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History (of our research) 
• Goes back to 1994 (15 years ago)
• Tetsuo Asano, Naoki Katoh, and I 

tried to formulate and solve the 
image segmentation problem as 
a geometric optimization problem 
– A problem in digital geometry.
– Important  in image processing

• This talk recalls the idea and gives 
recent progress + open problems.
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Image segmentation problem
• G =  n x n pixel grid (for example, n =1024)
• A digital picture is a function f (x) on G to 

represent brightness/color of  each pixel x
– f(x) is real valued (monochromatic picture)  

• In RGB space for color pictures    

• Object image is a subset S of G to 
represent an object in the picture.

• Image segmentation:  Clip the object image
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Popular methods in Image Processing
1. Intelligent Scissors

Trace the boundary with help of human input  by mouse
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Artificial picture constructed from the segmented images
7



Input initial boundary curve (rubber-band)
The rubber-band  shrinks to minimize  an  energy function 

2. A more automated system:   SNAKES 

Question:  Can we solve the problem as a simple 
and intuitive combinatorial optimization problem? 
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Our formulation 
• Approximation by two-valued function

– Picture:  function f  from G to real values
– Find the L2 nearest two-valued function g to f 

Minimize || f – g  ||2
• a  and  b become average values of f(x) in R and G-R.

• That is, minimize the intraclass variance  
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Intraclass variance minimization
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• A kind of 2-center problem.

• Easy if R can be arbitrary (disconnected).  
•Least-square threshold selection (Ohtsu, 1978) 

•Collect pixels brighter than a threshold θ

• Reasonable formulation:  Consider a family F of 
nice regions, and find R ∈ F minimizing Var (R)
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Typical Region Families 
Rectilinear Convex

X-monotone: Intersection with any vertical line is a 
segment. (bounded by two x-monotone chains)
Based (x-)monotone:  Region bounded by a monotone 
chain and a baseline (x-axis)
Rectilinear Convex: X-monotone and Y-monotone region.

X-monotone Based x monotone
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Solution (Asano-Chen-Katoh-T 96) 

• Idea : 

– If we fix the number  |R| of  pixels in R,  Var(R) is minimized 

if the sum                             is maximized (or minimized).

• To compute such R  is a knapsack-type problem, and NP-hard even 

for the base monotone regions

– Use parametric method:  replace  f(x) by f*(x) = f(x) - t 

• f (R)  is replaced by  f*(R) = f ( R ) – t | R |

– Maximization of f* (R) is easier to solve
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The idea for computing the optimal regions

• Consider  (k, y(k)) for k=1,2,.. 
where y(k) = max f (R) s.t. |R|= k.

• Computation of  y(k) is NP-hard
• However, we can compute the 

convex hull of the point set
– Finding all the tangent points 
– Maximizing  f*( R ) =  f (R)– t |R|  

finds the tangent points with slope t
– We can find all slopes efficiently

• Var (R) is minimized at a vertex of 
the convex hull 

R

Region size |R|

Brightness sum f( R )
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The problem we need to solve
Thus, our image segmentation problem 

is reduced to the following :

Maximum weight region problem:        
Given a function f*(x) on G, find the region   
R in the region family Ｆ maximizing f* (R)

Easy to solve if F is the family of  
• (Connected) x-monotone regions
• Rectilinear convex regions
NP-hard for the family of all connected regions 17
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Lucky to find several unexpected  
applications and extensions

•Data Mining Application:  Optimized Numeric Association Rules  
(SIGMOD 96 ,VLD96,98,  KDD 97 )

SONAR
(System for Optimized Numeric Association Rules)

(Age, Balance) ∈ Ｒ

⇒ (CardLoanDelay = yes)

Find a rule to detect unreliable 
customers using a customer 
database
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Pyramid approximation and layered rule          
(Chun-Sadakane-T 03, Chen-Chun-Katoho-T  04)

Instead of two-valued function,  we can construct the 
optimal multilayer  function to approximate the input f. 
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Remained problems
• The region families are in “rectilinear world”
• However, a digital picture should visually 

simulate the usual (Euclidean) world.
– Convex region, Star-shaped region

• Segmentation of  a region consisting of a few 
basic shapes. 
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Mount Fuji 
taken by NASA.

http://en.wikipedia.org/wiki/Mount_Fuji
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Recent progress

Segmentation of 
•Star-shaped region

•Joint work with Jinhee Chun, Matias Korman, and Martin 
Noellenberg

•Regions decomposable into a few basic regions
•Joint work with Jinhee Chun, Ryosei Kasai,  and Matias 
Korman 
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Segmentation of a star-shape 
First idea:

– Consider a real star-shaped region P that has   
a pixel o as its center. 

– Minimize/maximize the measure of P with 
respect to the pixel distribution f* (x)   

• Unfortunately, this looks very difficult 
– Complicated even if we P is a triangle
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Segmentation of a 
digital star-shape 

• Second idea:
– Define the “digital star-shape region” as the 

set of pixels inside a real star-shaped region
– Unfortunately, I have no idea how to 

efficiently find such P maximizing f* (P)    
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Definition of digital star shape
• Third idea (our choice)
• Give a definition of digital star-shape 

analogously to the Euclidean star-shape
– For any  p in P,  the digital ray dig(op) from o 

to p is in P
• Problem:  What is the “digital ray?”

– If P contains all shortest paths from o to p,  we 
have a union of rectangles containing o.

• Staircase convex region 
• Too “fat”  as a star-shape
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Digital line

p

q
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Digital Straight Segment
• Digital line segment 

– Many different formulations to define a line in the 
digital plane, started in (at latest) 1950s.

– A popular definition: DSS (Digital straight segment)

p

qline  :  y=ax+b

digital line : y=[ax+b]
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Digital Straight Segment

• DSS is not star-shaped
line  :  y=ax+b

digital line : y=[ax+b]

Only fat star-shapes 
can  be obtained
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Axioms for 
consistent digital line segment

• (s1) A digital line segment dig(pq) is a connected 
path between p and q under the grid topology.

(connectivity)
• (s2) There exists a unique dig(pq)=dig(qp) 

between any two grid points p and q. 
(existence) 

• (s3) If s,t∈dig(pq), then dig(st)⊆dig(pq).
(consistency)

• (s4) For any dig(pq) there is a grid point 
r∈dig(pq) such that dig(pq) ⊂ dig(pr). 

(extensibility)

／
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Consistent digital segments 

• DSS is not consistent
– Intersection of two digital segments is not always 

connected
• Known consistent digital segments

– L- path system 
– Defect of the L-path system

• Does not approximate line segments visually
• Hausdorff distance from real line is O(n)

• L-path system is not suitable to define visually 
nice digital star-shape regions.  
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Digital segments vs  rays 

• We need a visually nice consistent digital segments 
• But, this is a big challenge (more than 50 years)

– No system of consistent digital segments with o(n) 
Hausdorff distance error is known (Impossible ?)

• Hopeless approach again??
• But we only need  RAYS from the center to define 

the digital star-shapes
– Isn’t this easier ?

• Yes, it is easier. 
– How easy it is ?
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The consistent digital rays

• Consider a system of digital 
rays, that are digital line 
segments emanated from 
the origin o

• Satisfying axioms
• Approximating real straight 

rays
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Axioms for digital ray

• (R1) A digital ray dig(op) is a connected path between 
o and p.  (connectivity)

• (R2) There is a unique digital ray dig(op) between o 
and any grid point p.  (existence)

• (R3) If r∈dig(op), then dig(or)⊆dig(op). (consistency)
• (R4) For any dig(op), there is a grid point 

r     dig(op) such that dig(op) ⊂ dig(or). (extensibility)
• (R5) For any r ∈dig(op),                 (monotonicity )  ≤or op

∉
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Digital rays form a tree

• The union of all digital 
rays form an infinite 
spanning tree T of G
– dig(op) is the unique path 

between o and p in the tree.

•(R3) If r∈dig(op), then dig(or)⊆dig(op).
•(R4) For any dig(op), there is a grid point 

r   dig(op) such that dig(op) ⊂ dig(or).∉

o
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The distance bounds 

• Θ(log n) bound for the Hausdorff distance 
between digital ray and the corresponding 
real ray. 
– The construction gives the upper bound
– The lower bound comes from the discrepancy 

theory
• The same distance bound holds for the 

digital star-shaped regions. 
• The same bound holds in d-dimensional grid
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Upper bound construction 

• Construct the center path
• Recursively construct the 

two parts divided by the 
center path, copying the 
structure of size n/2

o

Center 
path
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Lower bound comes from 
Discrepancy of sequence

• Consider a sequence a1, a2, a3,……am …in the 
interval [0,1] such that each prefix sequence 
gives a (nearly) uniform distribution 

• Discrepancy
– Difference between the number Xm(a) of elements in 

[0,a]  in a1, a2, a3,……am   and  am  (expected number 
for the ideal uniform distribution)

0 1max max | ( ) |m n a mX a am< < < −

0 a 38



Low discrepancy sequence

• Van der Corput sequence: O(log n) 
discrepancy (1933)

• Ω(log1/2 n) lower bound (Roth, 1954)
• Ω(log n) lower bound (Schmidt, 1972)

12 34 56 7
Theorem (Chun-Korman-Noellenberg-T 08).
The Hausdorff-distance between a real ray and digital 
ray in any system of consistent digital rays in the size 
n x n grid cannot be smaller than the discrepancy of a 
sequence of length n
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•Give labels to nodes 
on the diagonal

•Read the x-values of 
diagonal nodes 
ordered by the labels

•The discrepancy of 
this sequence equals 
the distance bound 

We get Van der Corput  sequence from our upper bound tree construction40



• If we ignore monotonicity, we can reduce the 
distance error to O(1)

Snaky river can go straight
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How and why snaky ray can 
behave well?

Each ray can control the direction by snaking 
without violating the consistency.

Visually, each ray is seen as a bold line segment. 
42



Use of digital star-shapes 
• Optimal approximation of a function by a layer of 

digital star shapes  (like Mount Fuji)

input : f(x) output 
unimodal function
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Another advancement:

Segmentation of an image 
consisted from basic shapes
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Segmentation of union/composition 
1.  Find the max-weight region that is a union 

of two digital star shapes. 
2.  Find the max-weight region that is 
decomposable into two digital star shapes.

It is open if 
we consider 
three digital 
star shapes . 

• Problem 1 is NP-hard.  Problem 2 is in P.
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Image consisting of k basic regions

Yes

• Basic region 1:   Base-monotone region 
with a base-line 

No

Find the max-weight region decomposable 
into base-monotone regions with a given set 
of  baselines  

Computed in O(n3) time in an n x n grid.
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Composition of baseline 
monotone  regions

• This picture is 
decomposed into 
baseline monotone 
regions of the given 
6 baselines
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Composition of baseline regions

A possible 
decomposition
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The algorithm
• We find the max-

weight region in 
each rectangles, 
and combine 
them.

• In each 
rectangle, the 
problem (room 
problem) is 
solved efficiently 
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Room problem: 

•Find the maximum weight region 
decomposable into four base-monotone 
regions corresponding to boundary edges.
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Idea:  If two regions instead of four 

Known: complement 
of x-monotone region

Linear time algorithm (Dynamic Programming ) 

This is NP-hard
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Four region case can be decomposed 
into two-region cases

Thus, apparently polynomial time solvable. 
We should use a better method to attain 
O(n3) time algorithm in an n x n grid.
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Similar problem??:  Find the max-weight region 
decomposable into k staircase convex regions for 
given k centers.
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O(n 2k ) time algorithm is not difficult to obtain 56



Open problems
• Digital line segments:  No essentially better 

system than L-shape paths?
• Digital rays emanated from two centers.
• Composition of k staircase convex regions   

– Currently, only O(n 2k ) time solution
– Fixed Parameter Tractable algorithm ? O(f(k) nc)

• Composition of three star-shape regions. 
– “Three forests” NP-hard
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Open problems

• Handling color images explicitly
– Looks difficult 
– Currently, we project color vectors to transform to a 

monochromatic image
• User can pick a color vector  to determine the projection

– 2-center problem in 3-d  if we ignore the geometric 
shape of the image
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