Introduction 00000 *Nhy f — d?*

Partial counter-examples"

Hirsch-sharp polytopes

Transportation polytopes

50 years of the Hirsch conjecture

Francisco Santos

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain

June 17, 2009 Algorithmic and Combinatorial Geometry, Budapest

1

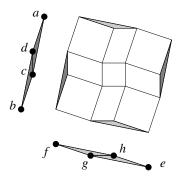
Introduction 00000 Why *f* – *d*?

Partial counter-examples"

Hirsch-sharp polytopes

Transportation polytopes

52 years of the Hirsch conjecture (with focus on "partial counterexamples")



Introduction •0000	Why <i>f — d</i> ? 00000	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes
		The Hirsch co	onjecture	

For every polytope *P* with *f* facets and dimension *d*,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{f} - \boldsymbol{d}.$

Fifty two years later, not only the conjecture is open:

Introduction •0000	Why <i>f</i> — <i>d</i> ? 00000	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes
		The Hirsch co	onjecture	

For every polytope *P* with *f* facets and dimension *d*,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{f} - \boldsymbol{d}.$

Fifty two years later, not only the conjecture is open:

For every polytope *P* with *f* facets and dimension *d*,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{f} - \boldsymbol{d}.$

Fifty two years later, not only the conjecture is open:

Introduction •0000	Why <i>f</i> — <i>d</i> ?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes
		The Hirsch co	onjecture	

For every polytope *P* with *f* facets and dimension *d*,

$$\delta(\boldsymbol{P}) \leq \boldsymbol{f} - \boldsymbol{d}.$$

Fifty two years later, not only the conjecture is open:

Introduction	Why <i>f</i> — <i>d</i> ?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

- *d* ≤ 3: [Klee 1966].
- *f* − *d* ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]

•
$$H(9,4) = H(10,4) = 5$$
 [Klee-Walkup, 1967]
 $H(11,4) = 6$ [Schuchert, 1995],
 $H(12,4) = H(12,5) = H(13,6) = 7$ [Bremner et al. >2009].

Introduction 00000	Why f – d?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes

- *d* ≤ 3: [Klee 1966].
- $f d \le 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]

•
$$H(9,4) = H(10,4) = 5$$
 [Klee-Walkup, 1967]
 $H(11,4) = 6$ [Schuchert, 1995],
 $H(12,4) = H(12,5) = H(13,6) = 7$ [Bremner et al. >2009].

- *d* ≤ 3: [Klee 1966].
- $f d \le 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]

•
$$H(9,4) = H(10,4) = 5$$
 [Klee-Walkup, 1967]
 $H(11,4) = 6$ [Schuchert, 1995],
 $H(12,4) = H(12,5) = H(13,6) = 7$ [Bremner et al. >2009].

- *d* ≤ 3: [Klee 1966].
- *f* − *d* ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]

•
$$H(9,4) = H(10,4) = 5$$
 [Klee-Walkup, 1967]
 $H(11,4) = 6$ [Schuchert, 1995],
 $H(12,4) = H(12,5) = H(13,6) = 7$ [Bremner et al. >2009].

- *d* ≤ 3: [Klee 1966].
- *f* − *d* ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]

•
$$H(9,4) = H(10,4) = 5$$
 [Klee-Walkup, 1967]
 $H(11,4) = 6$ [Schuchert, 1995],
 $H(12,4) = H(12,5) = H(13,6) = 7$ [Bremner et al. >2009].

Introduction	Why <i>f</i> – <i>d</i> ?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	0000000	00000	000000

- *d* ≤ 3: [Klee 1966].
- *f* − *d* ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]

•
$$H(9,4) = H(10,4) = 5$$
 [Klee-Walkup, 1967]
 $H(11,4) = 6$ [Schuchert, 1995],
 $H(12,4) = H(12,5) = H(13,6) = 7$ [Bremner et al. >2009].

Introduction	Why <i>f</i> – <i>d</i> ?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	0000000	00000	000000

- *d* ≤ 3: [Klee 1966].
- *f* − *d* ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967] H(11,4) = 6 [Schuchert, 1995], H(12,4) = H(12,5) = H(13,6) = 7 [Bremner et al. >2009].

Introduction	Why <i>f</i> – <i>d</i> ?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	0000000	00000	000000

- *d* ≤ 3: [Klee 1966].
- *f* − *d* ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]

•
$$H(9,4) = H(10,4) = 5$$
 [Klee-Walkup, 1967]
 $H(11,4) = 6$ [Schuchert, 1995],
 $H(12,4) = H(12,5) = H(13,6) = 7$ [Bremner et al. >2009].

Introduction	Why $f - d$?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	0000000	00000	000000

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *f* facets:

 $\delta(\boldsymbol{P}) \leq \boldsymbol{f}^{\log_2 \boldsymbol{d}+2}.$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

 $e^{O(\sqrt{f \log d})}$



Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *f* facets:

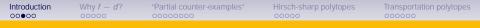
 $\delta(\boldsymbol{P}) \leq f^{\log_2 d+2}.$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

 $O(\sqrt{f \log d})$.



Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *f* facets:

 $\delta(\boldsymbol{P}) \leq f^{\log_2 d+2}.$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

 $e^{O(\sqrt{f \log d})}$

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *f* facets:

 $\delta(\boldsymbol{P}) \leq f^{\log_2 d+2}.$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

 $e^{O(\sqrt{f \log d})}$

IntroductionWhy f - d?"Partial counter-examples"Hirsch-sharp polytopesTransportation $000 \bullet 0$ 000000000000000000000000000

A **linear** bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]

For every *d*-polytope with *f* facets:

 $\delta(\boldsymbol{P}) \leq f 2^{d-3}.$

 Introduction
 Why f − d?
 "Partial counter-examples"
 Hirsch-sharp polytopes
 Transportation polytopes

 00000
 000000
 000000
 000000
 000000

A **linear** bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]

For every *d*-polytope with *f* facets:

 $\delta(\boldsymbol{P}) \leq f 2^{d-3}.$

Introduction

Hirsch-sharp polytopes

Transportation polytopes

Polynomial bounds, under perturbation

Given a linear program with *d* variables and *f* restrictions, we consider a random perturbation of the matrix, within a parameter ϵ .

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected diameter of the perturbed polyhedron is polynomial in d and ϵ^{-1} , and polylogarithmic in f.

Transportation polytopes

Polynomial bounds, under perturbation

Given a linear program with *d* variables and *f* restrictions, we consider a random perturbation of the matrix, within a parameter ϵ .

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected diameter of the perturbed polyhedron is polynomial in *d* and ϵ^{-1} , and polylogarithmic in *f*.

- It holds with equality in simplices (f = d + 1, δ = 1) and cubes (f = 2d, δ = d).
- If *P* and *Q* satisfy it, then so does $P \times Q$: $\delta(P \times Q) = \delta(P) + \delta(Q)$. In particular:

For every $f \le 2d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.



- It holds with equality in simplices (f = d + 1, δ = 1) and cubes (f = 2d, δ = d).
- If *P* and *Q* satisfy it, then so does $P \times Q$: $\delta(P \times Q) = \delta(P) + \delta(Q)$. In particular:



- It holds with equality in simplices (f = d + 1, δ = 1) and cubes (f = 2d, δ = d).
- If *P* and *Q* satisfy it, then so does $P \times Q$: $\delta(P \times Q) = \delta(P) + \delta(Q)$. In particular:



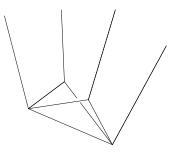
- It holds with equality in simplices (f = d + 1, δ = 1) and cubes (f = 2d, δ = d).
- If P and Q satisfy it, then so does P × Q: δ(P × Q) = δ(P) + δ(Q). In particular:

- It holds with equality in simplices (f = d + 1, δ = 1) and cubes (f = 2d, δ = d).
- If *P* and *Q* satisfy it, then so does $P \times Q$: $\delta(P \times Q) = \delta(P) + \delta(Q)$. In particular:

Unbounded polys. and regular triangulations

An unbounded *d*-polyhedron is polar to a regular triangulation of dimension d - 1.

Regular triangulations of dimension d - 1 with f vertices and diameter f - d are easy to construct by "stacking" simplices one after another.



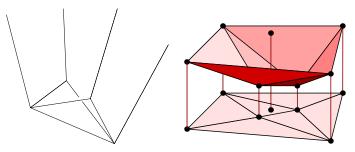
Hirsch-sharp polytopes

Transportation polytopes

Unbounded polys. and regular triangulations

An unbounded *d*-polyhedron is polar to a regular triangulation of dimension d - 1.

Regular triangulations of dimension d - 1 with f vertices and diameter f - d are easy to construct by "stacking" simplices one after another.



Unbounded polys. and regular triangulations

An unbounded *d*-polyhedron is polar to a regular triangulation of dimension d - 1.

Regular triangulations of dimension d - 1 with f vertices and diameter f - d

Hirsch conjecture has the following interpretations:

Hirsch conjecture has the following interpretations:

Assume f = 2d and let *u* and *v* be two complementary vertices (no common facet):

Hirsch conjecture has the following interpretations:

Assume f = 2d and let *u* and *v* be two complementary vertices (no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.

"*d*-step conjecture" \Rightarrow Hirsch for f = 2d.

Hirsch conjecture has the following interpretations:

Assume f = 2d and let *u* and *v* be two complementary vertices (no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.

"*d*-step conjecture" \Rightarrow Hirsch for f = 2d.

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

"non-revisiting conjecture" \Rightarrow Hirsch.

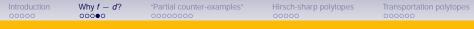
Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

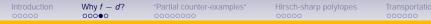
"non-revisiting conjecture" \Rightarrow Hirsch.



Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

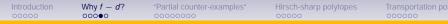
Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:



Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:



Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

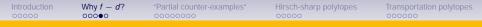
Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:



Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

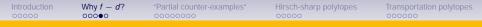
Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:



Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

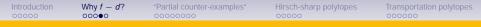
Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:



Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:



Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

 If f < 2d, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on f and f - d).

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

 If f < 2d, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on f and f - d).

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

 If f < 2d, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on f and f – d).

Theorem [Klee-Walkup 1967]

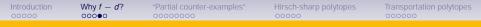
Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:

 $\cdots \leq \textit{H}(2\textit{d}-1,\textit{d}-1) \leq \textit{H}(2\textit{d},\textit{d}) \geq \textit{H}(2\textit{d}+1,\textit{d}+1) \geq \cdots$

If f > 2d, because every pair of vertices lies away from a facet F. Let P' be the wedge of P over F. Then:

 $d_P(u,v)=d_{P'}(u,v).$



Theorem [Klee-Walkup 1967]

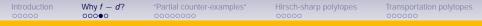
Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

If f > 2d, because every pair of vertices lies away from a facet F. Let P' be the wedge of P over F. Then:

 $d_P(u,v)=d_{P'}(u,v).$



Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

If f > 2d, because every pair of vertices lies away from a facet F. Let P' be the wedge of P over F. Then:

 $d_P(u,v)=d_{P'}(u,v).$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}}$. The basic idea is:

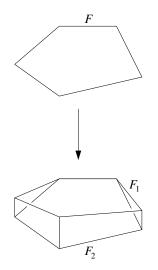
 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

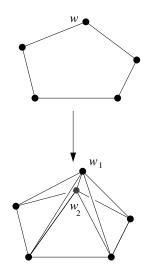
If f > 2d, because every pair of vertices lies away from a facet F. Let P' be the wedge of P over F. Then:

$$d_P(u,v)=d_{P'}(u,v).$$

Introduction 00000	Why <i>f</i> − <i>d</i> ?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

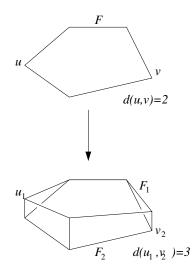
Wedging, a.k.a. one-point-suspension

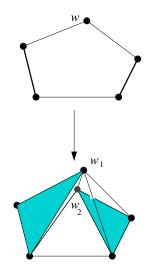




Introduction 00000	Why <i>f</i> − <i>d</i> ? 0000●	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

Wedging, a.k.a. one-point-suspension





The feasible region of a linear program can be an unbounded polyhedron, instead of a polytope.

Unbounded version of the Hirsch conjecture:

The diameter of any polyhedron P with dimension d and f facets is at most f - d.

Remark: this was the original conjecture by Hirsch.

The feasible region of a linear program can be an unbounded polyhedron, instead of a polytope.

Unbounded version of the Hirsch conjecture:

The diameter of any polyhedron P with dimension d and f facets is at most f - d.

Remark: this was the original conjecture by Hirsch.

For the simplex method, we are only interested in monotone, w. r. t. a certain functional ϕ .

Monotone version of the Hirsch conjecture:

For any polytope/polyhedron *P* with dimension *d* and *f* facets, any linear functional ϕ and any initial vertex *v*: There is a monotone path of length at most f - d from *v* to the ϕ -maximal vertex.

For the simplex method, we are only interested in monotone, w. r. t. a certain functional ϕ .

Monotone version of the Hirsch conjecture:

For any polytope/polyhedron *P* with dimension *d* and *f* facets, any linear functional ϕ and any initial vertex *v*: There is a monotone path of length at most f - d from *v* to the ϕ -maximal vertex.

W. I. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial (d - 1)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:

W. I. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial (d - 1)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:

W. I. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial (d - 1)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:

W. I. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial (d - 1)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11].
 Altshuler [1985] proved these examples are not polytopal spheres.

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11].
 Altshuler [1985] proved these examples are not polytopal spheres.

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11].
 Altshuler [1985] proved these examples are not polytopal spheres.

Introduction 00000	Why f — d? 00000	"Partial counter-examples" 0000000	Hirsch-sharp polytopes	Transportation polytopes

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11].
 Altshuler [1985] proved these examples are not polytopal spheres.

Introduction 00000	Why f – d? 00000	"Partial counter-examples" 0000000	Hirsch-sharp polytopes	Transportation polytopes

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11].
 Altshuler [1985] proved these examples are not polytopal spheres.

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from **the existence of** a 4-polytope with 9 facets and with diameter 5:

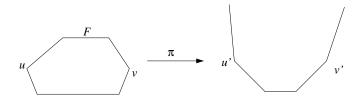
The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from **the existence of** a 4-polytope with 9 facets and with diameter 5:

$H(9,4) = 5 \Rightarrow$ counter-example to unbounded Hirsch From a bounded (9,4)-polytope you get an unbounded (8,4)-polytope with (at least) the same diameter, by moving the "extra facet" to infinity.

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from **the existence of** a 4-polytope with 9 facets and with diameter 5:

$H(9,4) = 5 \Rightarrow$ counter-example to unbounded Hirsch From a bounded (9,4)-polytope you get an unbounded (8,4)-polytope with (at least) the same diameter, by moving the "extra facet" to infinity.

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from **the existence of** a 4-polytope with 9 facets and with diameter 5:



uction Wi

f — d? 00 "Partial counter-examples" 00000000 Hirsch-sharp polytopes

Transportation polytopes

The monotone Hirsch conjecture is false

$H(9,4) = 5 \Rightarrow$ counter-example to monotone Hirsch

In your bounded (9,4)-polytope you can make monotone paths from u to v necessarily long via a projective transformation that makes the "extra facet" be parallel to a supporting hyperplane of one of your vertices u and v ction Why f

Hirsch-sharp polytopes

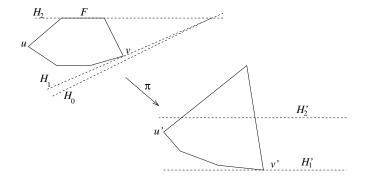
Transportation polytopes

The monotone Hirsch conjecture is false

$H(9,4) = 5 \Rightarrow$ counter-example to monotone Hirsch

In your bounded (9,4)-polytope you can make monotone paths from u to v necessarily long via a projective transformation that makes the "extra facet" be parallel to a supporting hyperplane of one of your vertices u and v

The monotone Hirsch conjecture is false



IntroductionWhy f - d?"Partial counter-examples"Hirsch-sharp polytopes00000000000000000000

Transportation polytopes

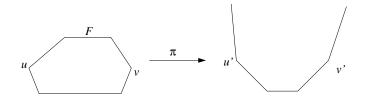
The Klee-Walkup Hirsch-tight (9,4)-polytope

Transportation polytopes

The Klee-Walkup Hirsch-tight (9,4)-polytope

The "unbounded trick" is reversible

From an unbounded 4-polyhedron with 8 facets and diameter five we can get a bounded polytope with 9 facets and sme diameter:

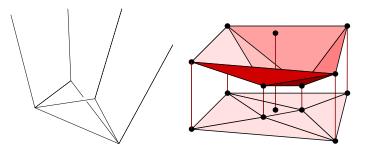


Transportation polytopes

The Klee-Walkup Hirsch-tight (9,4)-polytope

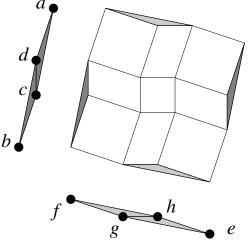
And remember that

"The polar of an unbounded 4-polyhedron with nine facets is a regular triangulation of eight points in \mathbb{R}^3 ".



The Klee-Walkup Hirsch-tight (9,4)-polytope

This is a (Cayley Trick view of a) 3D triangulation with 8 vertices and diameter 5:



The Klee-Walkup Hirsch-tight (9,4)-polytope

These are coordinates for it, derived from this description:

Mani and Walkup constructed a simplicial 3-ball with 20 vertices and with two tetrahedra *abcd* and *mnop* with the property that any path from *abcd* to *mnop* must revisit a vertex previously abandonded.

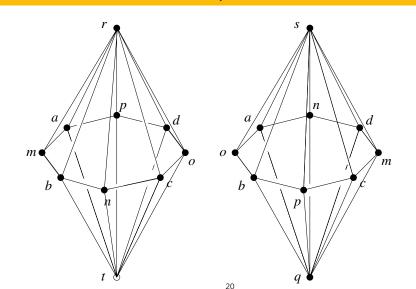
The key to the construction is in a subcomplex of two triangulated octagonal bipyramids. Mani and Walkup constructed a simplicial 3-ball with 20 vertices and with two tetrahedra *abcd* and *mnop* with the property that any path from *abcd* to *mnop* must revisit a vertex previously abandonded.

The key to the construction is in a subcomplex of two triangulated octagonal bipyramids.

 Multiplication
 Why f - d?
 "Partial counter-examples"
 Hirsch-sharp polytopes
 Transportation polytope

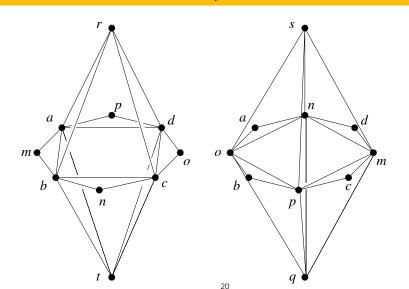
 The Mani-Walkup "always revisiting" simplicial

 3-sphere



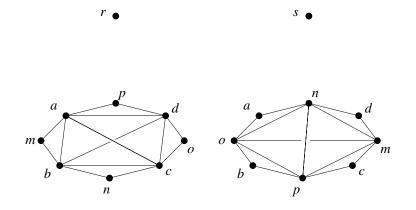
 Multiplication
 Why f - d?
 "Partial counter-examples"
 Hirsch-sharp polytopes
 Transportation polytope

 The Mani-Walkup "always revisiting" simplicial
 3-sphere



 Induction
 Why f - d?
 "Partial counter-examples"
 Hirsch-sharp polytopes
 Transportation polytope

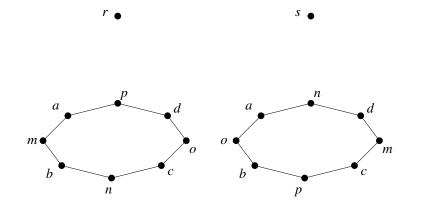
 The Mani-Walkup "always revisiting" simplicial
 3-sphere



20

 Induction
 Why f - d?
 "Partial counter-examples"
 Hirsch-sharp polytopes
 Transportation polytope

 The Mani-Walkup "always revisiting" simplicial
 3-sphere



Introduction	Why f — d?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	00000000	•0000	

Hirsch tight

Politopes of dimension d, with f facets and diameter f - d.

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f - d)$.

 H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].

• H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Introduction 00000	Why <i>f</i> — <i>d</i> ?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes ●0000	Transportation polytopes

Hirsch tight

Politopes of dimension d, with f facets and diameter f - d.

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f - d)$.

 H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].

• H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Introduction	Why f — d?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	00000000	•oooo	

Hirsch tight

Politopes of dimension d, with f facets and diameter f - d.

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f - d)$.

 H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].

• H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Introduction	Why f — d?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	00000000	•oooo	

Hirsch tight

Politopes of dimension d, with f facets and diameter f - d.

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f - d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].
- H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Introduction	Why f — d?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	00000000	•oooo	

Hirsch tight

Politopes of dimension d, with f facets and diameter f - d.

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f - d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].
- H(10, 4) = 5, H(11, 4) = 6, H(12, 4) = 7.

Introduction	Why f — d?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	00000000	•oooo	

Hirsch tight

Politopes of dimension d, with f facets and diameter f - d.

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f - d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].
- H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Transportation polytopes

Many Hirsch-sharp polytopes

Theorem:

- $f \leq 2d$.
- *f* = 9, *d* = 4, [Klee-Walkup]
- *f* ≤ 3*d* − 3, [Holt-Klee, 98]
- *d* ≥ 14, [Holt-Klee, 98]
- *d* ≥ 8, [Holt-Fritzsche, 05]
- *d* ≥ 7, [Holt, 04]

Transportation polytopes

Many Hirsch-sharp polytopes

Theorem:

- $f \leq 2d$.
- *f* = 9, *d* = 4, [Klee-Walkup]
- *f* ≤ 3*d* − 3, [Holt-Klee, 98]
- *d* ≥ 14, [Holt-Klee, 98]
- *d* ≥ 8, [Holt-Fritzsche, 05]
- *d* ≥ 7, [Holt, 04]

Why f – d? "Partial coun 00000 0000000 Hirsch-sharp polytopes

Transportation polytopes

Many Hirsch-sharp polytopes

Theorem:

•
$$f \leq 2d$$
.

- *f* = 9, *d* = 4, [Klee-Walkup]
- *f* ≤ 3*d* − 3, [Holt-Klee, 98]
- *d* ≥ 14, [Holt-Klee, 98]
- *d* ≥ 8, [Holt-Fritzsche, 05]
- *d* ≥ 7,
 [Holt, 04]

f – 2d	0	1	2	3	4	5	6	7	• • •
d									
2	=	<	<	<	<	<	<	<	•••
3	=	<	<	<	<	<	<	<	•••
4	=								
5	\geq								
6	\geq								
7									
8	\geq								
:	:								
•	•								
		н	(f d)	vers		f – d)		

Why f – d? "Partial counter-00000 0000000 Hirsch-sharp polytopes

Transportation polytopes

Many Hirsch-sharp polytopes

Theorem:

٩	f ≤ 2 <i>d</i> .	f – 2d	0	1	2	3	4	5	6	7	•••
	f = 9, d = 4,	d									
•		2	=	<	<	<	<	<	<	<	
	[Klee-Walkup]	3	=	<	<	<	<	<	<	<	• • •
•	$f \le 3d - 3$,	4	=	=							
	[Holt-Klee, 98]	5	=								
•	$d \ge 14$,	6	\geq								
	[Holt-Klee, 98]	7	\geq								
•	$d\geq 8$, [Holt-	8	\geq								
	Fritzsche, 05]	÷	÷								
•	$d \geq 7$,										
	[Holt, 04]			H((f, d)	vers	us (1	f - d).		

Why f – d? "Partial count 00000 0000000 Hirsch-sharp polytopes

Transportation polytopes

Many Hirsch-sharp polytopes

Theorem:

•	$f \leq 2d$.	f – 2d	0	1	2	3	4	5	6	7	•••
		d									
•	f = 9, d = 4,	2	=	<	<	<	<	<	<	<	
	[Klee-Walkup]	3	=	<	<	<	<	<	<	<	•••
•	$f \le 3d - 3$,	4	=	=	<	<	<				
	[Holt-Klee, 98]	5	=	=	=						
•	$d \ge 14$,	6	=	=							
	[Holt-Klee, 98]	7	\geq								
•	$d\geq 8$, [Holt-	8	\geq								
	Fritzsche, 05]	:	:								
•	$d \geq 7$,										
	[Holt, 04]			H((f, d)	vers	us (1	f - d).		

Vhy f – d? "Partial cour

Hirsch-sharp polytopes

Transportation polytopes

Many Hirsch-sharp polytopes

Theorem:

For the following *f* and *d*, Hirsch-sharp polytopes exist:

٩	f < 2d.	f – 2 d	0	1	2	3	4	5	6	7	•••
	_	d									
	f = 9, d = 4,	2	=	<	<	<	<	<	<	<	•••
	[Klee-Walkup]	3	=	<	<	<	<	<	<	<	•••
۹	$f \leq 3d - 3$,	4	=	=	<	<	<				
	[Holt-Klee, 98]	5	=	=	=						
•	$d \geq 14$,	6	=	=	\geq	\geq					
	[Holt-Klee, 98]	7	\geq	\geq	\geq	\geq	\geq				
•	$d\geq 8$, [Holt-	8	\geq	\geq	\geq	\geq	\geq	\geq			
	Fritzsche, 05]	÷	÷	÷	÷	÷	÷	÷	· · .		
•	$d \geq 7$,										

H(f, d) versus (f - d).

Many Hirsch-sharp polytopes

Theorem:

● <i>f</i> ≤ 2 <i>d</i> .	f – 2d	0	1	2	3	4	5	6	7	•••
• $f = 9, d = 4,$	d									
	2	=	<	<	<	<	<	<	<	• • •
[Klee-Walkup]	3	=	<	<	<	<	<	<	<	• • •
• $f \le 3d - 3$,	4	=	=	<	<	<				
[Holt-Klee, 98]	5	=	=	=						
 <i>d</i> ≥ 14, 	6	=	=	\geq	\geq					
[Holt-Klee, 98]	7	$ \geq$	\geq	\geq	\geq	\geq				
 <i>d</i> ≥ 8, [Holt- 	8	\geq	\geq	\geq	\geq	\geq	\geq			
Fritzsche, 05]			÷	÷	÷	÷	÷	۰.		
 <i>d</i> ≥ 7, 	\geq 14	\geq	\geq	\geq	\geq	\geq	\geq			
[Holt, 04]			\overline{H}	(f, d)	vers	us (i	f – d).		

Many Hirsch-sharp polytopes

Theorem:

● <i>f</i> ≤ 2 <i>d</i> .	f – 2d	0	1	2	3	4	5	6	7	
• $f = 9, d = 4,$	d									
	2	=	<	<	<	<	<	<	<	
[Klee-Walkup]	3	=	<	<	<	<	<	<	<	
 <i>f</i> ≤ 3<i>d</i> − 3, 	4	=	=	<	<	<				
[Holt-Klee, 98]	5	=	=	=						
● <i>d</i> ≥ 14,	6	=	=	\geq	\geq					
[Holt-Klee, 98]	7	\geq	\geq	\geq	\geq	\geq				
● <i>d</i> ≥ 8, [Holt-	8	\geq								
Fritzsche, 05]	÷	:	÷	÷	÷	÷	÷	÷	÷	
 <i>d</i> ≥ 7, 	\geq 14	\geq								
[Holt, 04]	H(f, d) versus $(f - d)$.									

Many Hirsch-sharp polytopes

Theorem:

● <i>f</i> ≤ 2 <i>d</i> .	f – 2d	0	1	2	3	4	5	6	7	
• $f = 9, d = 4,$	d									
	2	=	<	<	<	<	<	<	<	•••
[Klee-Walkup]	3	=	<	<	<	<	<	<	<	
 <i>f</i> ≤ 3<i>d</i> − 3, 	4	=	=	<	<	<				
[Holt-Klee, 98]	5	=	=	=						
● <i>d</i> ≥ 14,	6	=	=	\geq	\geq					
[Holt-Klee, 98]	7	\geq								
 <i>d</i> ≥ 8, [Holt- 	8	\geq								
Fritzsche, 05]	•	:	÷	÷	÷	÷	÷	÷	÷	
 <i>d</i> ≥ 7, 	\geq 14	\geq								
[Holt, 04]	H(f, d) versus $(f - d)$.									

Many Hirsch-sharp polytopes

Theorem:

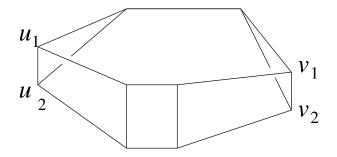
● <i>f</i> ≤ 2 <i>d</i> .	f – 2d	0	1	2	3	4	5	6	7	
• $f = 9, d = 4,$	d									
	2	=	<	<	<	<	<	<	<	
[Klee-Walkup]	3	=	<	<	<	<	<	<	<	
 <i>f</i> ≤ 3<i>d</i> − 3, 	4	=	=	<	<	<	?	?	?	
[Holt-Klee, 98]	5	=	=	=	?	?	?	?	?	
 <i>d</i> ≥ 14, 	6	=	=	\geq	\geq	?	?	?	?	
[Holt-Klee, 98]	7	\geq								
 <i>d</i> ≥ 8, [Holt- 	8	\geq								
Fritzsche, 05]			÷	÷	÷	÷	÷	÷	÷	
 <i>d</i> ≥ 7, 	\geq 14	\geq								
[Holt, 04]	H(f, d) versus $(f - d)$.									

Transportation polytopes

Hirsch-sharpness for $f \leq 3d - 3$ [Klee-Holt]

When we wedge in a Hirsch-sharp polytope

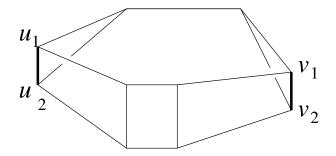
- ... we get two edges with Hirsch-distant vertices...
- ... so we can cut a corner on each side



Hirsch-sharpness for $f \leq 3d - 3$ [Klee-Holt]

When we wedge in a Hirsch-sharp polytope ...

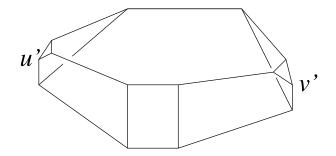
- ... we get two edges with Hirsch-distant vertices...
- ... so we can cut a corner on each side



Hirsch-sharpness for $f \leq 3d - 3$ [Klee-Holt]

When we wedge in a Hirsch-sharp polytope

- ... we get two edges with Hirsch-distant vertices...
- ... so we can cut a corner on each side



Introduction

Why f – d?

Partial counter-examples"

Hirsch-sharp polytopes

Transportation polytopes

Hirsch-sharpness for $d \leq 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet ... the new polytope is "Hirsch-sharp-minus-1"... unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

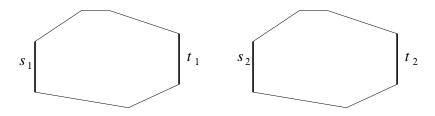
Transportation polytopes

Hirsch-sharpness for $d \le 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a

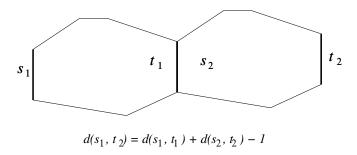
facet ... the new polytope is "Hirsch-sharp-minus-1"... unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.



Hirsch-sharpness for $d \le 8$ [Klee-Holt-Fritzsche]

(polar view)

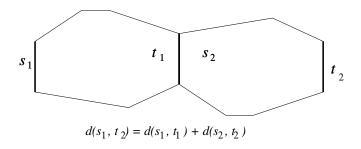
When we glue two (simplicially) Hirsch-sharp polytopes along a facet ... the new polytope is "Hirsch-sharp-minus-1"... unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.



Hirsch-sharpness for $d \le 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet ... the new polytope is "Hirsch-sharp-minus-1"... unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.



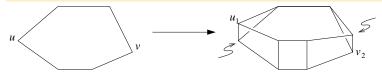
Transportation polytopes

Hirsch-sharpness for $d \le 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet ... the new polytope is "Hirsch-sharp-minus-1"... unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we also create "forbidden neighbors"



Transportation polytopes

Hirsch-sharpness for $d \le 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet ... the new polytope is "Hirsch-sharp-minus-1"... unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we also create "forbidden neighbors"

Theorem [Holt-Fritzsche '05]

After wedging 4 times in the KW (9,4)-polytope, we can glue and preserve Hirsch-sharpness

Why f – d? "F

Partial counter-examples"

Hirsch-sharp polytopes

Transportation polytopes

Hirsch-sharpness for d = 7 [Holt]

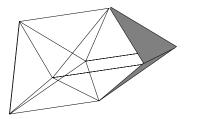
(polar view)

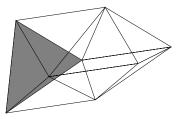
Same idea, but instead of based on forbiden neighbors, based on gluing along more than one simplex: Wedging three times on the KW (9,4)-polytope creates two "cliques of four simplices on eight vertices". We can glue on those eight vertices. troduction Why *f* − *d*? "Partial counter-examples" Hirsch-sharp polytopes Transporta

Hirsch-sharpness for d = 7 [Holt]

(polar view)

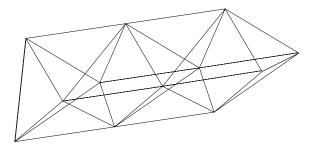
Same idea, but instead of based on forbiden neighbors, based on gluing along more than one simplex: Wedging three times on the KW (9,4)-polytope creates two "cliques of four simplices on eight vertices". We can glue on those eight vertices.





(polar view)

Same idea, but instead of based on forbiden neighbors, based on gluing along more than one simplex: Wedging three times on the KW (9,4)-polytope creates two "cliques of four simplices on eight vertices". We can glue on those eight vertices.



Introduction 00000	Why <i>f</i> — <i>d</i> ? 00000	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

- For each edge e $0 \le x_e$.
- For each vertex v, the sum

$$X = X_{e} - X_{e}$$

e exits *v e* enters *v*

Transportation polytopes ••••••

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

for each edge x_e and the restrictions:

- For each edge e $0 \le x_e$.
- For each vertex v, the sum

uction Why f

Vhy f — d?

Partial counter-examples" 0000000 Hirsch-sharp polytopes

Transportation polytopes • 00000

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

- For each edge e $0 \le x_e$.
- For each vertex v, the sum

Why *f* — *d*?

Partial counter-examples"

Hirsch-sharp polytopes

Transportation polytopes

Network flow polytopes

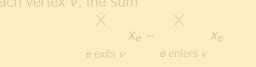
Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

- For each edge e $0 \le x_e$.
- For each vertex v, the sum



Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

• For each edge e $0 < x_{a}$.

• For each vertex v, the sum

Why *f* – *d*?

Partial counter-examples

Hirsch-sharp polytopes

Transportation polytopes

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

- For each edge e $0 \le x_e$.
- For each vertex v, the sum

$$\begin{array}{c} \times & \times \\ & x_e - & x_e \\ e \text{ exits } v & e \text{ enters } v \end{array}$$

Introduction 00000	Why f – d?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes
		Network flow	polytopes	

The flow polytope (set of feasible flows) in a network with *V* vertices and *E* edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

Introduction Why f - d? "Partial counter-examples" Hirsch-sharp polytopes 00000 00000 00000 00000 00000 00000

Network flow polytopes

The flow polytope (set of feasible flows) in a network with *V* vertices and *E* edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

Network flow polytopes

The flow polytope (set of feasible flows) in a network with *V* vertices and *E* edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97] Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

Introduction Why *f* − *d*? "Partial counter-examples" Hirsch-sharp polytopes

Network flow polytopes

The flow polytope (set of feasible flows) in a network with *V* vertices and *E* edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97] Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

Network flow polytopes

The flow polytope (set of feasible flows) in a network with *V* vertices and *E* edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97] Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

Introduction Why *f* − *d*? "Partial counter-examples" Hirsch-sharp polytopes

Network flow polytopes

The flow polytope (set of feasible flows) in a network with *V* vertices and *E* edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97] Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

IntroductionWhy f - d?"Partial counter-examples"Hirsch-sharp polytopesTransportation polytopes000000000000000000000000000

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$imes x_{ij} = a_i \quad orall i \quad ext{y} \quad igstarrow x_{ij} = b_j \quad orall j$$

Example

m = 2, n = 3;a = (10, 6), b = (4, 5, 7).

Introduction 00000	Why <i>f</i> – <i>d</i> ?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\stackrel{ imes}{,} x_{ij} = a_i \quad orall i \quad \mathrm{y} \quad \stackrel{ imes}{,} x_{ij} = b_j \quad orall j$$

Example

m = 2, n = 3;a = (10, 6), b = (4, 5, 7).

Introduction	Why $f - d$?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	0000000	00000	00000

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\begin{array}{cccc} \times & \times & \times \\ & x_{ij} = a_i & \forall i & \mathbf{y} & & \\ & & i & \\ \end{array} \begin{array}{c} \times & & \\ & x_{ij} = b_j & \forall j \end{array}$$

Example

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

Introduction 00000	Why f – d?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

Example

m = 2, n = 3;a = (10, 6), b = (4, 5, 7).

Introduction 00000	Why f – d?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\begin{array}{cccc} \times & & \times \\ & x_{ij} = a_i & \forall i & y & \\ & & i \end{array} \begin{array}{c} \times & \\ x_{ij} = b_j & \forall j \end{array}$$

Example

m = 2, n = 3;a = (10, 6), b = (4, 5, 7).

Introduction	Why $f - d$?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	00000000	00000	00000

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\begin{array}{cccc} \times & & \times \\ & x_{ij} = a_i & \forall i & y & \\ & & i & \end{array} \begin{array}{c} \times & & \\ x_{ij} = b_j & \forall j. \end{array}$$

Example

m = 2, n = 3;
<i>a</i> = (10, 6), <i>b</i> = (4, 5, 7).

10	
6	

Introduction 00000	Why f – d?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\begin{array}{cccc} \times & & \times \\ & x_{ij} = a_i & \forall i & y & \\ & & i \end{array} \begin{array}{c} \times & \\ x_{ij} = b_j & \forall j \end{array}$$

Example

m = 2, n = 3;a = (10, 6), b = (4, 5, 7).

Introduction	Why $f - d$?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	00000000	00000	00000

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\begin{array}{cccc} \times & \times \\ & x_{ij} = a_i & \forall i & y \\ & & i \end{array} \begin{array}{c} \times & \\ & x_{ij} = b_j & \forall j. \end{array}$$

Example

m = 2, n = 3;
<i>a</i> = (10, 6), <i>b</i> = (4, 5, 7).

4	5	7
---	---	---

Introduction	Why $f - d$?	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes
00000	00000	00000000	00000	00000

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\begin{array}{cccc} \times & \times & \times \\ & x_{ij} = a_i & \forall i & \mathbf{y} & & \\ & & i & \\ \end{array} \begin{array}{c} \times & & \mathbf{x}_{ij} = b_j & \forall j \\ & & i & \end{array}$$

Example

m = 2, n = 3;a = (10, 6), b = (4, 5, 7).

Introduction 00000	Why f – d?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$imes x_{ij} = a_i \quad orall i \quad ext{y} \quad igstarrow x_{ij} = b_j \quad orall j$$

Example

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

Example

$$m = n$$
; $a = b = (1, ..., 1) \Rightarrow$
Birkhoff polytope.

Introduction 00000	Why f – d? 00000	"Partial counter-examples"	Hirsch-sharp polytopes	Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\begin{array}{cccc} \times & & \times \\ & x_{ij} = a_i & \forall i & y & \\ & & i & \end{array} \begin{array}{c} \times & \\ & x_{ij} = b_j & \forall j. \end{array}$$

Theorem

Every transportation polytope has linear diameter $\leq 8(f - d)$. [Brightwell-van den Heuvel-Stougie, 2006].

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$imes x_{ij} = a_i \quad orall i \quad ext{y} \quad igstarrow x_{ij} = b_j \quad orall j.$$

Theorem

Every transportation polytope has linear diameter $\leq 8(f - d)$. [Brightwell-van den Heuvel-Stougie, 2006].

Introduction 00000	Why f – d?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes

Transportation polytope

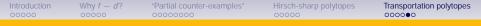
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\stackrel{\times}{\underset{j}{}} x_{ij} = a_i \quad \forall i \quad \mathsf{y} \quad \stackrel{\times}{\underset{i}{}} x_{ij} = b_j \quad \forall j.$$

Theorem

Every transportation polytope has linear diameter $\leq 8(f - d)$. [Brightwell-van den Heuvel-Stougie, 2006].



3-way transportation polytopes

We now consider tables with three dimensions.

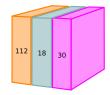
Transportation polytopes

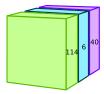
3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \stackrel{\times}{\underset{j,k}{\times}} x_{i,j,k} = a_i \;\;\forall i, \\ \stackrel{j,k}{\times} x_{i,j,k} = b_j \;\;\forall j, \\ \stackrel{i,k}{\underset{i,j}{\times}} x_{i,j,k} = c_k \;\;\forall k. \end{array}$$





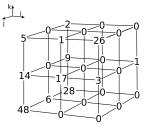
Transportation polytopes

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *lmn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \times \\ & &$$



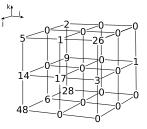
Transportation polytopes

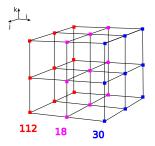
3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *lmn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \times \\ x_{i,j,k} = a_i \ \forall i, \\ \times \\ x_{i,j,k} = b_j \ \forall j, \\ \times \\ x_{i,j,k} = c_k \ \forall k. \end{array}$$





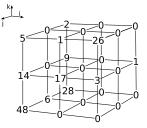
Transportation polytopes

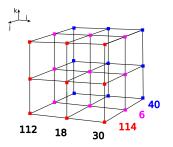
3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \times \\ x_{i,j,k} = a_i \ \forall i, \\ \times \\ x_{i,j,k} = b_j \ \forall j, \\ \overset{i,k}{\times} \\ x_{i,j,k} = c_k \ \forall k. \end{array}$$





Why *f* – *d*?

artial counter-examples"

Hirsch-sharp polytopes

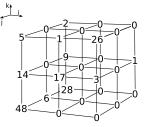
Transportation polytopes

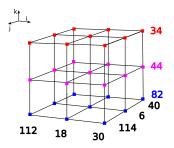
3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \times \\ x_{i,j,k} = a_i \ \forall i, \\ \times \\ x_{i,j,k} = b_j \ \forall j, \\ \stackrel{i,k}{\times} \\ x_{i,j,k} = c_k \ \forall k. \end{array}$$





tion Why f – d? "Partial c 00000 000000

rtial counter-examples"

Hirsch-sharp polytopes

Transportation polytopes

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \times \\ x_{i,j,k} = a_i \quad \forall i, \\ \times \\ x_{i,j,k} = b_j \quad \forall j, \\ \times \\ x_{i,j,k} = c_k \quad \forall k. \end{array}$$

2-marginal version

Same definition but with lm + ln + mn equations.

Transportation polytopes

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \times \\ x_{i,j,k} = a_i \ \forall i, \\ \times \\ x_{i,j,k} = b_j \ \forall j, \\ \times \\ x_{i,j,k} = c_k \ \forall k. \end{array}$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{lm}$, $B \in \mathbb{R}^{ln}$ and $C \in \mathbb{R}^{mn}$ $x_{i,j,k} = B_i \quad \forall i, k,$ $\times x_{i,j,k} = C_k \ \forall j,k.$

Transportation polytopes

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \times \\ x_{i,j,k} = a_i \ \forall i, \\ \times \\ x_{i,j,k} = b_j \ \forall j, \\ \times \\ x_{i,j,k} = c_k \ \forall k. \end{array}$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{lm}$, $B \in \mathbb{R}^{ln}$ and $C \in \mathbb{R}^{mn}$ Х $x_{i,j,k} = A_{ij} \quad \forall i, j,$ k $x_{i,i,k} = B_i \quad \forall i, k,$ $\times x_{i,j,k} = C_k \ \forall j,k.$

Transportation polytopes

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \times \\ x_{i,j,k} = a_i \ \forall i, \\ \times \\ x_{i,j,k} = b_j \ \forall j, \\ \times \\ x_{i,j,k} = c_k \ \forall k. \end{array}$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{lm}$, $B \in \mathbb{R}^{ln}$ and $C \in \mathbb{R}^{mn}$ Х $x_{i,j,k} = A_{ij} \quad \forall i, j,$ k $x_{i,j,k} = B_j \quad \forall i, k,$ İ $\times x_{i,j,k} = C_k \ \forall j,k.$

Transportation polytopes

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l + m + n equations

$$\begin{array}{c} \times \\ x_{i,j,k} = a_i \ \forall i, \\ \times \\ x_{i,j,k} = b_j \ \forall j, \\ \times \\ x_{i,j,k} = c_k \ \forall k. \end{array}$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{lm}$, $B \in \mathbb{R}^{ln}$ and $C \in \mathbb{R}^{mn}$ Х $x_{i,j,k} = A_{ij} \quad \forall i, j,$ k $x_{i,j,k} = B_j \quad \forall i, k,$ i Х $\bigwedge_{i} x_{i,j,k} = C_k \quad \forall j,k.$

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to *P*.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to *P*.
- Moreover, both can be computed in polynomial time starting from the description of *P*.

Theorema: De Loera-Kim-Onn-Santos 2007]

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to *P*.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to *P*.
- Moreover, both can be computed in polynomial time starting from the description of *P*.

Theorema: De Loera-Kim-Onn-Santos 2007]

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to *P*.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to *P*.
- Moreover, both can be computed in polynomial time starting from the description of *P*.

Theorema: De Loera-Kim-Onn-Santos 2007]

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to *P*.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to *P*.
- Moreover, both can be computed in polynomial time starting from the description of *P*.

Theorema: De Loera-Kim-Onn-Santos 2007]

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to *P*.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to *P*.
- Moreover, both can be computed in polynomial time starting from the description of *P*.

Theorema: De Loera-Kim-Onn-Santos 2007]

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to *P*.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to *P*.
- Moreover, both can be computed in polynomial time starting from the description of *P*.

Theorema: De Loera-Kim-Onn-Santos 2007]

Introduction 00000	Why <i>f</i> — <i>d</i> ?	"Partial counter-examples" 00000000	Hirsch-sharp polytopes	Transportation polytopes		
The end						

THANK YOU!