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Notes



Jarnik’s Theorem

For any curve C, N(C) and l(C) denote its number of integer
points and its length respectively.

Theorem (Jarnik’s Theorem (1926))
For any strictly convex curve, Γ,

N(Γ) ¿ l(Γ)2/3.

On the other hand, Jarnik constructed a family of strictly convex
curves Γ0, with l(Γ0) tending to infinity, such that

N(Γ0) ³ l(Γ0)
2/3.





Grekos refined Jarnik’s result for C2 curves. (1988)

N(Γ) ¿ l(Γ)r(Γ)−1/3,

where r(Γ) denotes the infimum of the radii of curvature of the
curve.

It is conjectured by Schmidt (1985) that if Γ is C3 then

N(Γ) ¿ l(Γ)1/2+ε.



Contributions to this problem were made by Swinnerton-Dyer
(1974), Schmidt, Bombieri and Pila (1989), and Pila (1991).
Plagne gave a uniform version of Jarnik’s theorem.

Theorem (Plagne (1999))
Let f be any function tending to infinity. Then there exist a
strictly convex curve C and a strictly increasing sequence of
integers {qn}n≥0 such that for each n one has
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(Valtr has also defined a curve with similar property.)



A result of Elekes and Rónyai (1999)

Theorem
For every C and d there is an n0 = n0(C, d) such that for any
degree d polynomial, F , if |X | = |Y | ≥ n0 and the domain of F
on X and Y is small, |F (X , Y )| ≤ C|X |, then

F (x , y) = f (g(x) + h(y)),

or
F (x , y) = f (g(x)h(y)).



The main conjecture

Conjecture
For every C and d there is an n0 = n0(C, d) such that for any
degree d polynomial, F , if |X | = |Y | ≥ n0, X , Y ⊂ Q, and
|F (X , Y )| ≤ C|X |, then

F (x , y) = f (ax + by + c),

or
F (x , y) = f ((x + a)n(y + b)m).



Why should be the conjecture true?

I We can prove the Conjecture (and more) if F has degree 2.
I Conjecture would follow from the Bombieri-Lang

conjecture.
I We can prove the conclusion of Conjecture if there are

infinite sequences of sets

X1 ⊂ X2 ⊂ X3 ⊂ . . . Xi ⊂ . . . ⊂ Q

Y1 ⊂ Y2 ⊂ Y3 ⊂ . . . Yi ⊂ . . . ⊂ Q
such that |Xi | = |Yi | and |F (Xi , Yi)| ≤ C|Xi |.



A curve C of genus at least 2 defined over a function field L has
only finitely many L rational points, unless it is isotrivial.
Similarly, a curve of genus at least 2 defined over a number
field F has a finite set of F -rational points. These well-known
facts are celebrated theorems of Y. Manin and G. Faltings,
originally conjectured by L. J. Mordell and S. Lang.

We won’t define here the genus exactly. However it is good to
know that hyperelliptic curves of genus g, defined over the
rationals, can be put in the form

C : y2 = f (x)

where f (x) is a polynomial with integer coefficients of degree
2g + 2 or 2g + 1, which has no repeated roots.



Uniform Mordell Conjecture for number fields

Caporasso, Harris, and Mazur proved (1997) that the
Bombieri-Lang conjecture would imply the following.

Conjecture (Uniform Mordell Conjecture)
Fix g ≥ 2 and a number field F ; there exists a number Bg(F )
such that any curve of genus g defined over F has at most
Bg(F ) rational points over F .



Corollaries of the Uniform Mordell Conjecture

Corollary
For every polynomial, f (x), having degree ≥ 2 there is a
number, k , such that y = f (x) has no integer points forming a
k-term arithmetic progression.

Corollary
For every polynomial, f (x), having at least two distinct roots
there is a number, k , such that y = f (x) has no integer points
forming a k-term geometric progression.



Theorem
If the Bombieri-Lang conjecture is true then for every C and d
there is an n0 = n0(C, d) such that for any degree d polynomial,
F , if |X | = |Y | ≥ n0, X , Y ⊂ Q, and |F (X , Y )| ≤ C|X |, then

F (x , y) = f (ax + by + c),

or
F (x , y) = f ((x + a)n(y + b)m).



The key elements of the proof:

I From the Elekes-Rónyai Theorem we know that

F (x , y) = f (g(x) + h(y)),

or
F (x , y) = f (g(x)h(y)).

I If |g(X ) + h(Y )| is small then |g(X ) + g(X )| is also small.
(Plünecke-Ruzsa type inequality)

I By Freiman’s theorem g(X ) is a dense subset of a low
dimensional generalized arithmetic progression.

I Szemerédi’s theorem implies that g(X ) has long arithmetic
progressions.

Repeat the argument for the product case.



Theorem
If F (x , y) is a quadratic polynomial, |X | = |Y | ≥ n0, X , Y ⊂ Q,
and |F (X , Y )| ≤ (log |X |)δ|X |, then

F (x , y) = f (ax + by + c),

or
F (x , y) = c(x + a)(y + b) + d .

The Elekes-Rónyai result is not enough here. There is a
stronger result of Elekes and Szabó.



Elekes-Szabó

Theorem (Elekes-Szabó (2007+))
Given a surface, S, by the F (x , y , z) = 0 equation. (F is a
polynomial of three variables) If

|S
⋂

X × Y × Z | ≥ n2−δ

for some |X | = |Y | = |Z | = n ≥ n0 sets then

F (x , y , z) = f (g(x) + h(y) + t(z)).

Here f , g, h, and t are analytical functions.



Theorem
For any degree d polynomial, F , if there are infinite sequences

X1 ⊂ X2 ⊂ X3 ⊂ . . . Xi ⊂ . . . ⊂ Q

Y1 ⊂ Y2 ⊂ Y3 ⊂ . . . Yi ⊂ . . . ⊂ Q
such that |Xi | = |Yi | and |F (Xi , Yi)| ≤ C|Xi |, then

F (x , y) = f (ax + by + c),

or
F (x , y) = f ((x + a)n(y + b)m).



Freiman’s Theorem

For the proof we need (again) the following lemma.

Lemma (Freiman’s Dimension Lemma)
If A, B ⊂ C,

|A ∗ B| < KN

and
|A| = |B| = N,

then A and B are subsets of a multiplicative subgroup of rank
r = r(K ).



If
F (x , y) = f (g(x)h(y)),

then all g(Xi)-s are contained in a multiplicative subgroup of
rank r = r(C). But it contradicts to the following result.

Theorem (Shorey and Tijdeman (1976))
Let f (x) be a polynomial with integer coefficients and at least
two distinct roots. Then for every k there is an x0 = x0(k) such
that if x ≥ x0 then either f (x) has at least k distinct prime
divisors or the largest prime divisor of f (x) is larger than k .


