Geometric Optimization in Grid Topology and Related Combinatorics

Takeshi Tokuyama(Tohoku University)

History (of our research)

- Goes back to 1994 (15 years ago)
- Tetsuo Asano, Naoki Katoh, and I tried to formulate and solve the image segmentation problem as a geometric optimization problem
- A problem in digital geometry.
- Important in image processing
- This talk recalls the idea and gives recent progress + open problems.

Image segmentation problem

- $G=n \times n$ pixel grid (for example, $n=1024$)
- A digital picture is a function $f(x)$ on G to represent brightness/color of each pixel x
$-f(x)$ is real valued (monochromatic picture)
- In RGB space for color pictures
- Object image is a subset S of G to represent an object in the picture.
- Image segmentation: Clip the object image

Popular methods in Image Processing 1. Intelligent Scissors

Trace the boundary with help of human input by mouse

Artificial picture constructed from the segmented images
2. A more automated system: SNAKES

Input initial boundary curve (rubber-band)
The rubber-band shrinks to minimize an energy function
Question: Can we solve the problem as a simple and intuitive combinatorial optimization problem?

Our formulation

- Approximation by two-valued function
- Picture: function from G to real values
- Find the L_{2} nearest two-valued function g to f

$$
\left.\begin{array}{llll}
g(x)=a & (x \in & R
\end{array}\right) \quad \text { Image }
$$

- a and b become average values of $f(x)$ in R and G-R.
- That is, minimize the intraclass variance

$$
\operatorname{Var}(R)=\sum_{x \in R}(f(x)-\mu(R))^{2}+\sum_{x \in G-R}(f(x)-\mu(G-R))^{2}
$$

Intraclass variance minimization

$\operatorname{Var}(R)=\sum_{x \in R}(f(x)-\mu(R))^{2}+\sum_{x \in G-R}(f(x)-\mu(G-R))^{2}$

- A kind of 2-center problem.
- Easy if R can be arbitrary (disconnected). -Least-square threshold selection (Ohtsu, 1978) -Collect pixels brighter than a threshold θ
- Reasonable formulation: Consider a family F of nice regions, and find $R \in F$ minimizing $\operatorname{Var}(R)$

Typical Region Families

Rectilinear Convex

X-monotone: Intersection with any vertical line is a segment. (bounded by two x-monotone chains)
Based (x-)monotone: Region bounded by a monotone chain and a baseline (x-axis)
Rectilinear Convex: X-monotone and Y -monotone region.

Solution (Asano-Chen-Katoh-T 96)

- Idea:
- If we fix the number $|R|$ of pixels in $R, \operatorname{Var}(\mathrm{R})$ is minimized if the sum $f(R)=\sum_{p \in R} f(p)$ is maximized (or minimized).
- To compute such R is a knapsack-type problem, and NP-hard even for the base monotone regions
- Use parametric method: replace $f(x)$ by $f^{*}(x)=f(x)-t$
- $f(R)$ is replaced by $f^{*}(R)=f(R)-t|R|$
- Maximization of $f^{*}(R)$ is easier to solve

The idea for computing the optimal regions

- Consider (k, $y(k))$ for $k=1,2, .$. where $y(k)=\max f(R)$ s.t. $|R|=k$.
- Computation of $y(k)$ is NP-hard
- However, we can compute the convex hull of the point set
- Finding all the tangent points
- Maximizing $f^{*}(R)=f(R)-t|R|$ finds the tangent points with slope t
- We can find all slopes efficiently
- $\operatorname{Var}(R)$ is minimized at a vertex of the convex hull

The problem we need to solve

Thus, our image segmentation problem is reduced to the following :

Maximum weight region problem:
Given a function $f^{*}(x)$ on G, find the region R in the region family F maximizing $f^{*}(R)$

Easy to solve if \mathbf{F} is the family of

- (Connected) x-monotone regions
- Rectilinear convex regions

NP-hard for the family of all connected regions

Lucky to find several unexpected applications and extensions

-Data Mining Application: Optimized Numeric Association Rules (SIGMOD 96 ,VLD96,98, KDD 97)

SONAR

(System for Optimized Numeric Association Rules)
Find a rule to detect unreliable customers using a customer database
(Age, Balance) $\in R$
\Rightarrow (CardLoanDelay $=$ yes)

Pyramid approximation and layered rule (Chun-Sadakane-T 03, Chen-Chun-Katoho-T 04) Instead of two-valued function, we can construct the optimal multilayer function to approximate the input f.

Remained problems

- The region families are in "rectilinear world"
- However, a digital picture should visually simulate the usual (Euclidean) world.
- Convex region, Star-shaped region
- Segmentation of a region consisting of a few basic shapes.

Mount Fuji
http://en.wikipedia.org/wiki/Mount_Fuji
 taken by NASA.

Recent progress

Segmentation of
-Star-shaped region
-Joint work with Jinhee Chun, Matias Korman, and Martin Noellenberg
-Regions decomposable into a few basic regions
-Joint work with Jinhee Chun, Ryosei Kasai, and Matias Korman

Segmentation of a star-shape

First idea:

- Consider a real star-shaped region P that has a pixel o as its center.
- Minimize/maximize the measure of P with respect to the pixel distribution $f^{*}(x)$
- Unfortunately, this looks very difficult
- Complicated even if we P is a triangle

Segmentation of a digital star-shape

- Second idea:
- Define the "digital star-shape region" as the set of pixels inside a real star-shaped region
- Unfortunately, I have no idea how to efficiently find such P maximizing $f^{*}(P)$

Definition of digital star shape

- Third idea (our choice)
- Give a definition of digital star-shape analogously to the Euclidean star-shape
- For any p in P , the digital ray dig(op) from o to p is in P
- Problem: What is the "digital ray?"
- If P contains all shortest paths from o to p, we have a union of rectangles containing o.
- Staircase convex region
- Too "fat" as a star-shape

Digital line

Digital Straight Segment

- Digital line segment
- Many different formulations to define a line in the digital plane, started in (at latest) 1950s.
- A popular definition: DSS (Digital straight segment)
line : $y=a x+b$
digital line: $y=[a x+b]$

Digital Straight Segment

- DSS is not star-shaped

line : $y=a x+b$
digital line : $y=[a x+b]$

Only fat star-shapes
can be obtained

Axioms for
 consistent digital line segment

- (s1) A digital line segment dig(pq) is a connected path between p and q under the grid topology.
(connectivity)
- (s2) There exists a unique dig(pq)=dig(qp) between any two grid points p and q.
(existence)
- (s3) If $s, t \in \operatorname{dig}(p q)$, then $\operatorname{dig}(s t) \subseteq \operatorname{dig}(p q)$.
(consistency)
- (s4) For any dig(pq) there is a grid point $r \notin \operatorname{dig}(p q)$ such that $\operatorname{dig}(p q) \subset \operatorname{dig}(p r)$.

Consistent digital segments

- DSS is not consistent
- Intersection of two digital segments is not always connected
- Known consistent digital segments
- L- path system
- Defect of the L-path system
- Does not approximate line segments visually
- Hausdorff distance from real line is $O(n)$
- L-path system is not suitable to define visually nice digital star-shape regions.

Digital segments vs rays

- We need a visually nice consistent digital segments
- But, this is a big challenge (more than 50 years)
- No system of consistent digital segments with o(n) Hausdorff distance error is known (Impossible ?)
- Hopeless approach again??
- But we only need RAYS from the center to define the digital star-shapes
- Isn't this easier ?
- Yes, it is easier.
- How easy it is?

The consistent digital rays

- Consider a system of digital rays, that are digital line segments emanated from the origin o
- Satisfying axioms
- Approximating real straight rays

Axioms for digital ray

(R1) A digital ray dig(op) is a connected path between o and p. (connectivity)
(R2) There is a unique digital ray dig(op) between o and any grid point p. (existence)

- (R3) If $r \in \operatorname{dig}(o p)$, then dig(or) \subseteq dig(op). (consistency)
(R4) For any dig(op), there is a grid point
$r \notin \operatorname{dig}(\mathrm{op})$ such that $\operatorname{dig}(\mathrm{op}) \subset$ dig(or). (extensibility)
- (R5) For any $r \in \operatorname{dig}(o p),|\overline{o r}| \leq|\overline{o p}|$ (monotonicity)

Digital rays form a tree

- The union of all digital rays form an infinite spanning tree T of G
- dig(op) is the unique path between o and p in the tree.

$\cdot($ R3) If $r \in \operatorname{dig}(o p)$, then $\operatorname{dig}(o r) \subseteq \operatorname{dig}(o p)$.
-(R4) For any dig(op), there is a grid point $r \notin \operatorname{dig}(o p)$ such that $\operatorname{dig}(o p) \subset \operatorname{dig}(o r)$.

The distance bounds

- $\Theta(\log n)$ bound for the Hausdorff distance between digital ray and the corresponding real ray.
- The construction gives the upper bound
- The lower bound comes from the discrepancy theory
- The same distance bound holds for the digital star-shaped regions.
- The same bound holds in d-dimensional grid

Upper bound construction

- Construct the center path
- Recursively construct the two parts divided by the center path, copying the structure of size $\mathrm{n} / 2$

Lower bound comes from Discrepancy of sequence

- Consider a sequence $a_{1}, a_{2}, a_{3}, \ldots . . a_{m} \ldots$ in the interval $[0,1]$ such that each prefix sequence gives a (nearly) uniform distribution
- Discrepancy
- Difference between the number $X_{m}(a)$ of elements in $[0, a]$ in $a_{1}, a_{2}, a_{3}, \ldots . . a_{m}$ and am (expected number for the ideal uniform distribution)

$$
\max _{m<n} \max _{0<a<1}\left|X_{m}(a)-a m\right|
$$

Low discrepancy sequence

- Van der Corput sequence: $\mathrm{O}(\log \mathrm{n})$ discrepancy (1933)
- $\Omega\left(\log ^{1 / 2} n\right)$ lower bound (Roth, 1954)
- $\Omega(\log n)$ lower bound (Schmidt, 1972)

Theorem (Chun-Korman-Noellenberg-T 08).
The Hausdorff-distance between a real ray and digital ray in any system of consistent digital rays in the size $\mathrm{n} \times \mathrm{n}$ grid cannot be smaller than the discrepancy of a sequence of length n

- Give labels to nodes on the diagonal
-Read the x-values of diagonal nodes ordered by the labels
-The discrepancy of this sequence equals the distance bound
$10,0,5,3,8,2,6, \ldots .$.
We get Van der Corput sequence from our upper bound tree construction

Snaky river can go straight

- If we ignore monotonicity, we can reduce the distance error to $O(1)$

How and why snaky ray can behave well?

Each ray can control the direction by snaking without violating the consistency.

Visually, each ray is seen as a bold line segment.

Use of digital star-shapes

- Optimal approximation of a function by a layer of digital star shapes (like Mount Fuji)

input : $f(x)$
output
unimodal function

Another advancement:

Segmentation of an image consisted from basic shapes

Segmentation of union/composition

 1. Find the max-weight region that is a union of two digital star shapes.2. Find the max-weight region that is decomposable into two digital star shapes.

- Problem 1 is NP-hard. Problem 2 is in P .

It is open if we consider three digital star shapes .

Image consisting of k basic regions

- Basic region 1: Base-monotone region with a base-line

Find the max-weight region decomposable into base-monotone regions with a given set of baselines

Computed in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time in an $\mathrm{n} \times \mathrm{n}$ grid.

Composition of baseline monotone regions

- This picture is decomposed into baseline monotone regions of the given 6 baselines

Composition of baseline regions

A possible decomposition

The algorithm

- We find the maxweight region in each rectangles, and combine them.
- In each
rectangle, the problem (room problem) is solved efficiently

Room problem:
-Find the maximum weight region decomposable into four base-monotone regions corresponding to boundary edges.
$(n, 1)$

3	4	1	5	2	-1
2	-4	-1	-5	-1	4
1	-5	9	3	-2	1
4	1	-8	2	7	8
5	-4	2	4	-3	2
-2	6	1	-1	4	3
$(1,1)$					

Room problem:
$(n, 1)$

3	4	1	5	2	-1
2	-4	-1	-5	-1	4
1	-5	9	3	-2	1
4	1	-8	2	7	8
5	-4	2	4	-3	2
-2	6	1	-1	4	3
$(1,1)$					

Idea: If two regions instead of four

Known: complement of x-monotone region

Linear time algorithm (Dynamic Programming)

Possible patterns of four regions

$($ LeftTop \geq RightTop $) \wedge($ DownTop $\geq U p T o p)$

Four region case can be decomposed into two-region cases

Thus, apparently polynomial time solvable. We should use a better method to attain $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time algorithm in an $\mathrm{n} \times \mathrm{n}$ grid.

Similar problem??: Find the max-weight region decomposable into k staircase convex regions for given k centers.

$\mathrm{O}\left(\mathrm{n}^{2 \mathrm{k}}\right)$ time algorithm is not difficult to obtain

Open problems

- Digital line segments: No essentially better system than L-shape paths?
- Digital rays emanated from two centers.
- Composition of k staircase convex regions
- Currently, only O(n ${ }^{2 k}$) time solution
- Fixed Parameter Tractable algorithm ? O(f(k) $\left.\mathrm{n}^{\mathrm{c}}\right)$
- Composition of three star-shape regions.
- "Three forests" \rightarrow NP-hard

Open problems

- Handling color images explicitly
- Looks difficult
- Currently, we project color vectors to transform to a monochromatic image
- User can pick a color vector to determine the projection
- 2-center problem in 3-d if we ignore the geometric shape of the image

