph in S with t(n)edges. Since S satisfies an n/(log2 n)l/’-separator
theorem, the vertices of G can be partitioned into three sets A, B, C such that C
separates A and B, A and B each contain no more than an vertices, and C contains no
more than fln/(log2 n)1+ vertices. Since S is closed under subgraph, the subgraphs of G
induced by the vertex sets ALI C and B (.J C are both in S. If IA LI CI n and

IB C[ n2, it follows that t(n) <- t(nl)+ t(n2). Hence for any n3,

t(n) < n(n 1)/2 if n _-< n3,
(25)

t(n) <- max {t(nl)+ t(n2)} otherwise,

where the maximum is taken over values n l, n2 satisfying

(26)
n < nl + n2 < n + n/(logz n)

(1-a)n <=ni<-an +fln/(log2 n)1+

We shall show by induction that

t(n)<= c15n c16n/(log2 nf

for 1, 2.

(27) for n _-> no,

where c15, c16, and no are suitably large positive constants. The theorem follows.
Let no be large enough so that (log2 n0f => 2/3/e. Choose n3 --> no large enough so

that (1-a)n3->no and ct+fl/(log2n3)l+<l. Choose C15=n3--1 and C16--C1513/E.
Then if no =< n -< t3,

(28)
t(n) <= n(n- 1)/2 =< c1n/2 <- c15n -c16n/(logz nor

<= Clsn cl6n/(log2 n).
Thus (27) holds for n0-<- n -< n3.

Let n> n3 and suppose (27) holds for values between no and n-1. Then
t(n)<-_t(nl)+t(n2) for some values of nl, n2 satisfying (26). We have nl, n2 >-

(1-a)n -->_(1-a)n3>--_no. Also, nl, nE<=an +fln/(log2 n)l+e <-n(a +/3/(10g2 r/)l+e)
n(a +/3/(logz n3)1+) < n. Thus, by the induction hypothesis,

(29) t(n) <- c15nl- cl6nl/(log2 nl) + c15n2-- c16n2/(log2 n2).
By (26), clsnl + c15n2 <-- Clsn + Clsfln/(logz n)1+. Thus

(30) t(n)<= c15n + csfln/(log2 n)1+ Cl6(nl/(log2 nlf + nE/(log2 nz)’).

It remains for us to show that

(31) c15fln/(log2 n)1+*-c16(n1/(log2 nl) + n2/(log2 n2f)<--c16n/(log2 n),
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i.eo

(32) ca5fln/(log2 n)+ <-- Cl6(rtl/(log2 nl) 4- n2/(log2 n2) n/(log2 n)).
The right-hand side of (32) is only reduced by making nl and n2 smaller; thus we can
assume that nl + n2 n. For fixed nl+ n2, the function nl/(log2 nl) + n2/(log2 n2) is
minimized when n and n2 are equal. Thus

(33)

c6(na/(log2 ha) + nz/(log2 n2)- n/(log2 n))
>-- Cl6(n/(log2 n 1) n/(log2 n))

Ca6n (( 1 /(1 1/logz n))" 1 )/(log2 n)

=> c16n(1 + 1/log2 n)- 1)/(log2 n)

>--c16en/(log2 n)+*= c15n(log2 rt)l+e

since 1716 C1513/E. [’]

Not all sparse graphs have good separators. In fact, for fixed a, /3 such that
/ < 1 a -< a < 1, there is a constant c such that almost all3 n-vertex graphs with cn
edges have no vertex partition A, B, C satisfying IAI, Inl--<n, ICI <- n, and C
separates A and B. This result is implicit in Theorem 4 of [8]. It follows from Theorem
10 that almost all sparse graphs require O(n2) fill-in and f(n3) multiplication count. By
.using a more direct argument, we can obtain a stronger result.

THEOREM 13. For all e > 0 there is a constant c(e) such that almost all n-vertex

graphs with at least c(e)n edges have a fill-in clique of at least (1 e)n vertices ]’or any
ordering.

Proof. We first prove that almost all n-vertex graphs with at least cn edges have the
following property"

(p)
If A and B are sets of vertices such that IAI, [B >- en/4 and
A B , then at least one edge joins A and B.

We prove (P) by an argument like that used to prove Theorem 4 of [8]. Consider a
random graph G with n vertices and rn edges, where rn >= cn. The number of ways to
choose two vertex sets A, B satisfying [A[, [B[_-> en/4, A fqB Q5 is less than 3".
Between A and B there are at least e 2n2/16 potential edges. The probability that none
of these edges actually occurs in G is less than (1-2c/n)’/16. Thus, if c is chosen so
that 3"(1-2c/n)"/60 as n-->oo, then almost all graphs satisfy (P). Since
(1-2c/n)2"2/16--> e -c2n/8, choosing c >(8 loge 3)/e 2 gives the result.

Now we use (P) to prove the theorem. Let G (V, E) be any graph satisfying (P).
Consider any set A of at least 3en/4 vertices in G. A contains a subset B of at least en/4
vertices whose induced subgraph in G is connected. Otherwise, we can derive a
contradiction as follows. Let A1, A2,’", Ak be the vertex sets of the connected
co.mponents of the subgraph of G induced by A. Let be the minimum index such that

21i=1 [A,[ > en/4. Then li= [A,] < en/2. By (P)there must be an edge joining some
vertex in LI= 1Ai with some vertex in LI =i/a A. This is impossible by the definition of
the Ai’s.

Consider any ordering of the vertices of G. Let A be the first 3en/4 vertices in the
ordering. Let B be a subset of A containing at least en/4 vertices whose induced

By "almost all" we mean that the fraction of n-vertex graphs satisfying the property tends with
increasing n to one. We assume that each n-vertex graph has vertex set 1, 2, , n} and that two graphs are
distinct unless their edge sets are identical. See [7] for a thorough discussion of random graphs.
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subgraph in G is connected. By property (P) at least (1- e/2)n vertices in V-B, and
hence at least (1 e)n vertices in V A, must be adjacent to at least one vertex in B. By
Lemma 1, any pair of such vertices are joined by a fill-in edge. Thus the set of vertices in
V-B adjacent to at least one vertex in B is a fill-in clique of at least (1-e)n
vertices. [-]

TEOREM 14. Almost all n-vertex graphs with c(e)n edges have a fill-in of
(1 e)2n2/2 O(n) and a multiplication count of (1 e)3n3/6 O(n2), for any ordering.

Proof. Immediate from Theorem 13. [-1

4. Remarks. We have demonstrated the existence of an O(n3/Z)-time,
O(n log n)-space method for carrying out sparse Gaussian elimination on systems
whose pattern of nonzeros corresponds to a planar or two-dimensional finite element
graph. Such systems arise often in real problems. The practicality of the algorithm
remains to be tested, and the constants in Theorem 3 are large. However, we believe
that the algorithm is potentially useful for solving large systems, since the worst-case
bounds derived here are probably much too pessimistic. Experiments by George and
Liu 10] with a similar algorithm suggest that our method is practical.

It is possible to reduce the running time of our algorithm to O(nlgz 7) by using
Strassen’s algorithm for matrix multiplication and factorization [3], [23]. If the system
of equations is to be solved for just one right-hand side b, it is possible to reduce the
storage required to O(n) by storing only part of L and recomputing the rest as
necessary. Reference [5] describes how to achieve these savings in the case of ordinary
nested dissection; the generalization to planar and almost-planar graphs is analogous to
the results in 2.

Gaussian elimination can be used to solve systems of linear equations defined over
algebras other than the real numbers [2], [4], [24], and the algorithm in 2 applies to
these other situations. For instance, the single-source shortest paths problem with
negative-weight edges can be solved in O(n 3/2) time on planar graphs. The best general
sparse algorithm 14] requires O(n2 log n) time.

The results in 2 show that the existence of good separators in a graph and its
subgraphs is enough to guarantee that sparse Gaussian elimination is efficient. Con-
versely, Theorem 10 in 3 shows that a graph for which Gaussian elimination is efficient
must have a good separator. The existence of good separators in a graph and its
subgraphs implies that the graph is sparse, but almost all sparse graphs do not have good
separators. These results suggest that when studying Gaussian elimination, one should
regard a graph as "usefully sparse" when it has good separators rather than when it has a
small edge/vertex ratio.

A number of questions remain to be explored. Can generalized nested dissection
be implemented efficiently? Is it practical? How does one find good separators in a
graph? What is a useful definition of the "goodness" of a separator? Informally, a
separator is good if it is small and divides the graph into small pieces. We need a
quantitative definition which embodies this idea. What are the trade-otis between the
size ot the separator and the size of the pieces it produces? The property of having good
separators is crucial not only in Gaussian elimination but in many other problems 17].

Appendix: Definitions. A graph G (V, E) consists of a set V of vertices and a set
E of edges. Each edge is an unordered pair {v, w} of distinct vertices. If {v, w} is an edge,
v and w are adjacent, v and w are incident to {v, w}, and v and w are the endpoints of
{v, w}. A path of length k with endpoints v, w is a sequence of vertices v=
/)0, /)1, /)2, /)k W such that {/)i--l, /)i} is an edge for 1---_<i_-< k. If G1 (V1, El) and
G2 ( V2, E2) are graphs, G1 is a subgraph of G2 if V1

_
V2 and E1 E2. If G V2, E2)
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is agraph and V1 V2, the graph Gl=(V1, E1)whereEl=E2f’l{{v, w}lv, we V)isthe
subgraph of G2 induced by the vertex set V1. A clique is a graph in which an edge joins
every pair of distinct vertices. A graph is connected if every pair of its vertices are joined
by a path. The connected components of a graph are its maximal connected subgraphs.
Let A, B, C be a partition of the vertices of a graph G (V, E). We say Cseparates A
and B if no edge joins a vertex in A with a vertex in B.

If f and g are functions of n, "f(n) is O(g(n))" means that for some positive
constant c, f(n)<= cg(n) for all but finitely many values of n; "f(n) is f(g(n))" means
g(n) is O(f(n)).

A graph G (V, E) is planar if there is a one-to-one map f from V into points in
the plane and a map f2 from E into simple curves in the plane such that, for each edge
{v, w}eE, f2({v, w}) has endpoints fl(V) and f2(w), and no two curves f2({v, Wl}),
f2({v2, w2}) share a point except possibly a common endpoint. Such a pair of maps fl, f2
is a planar embedding of G. The connected planar regions formed when the ranges of fl
and f2 are deleted from the plane are called the faces of the embedding. Each face is
bounded by a curve corresponding to a cycle of G, called the boundary of the face. We
shall sometimes not distinguish between a face and its boundary. A diagonal of a face is
an edge (v, w) such that v and w are nonadjacent vertices on the boundary of the face.
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