50 years of the Hirsch conjecture

Francisco Santos

Departamento de Matemáticas, Estadística y Computación
Universidad de Cantabria, Spain
J une 17, 2009
Algorithmic and Combinatorial Geometry, Budapest

52 years of the Hirsch conjecture (with focus on "partial counterexamples")

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with f facets and dimension d,

$$
\delta(P) \leq f-d
$$

Fifty two years later, not only the conjecture is open:

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with f facets and dimension d,

$$
\delta(P) \leq f-d
$$

Fifty two years later, not only the conjecture is open:

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with f facets and dimension d,

$$
\delta(P) \leq f-d
$$

Fifty two years later, not only the conjecture is open:

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with f facets and dimension d,

$$
\delta(P) \leq f-d
$$

Fifty two years later, not only the conjecture is open:
We do not know any polynomial upper bound for $\delta(P)$, in terms of f and d.

Some known cases

Hirsch conjecture holds for

- $d<3$: [Klee 1966].
- $f-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=H(13,6)=7$ [Bremner et al. >2009].

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $f-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967] $H(11,4)=6$ [Schuchert, 1995], $H(12,4)=H(12,5)=H(13,6)=7$ [Bremner et al. >2009].

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- f - d \leq 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=H(13,6)=7$ [Bremner et al. >2009].

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $f-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=H(13,6)=7$ [Bremner et al. >2009].

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $f-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=H(13,6)=7$ [Bremner et al. >2009].

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $f-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $f-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]

Some known cases

Hirsch conjecture holds for

- $d \leq 3$: [Klee 1966].
- $f-d \leq 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν-way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- $H(9,4)=H(10,4)=5$ [Klee-Walkup, 1967]
$H(11,4)=6$ [Schuchert, 1995],
$H(12,4)=H(12,5)=H(13,6)=7$ [Bremner et al. >2009].

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
For every d-polytope with f facets:

$$
\delta(P) \leq f^{\log _{2} d+2} .
$$

and a subexponential simplex algorithm:
Theorem rKalai 1992 , Matousek Sharir-Welz| 1992$]$
There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

$$
e^{O(\sqrt{f \log d})}
$$

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]

For every d-polytope with f facets:

$$
\delta(P) \leq f^{\log _{2} d+2}
$$

and a subexponential simplex algorithm:
Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]
There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most
$e^{O(\sqrt{f \log d})}$

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]

For every d-polytope with f facets:

$$
\delta(P) \leq f^{\log _{2} d+2}
$$

and a subexponential simplex algorithm:
Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]
There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most
$e^{O(\sqrt{f \log d})}$

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]

For every d-polytope with f facets:

$$
\delta(P) \leq f^{\log _{2} d+2} .
$$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

$$
e^{O(\sqrt{f \log d})}
$$

A linear bound in fixed dimension

Theorem [Barnette 1967, Larman 1970] For every d-polytope with f facets:

$$
\delta(P) \leq f 2^{d-3}
$$

A linear bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]
For every d-polytope with f facets:

$$
\delta(P) \leq f 2^{d-3}
$$

Polynomial bounds, under perturbation

Given a linear program with d variables and f restrictions, we consider a random perturbation of the matrix, within a parameter ϵ.

Theorem [S pielman-Teng 2004] [Vershynin 2006]
The expected diameter of the perturbed polyhedron is polynomial in d and ϵ^{-1}, and polylogarithmic in f.

Polynomial bounds, under perturbation

Given a linear program with d variables and f restrictions, we consider a random perturbation of the matrix, within a parameter ϵ.

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected diameter of the perturbed polyhedron is polynomial in d and ϵ^{-1}, and polylogarithmic in f.

Why is $f-d$ a "reasonable" bound?

- It holds with equality in simplices $(f=d+1, \delta=1)$ and cubes ($f=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $f \leq 2 d$, there are polytopes in which the bound is tight (products of simplices).
We call these "Hirsch-sharp" polytopes.

- For every $f>d$, it is easy to construct unbounded polyhedra where the bound is met.

Why is $f-d$ a "reasonable" bound?

- It holds with equality in simplices $(f=d+1, \delta=1)$ and cubes ($f=2 d, \delta=d$). $\delta(P)+\delta(Q)$. In particular:

For every $f \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.
a For every $f>d$, it is easy to construct unbounded polyhedra where the bound is met.

Why is $f-d$ a "reasonable" bound?

- It holds with equality in simplices $(f=d+1, \delta=1)$ and cubes ($f=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$.

For every $f \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

- For every $f>d$, it is easy to construct unbounded polyhedra where the bound is met.

Why is $f-d$ a "reasonable" bound?

- It holds with equality in simplices $(f=d+1, \delta=1)$ and cubes ($f=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $f \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

Why is $f-d$ a "reasonable" bound?

- It holds with equality in simplices $(f=d+1, \delta=1)$ and cubes ($f=2 d, \delta=d$).
- If P and Q satisfy it, then so does $P \times Q: \delta(P \times Q)=$ $\delta(P)+\delta(Q)$. In particular:

For every $f \leq 2 d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

- For every $f>d$, it is easy to construct unbounded polyhedra where the bound is met.

Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation
of dimension $d-1$.
Regular triangulations of dimension $d-1$ with f vertices and diameter $f-d$ are easy to construct by "stacking" simplices one after another.

Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation of dimension $d-1$.

Regular triangulations of dimension $d-1$ with f vertices and diameter $f-d$ are easy to construct by "stacking" simplices one after another.

Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation of dimension $d-1$.

Regular triangulations of dimension $d-1$ with f vertices and diameter $f-d$

Hirsch conjecture has the following interpretations:

Why is $f-d$ a "reasonable" bound (2)?

Hirsch conjecture has the following interpretations:
Assume $f=2 d$ and let u and v be two complementary vertices (no common facet):

Why is $f-d$ a "reasonable" bound (2)?

Hirsch conjecture has the following interpretations:
Assume $f=2 d$ and let u and v be two complementary vertices (no common facet):
d-step conjecture
It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.

$$
\text { " } d \text {-step conjecture" } \Rightarrow \text { Hirsch for } f=2 d \text {. }
$$

Why is $f-d$ a "reasonable" bound (2)?

Hirsch conjecture has the following interpretations:
Assume $f=2 d$ and let u and v be two complementary vertices (no common facet):
d-step conjecture
It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.

$$
\text { " } d \text {-step conjecture" } \Rightarrow \text { Hirsch for } f=2 d \text {. }
$$

Why is $f-d$ a "reasonable" bound (2)?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a polytope P :

Why is $f-d$ a "reasonable" bound (2)?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a polytope P :

non-revisiting conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

$$
\text { "non-revisiting conjecture" } \Rightarrow \text { Hirsch. }
$$

Why is $f-d$ a "reasonable" bound (2)?

Hirsch conjecture has the following interpretations:
More generally, given any two vertices u and v of a polytope P :

non-revisiting conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.
"non-revisiting conjecture" \Rightarrow Hirsch.

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]

$$
\text { Hirsch } \Leftrightarrow d \text {-step } \Leftrightarrow \text { non-revisiting. }
$$

Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:

$$
\leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq .
$$

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967] Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967] Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d)=\max \{\delta(P)$ P is a d-polytope with f

 facets\}. The basic idea is:

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting.
Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting.
Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting.
Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:
$\cdots \leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq \cdots$

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]

$$
\text { Hirsch } \Leftrightarrow d \text {-step } \Leftrightarrow \text { non-revisiting. }
$$

Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:
$\cdots \leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq \cdots$

- If $f<2 d$, because every pair of vertices lie in a common facet F, (at least) one less facet (induction on f and $f-d$).

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]

$$
\text { Hirsch } \Leftrightarrow d \text {-step } \Leftrightarrow \text { non-revisiting. }
$$

Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:
$\cdots \leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq \cdots$

- If $f<2 d$, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]

$$
\text { Hirsch } \Leftrightarrow d \text {-step } \Leftrightarrow \text { non-revisiting. }
$$

Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:
$\cdots \leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq \cdots$

- If $f<2 d$, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on f and $f-d$).

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch $\Leftrightarrow d$-step \Leftrightarrow non-revisiting.
Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:

$$
\cdots \leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq \cdots
$$

- If $f>2 d$, because every pair of vertices lies away from a facet F. Let P^{\prime} be the wedge of P over F. Then:

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]

$$
\text { Hirsch } \Leftrightarrow d \text {-step } \Leftrightarrow \text { non-revisiting. }
$$

Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:

$$
\cdots \leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq \cdots
$$

- If $f>2 d$, because every pair of vertices lies away from a facet F.

$$
\begin{aligned}
& \text { Let } P^{\prime} \text { be the wedge of } P \text { ov } \\
& \qquad d_{p}(u, v)=d_{p}(u, v) .
\end{aligned}
$$

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]

$$
\text { Hirsch } \Leftrightarrow d \text {-step } \Leftrightarrow \text { non-revisiting. }
$$

Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:

$$
\cdots \leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq \cdots
$$

- If $f>2 d$, because every pair of vertices lies away from a facet F. Let P^{\prime} be the wedge of P over F. Then:

Why is $f-d$ a "reasonable" bound (3)?

Theorem [Klee-Walkup 1967]

$$
\text { Hirsch } \Leftrightarrow d \text {-step } \Leftrightarrow \text { non-revisiting. }
$$

Proof: Let $H(f, d)=\max \{\delta(P): P$ is a d-polytope with f facets\}. The basic idea is:

$$
\cdots \leq H(2 d-1, d-1) \leq H(2 d, d) \geq H(2 d+1, d+1) \geq \cdots
$$

- If $f>2 d$, because every pair of vertices lies away from a facet F. Let P^{\prime} be the wedge of P over F. Then:

$$
d_{P}(u, v)=d_{P^{\prime}}(u, v) .
$$

Wedging, a.k.a. one-point-suspension

Wedging, a.k.a. one-point-suspension

Three variations of the Hirsch conjecture

The feasible region of a linear program can be an unbounded polyhedron, instead of a polytope.

$$
\begin{aligned}
& \text { Unbounded version of the Hirsch conjecture: } \\
& \text { The diameter of any polyhedron } P \text { with dimension } d \text { and } f \\
& \text { facets is at most } f-d \text {. } \\
& \text { Remark: this was the original conjecture by Hirsch. }
\end{aligned}
$$

Three variations of the Hirsch conjecture

The feasible region of a linear program can be an unbounded polyhedron, instead of a polytope.

Unbounded version of the Hirsch conjecture:
The diameter of any polyhedron P with dimension d and f facets is at most $f-d$.

Remark: this was the original conjecture by Hirsch.

Three variations of the Hirsch conjecture

For the simplex method, we are only interested in monotone, w.
r. t. a certain functional ϕ.

Monotone version of the Hirsch conjecture:
For any polytope/polyhedron P with dimension d and f facets, any linear functional ϕ and any initial vertex v :
There is a monotone path of length at most $f-d$ from v to the ϕ-maximal vertex.

Three variations of the Hirsch conjecture

For the simplex method, we are only interested in monotone, w.
r. t. a certain functional ϕ.

Monotone version of the Hirsch conjecture:
For any polytope/polyhedron P with dimension d and f facets, any linear functional ϕ and any initial vertex v : There is a monotone path of length at most $f-d$ from v to the ϕ-maximal vertex.

Three variations of the Hirsch conjecture

W. I. o. g. we can assume that our polytope is simple... state the conjecture for the polar (simplicial) polytope, which is a simplicial ($d-1$)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:
For any simplicial sphere of dimension $d-1$ with f vertices, the adjacency graph among d - 1-simplices has diameter at most $f-d$.

Three variations of the Hirsch conjecture

W. I. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial $(d-1)$-sphere.

Once we are there, why not remove polytopality:
\square For any simplicial sphere of dimension $d-1$ with f vertices, the adjacency graph among d - 1-simplices has diameter at most

Three variations of the Hirsch conjecture

W. I. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial $(d-1)$-sphere.

Once we are there, why not remove polytopality:

Three variations of the Hirsch conjecture

W. I. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial ($d-1$)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:

For any simplicial sphere of dimension $d-1$ with f vertices, the adjacency graph among d - 1 -simplices has diameter at most $f-d$.

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...
but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11]. Altshuler [1985] proved these examples are not polytopal spheres.

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...
... but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11]. Altshuler [1985] proved these examples are not polytopal spheres.

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...
... but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
 spheres.

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...
... but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].

1978, dimension 27; Mani-Walkup 1980, dimension 11]. Altshuler [1985] proved these examples are not polytopal

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...
... but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11]. Altshuler [1985] proved these examples are not polytopal spheres.

The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from the existence of a 4-polytope with 9 facets and with diameter 5:

The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from the existence of a 4 -polytope with 9 facets and with diameter 5:
$H(9,4)=5 \quad \Rightarrow$ counter-example to unbounded Hirsch
From a bounded (9,4)-polytope you get an unbounded (8,4)-polytope with (at least) the same diameter, by moving the "extra facet" to infinity.

The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from the existence of a 4-polytope with 9 facets and with diameter 5:

$H(9,4)=5 \quad \Rightarrow$ counter-example to unbounded Hirsch

From a bounded (9,4)-polytope you get an unbounded (8,4)-polytope with (at least) the same diameter, by moving the "extra facet" to infinity.

The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from the existence of a 4-polytope with 9 facets and with diameter 5:

The monotone Hirsch conjecture is false

$H(9,4)=5 \quad \Rightarrow$ counter-example to monotone Hirsch
In your bounded (9,4)-polytope you can make monotone paths from u to v necessarily long via a projective transformation that makes the "extra facet" be parallel to a supporting hyperplane of one of your vertices u and v

The monotone Hirsch conjecture is false

$H(9,4)=5 \quad \Rightarrow$ counter-example to monotone Hirsch
In your bounded (9,4)-polytope you can make monotone paths from u to v necessarily long via a projective transformation that makes the "extra facet" be parallel to a supporting hyperplane of one of your vertices u and v

The monotone Hirsch conjecture is false

The Klee-Walkup Hirsch-tight (9,4)-polytope

The Klee-Walkup Hirsch-tight (9,4)-polytope

The "unbounded trick" is reversible
From an unbounded 4-polyhedron with 8 facets and diameter five we can get a bounded polytope with 9 facets and sme diameter:

The Klee-Walkup Hirsch-tight (9,4)-polytope

And remember that

"The polar of an unbounded 4-polyhedron with nine facets is a regular triangulation of eight points in $\mathbb{R}^{3 "}$.

The Klee-Walkup Hirsch-tight (9,4)-polytope

This is a (Cayley Trick view of a) 3D triangulation with 8 vertices and diameter 5:

The Klee-Walkup Hirsch-tight (9,4)-polytope

These are coordinates for it, derived from this description:

$$
\begin{aligned}
& a:=(-3,3,1,2), \\
& b:=(3,-3,1,2), \\
& c:=(2,-1,1,3), \\
& d:=(-2,1,1,3),
\end{aligned}
$$

$$
\begin{aligned}
& e:=(3,3,-1,2), \\
& f:=(-3,-3,-1,2), \\
& g:=(-1,-2,-1,3), \\
& h:=(1,2,-1,3),
\end{aligned}
$$

$$
w:=(0,0,0,-2)
$$

The Mani-Walkup "always revisiting" simplicial 3-sphere

Mani and Walkup constructed a simplicial 3-ball with 20 vertices and with two tetrahedra abcd and mnop with the property that any path from abcd to mnop must revisit a vertex previously abandonded.

The key to the construction is in a subcomplex of two triangulated octagonal bipyramids.

The Mani-Walkup "always revisiting" simplicial 3-sphere

Mani and Walkup constructed a simplicial 3-ball with 20 vertices and with two tetrahedra abcd and mnop with the property that any path from abcd to mnop must revisit a vertex previously abandonded.

The key to the construction is in a subcomplex of two triangulated octagonal bipyramids.

The Mani-Walkup "always revisiting" simplicial 3-sphere

The Mani-Walkup "always revisiting" simplicial 3-sphere

The Mani-Walkup "always revisiting" simplicial 3-sphere

The Mani-Walkup "always revisiting" simplicial 3-sphere

Hirsch-sharp polytopes

Hirsch tight
Politopes of dimension d, with f facets and diameter $f-d$.

- For $f \leq 2 d$ they are easy to construct (e.g., products of simplices).
- For $d \leq 3$ (and $f>2 d$): they do not exist $H(f, d) \sim \frac{d-1}{d}(f-d)$.
- $H(9,4)=5$ [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with $d=4$ and $f=9$ only one has diameter 5
[Altshuler-Bokowski-Steinberg, 1980].
- $H(10,4)=5, H(11,4)=6, H(12,4)=7$.

Hirsch-sharp polytopes

Hirsch tight

Politopes of dimension d, with f facets and diameter $f-d$.

- For $f \leq 2 d$ they are easy to construct (e.g., products of simplices).
- For $d \leq 3$ (and $f>2 d$): they do not exist.
$H(f, d) \sim \frac{d-1}{d}(f-d)$.
- $H(9,4)=5$ [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with $d=4$ and $f=9$ only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].
- $H(10,4)=5, H(11,4)=6, H(12,4)=7$.

Hirsch-sharp polytopes

Hirsch tight

Politopes of dimension d, with f facets and diameter $f-d$.

- For $f \leq 2 d$ they are easy to construct (e.g., products of simplices).
- For $d \leq 3$ (and $f>2 d$): they do not exist $H(f, d) \sim \frac{d-1}{d}(f-d)$.
- $H(9,4)=5$ [Klee-Walkup 1967], but "only by chance":

Out of the 1142 combinatorial types of polytopes with
$d=4$ and $f=9$ only one has diameter 5
[Altshuler-Bokowski-Steinberg, 1980].

- $H(10,4)=5, H(11,4)=6, H(12,4)=7$.

Hirsch-sharp polytopes

Hirsch tight

Politopes of dimension d, with f facets and diameter $f-d$.

- For $f \leq 2 d$ they are easy to construct (e.g., products of simplices).
- For $d \leq 3$ (and $f>2 d$): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f-d)$.
- $H(9,4)=5$ [Klee-Walkup 1967],

Out of the 1142 combinatorial types of polytopes with
$d=4$ and $f=9$ only one has diameter 5
[Altshuler-Bokowski-Steinberg, 1980].

- $H(10,4)=5, H(11,4)=6, H(12,4)=7$.

Hirsch-sharp polytopes

Hirsch tight

Politopes of dimension d, with f facets and diameter $f-d$.

- For $f \leq 2 d$ they are easy to construct (e.g., products of simplices).
- For $d \leq 3$ (and $f>2 d$): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f-d)$.
- $H(9,4)=5$ [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with $d=4$ and $f=9$ only one has diameter 5
[Altshuler-Bokowski-Steinberg, 1980].

Hirsch-sharp polytopes

Hirsch tight

Politopes of dimension d, with f facets and diameter $f-d$.

- For $f \leq 2 d$ they are easy to construct (e.g., products of simplices).
- For $d \leq 3$ (and $f>2 d$): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f-d)$.
- $H(9,4)=5$ [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with $d=4$ and $f=9$ only one has diameter 5
[Altshuler-Bokowski-Steinberg, 1980].
- $H(10,4)=5, H(11,4)=6, H(12,4)=7$.

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

[Klee-Walkup]

[Holt-Klee, 98]

[Holt-Klee, 98]

- $d>8$, [Holt-

Fritsche, 05]

[Holt, 04]

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.

[Klee-Walkup]

[Holt-Klee, 98]

[Holt-Klee, 98]
- $d>8$, [Holt-

Fritsche, 05]

[Holt, 04]

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.
- $f=9, d=4$, [Klee-Walkup] - $f \leq 3 d-3$, [Holt-Klee, 98]
 [Holt-Klee, 98] - $d \geq 8$, [Holt Fritesche, 05]

$f-2 d$	0	1	2	3	4	5	6	7	\cdots
$\frac{d}{2}$									
3	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
4	$=$							$<$	\cdots
5	\geq								
6	\geq								
7	\geq								
8	\geq								
\vdots	\vdots								
(f, d) versus $(f-d)$.									

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.
- $f=9, d=4$, [Klee-Walkup]

Fritsche, 05]

$f-2 d$	0	1	2	3	4	5	6	7	\cdots
$\frac{d}{2}$	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
3	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
4	$=$	$=$							
5	$=$								
6	\geq								
7	\geq								
8	\geq								
\vdots	\vdots								

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.
- $f=9, d=4$, [Klee-Walkup]
$f \leq 3 d-3$,
[Holt-Klee, 98]
- $d \geq 14$, [Holt-Klee, 98] $d \geq 8$, [HoltFritesche, 05]

$f-2 d$	0	1	2	3	4	5	6	7	\cdots
$\frac{d}{2}$	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
3	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
4	$=$	$=$	$<$	$<$	$<$				
5	$=$	$=$	$=$						
6	$=$	$=$							
7	\geq								
8	\geq								
\vdots									

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.
- $f=9, d=4$, [Klee-Walkup]
- $f \leq 3 d-3$, [Holt-Klee, 98] [Holt-Klee, 98] $d \geq 8$, [Holt Fritsche, 05]

$f-2 d$	0	1	2	3	4	5	6	7	\cdots
$\frac{d}{2}$	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
3	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
4	$=$	$=$	$<$	$<$	$<$				
5	$=$	$=$	$=$						
6	$=$	$=$	\geq	\geq					
7	\geq	\geq	\geq	\geq	\geq				
8	\geq	\geq	\geq	\geq	\geq	\geq			
\vdots	\ddots								
H									

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.
- $f=9, d=4$, [Klee-Walkup]
- $f \leq 3 d-3$, [Holt-Klee, 98]
- $d \geq 14$, [Holt-Klee, 98]

$f-2 d$	0	1	2	3	4	5	6	7	\cdots
$\frac{d}{2}$	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
3	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
4	$=$	$=$	$<$	$<$	$<$				
5	$=$	$=$	$=$						
6	$=$	$=$	\geq	\geq					
7	\geq	\geq	\geq	\geq	\geq				
8	\geq	\geq	\geq	\geq	\geq	\geq			
\vdots	\ddots								
≥ 14	\geq	\geq	\geq	\geq	\geq	\geq			
$H(f, d)$ versus $(f-d)$.									

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.
- $f=9, d=4$, [Klee-Walkup]
- $f \leq 3 d-3$, [Holt-Klee, 98]
- $d \geq 14$, [Holt-Klee, 98]
- $d \geq 8$, [HoltFritzsche, 05]

$f-2 d$	0	1	2	3	4	5	6	7	\cdots
$\frac{d}{2}$	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
3	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
4	$=$	$=$	$<$	$<$	$<$				
5	$=$	$=$	$=$						
6	$=$	$=$	\geq	\geq					
7	\geq	\geq	\geq	\geq	\geq				
8	\geq	\cdots							
\vdots									
≥ 14	\geq	\cdots							

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.
- $f=9, d=4$, [Klee-Walkup]
- $f \leq 3 d-3$, [Holt-Klee, 98]
- $d \geq 14$, [Holt-Klee, 98]
- $d \geq 8$, [HoltFritesche, 05]
- $d \geq 7$, [Holt, 04]

$f-2 d$	0	1	2	3	4	5	6	7	\cdots
$\frac{d}{2}$	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
3	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
4	$=$	$=$	$<$	$<$	$<$				
5	$=$	$=$	$=$						
6	$=$	$=$	\geq						
7	\geq	\cdots							
8	\geq	\cdots							
\vdots									
≥ 14	\geq	$\geq \geq$	\geq	\geq	\geq	\geq	\cdots		

Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- $f \leq 2 d$.
- $f=9, d=4$, [Klee-Walkup]
- $f \leq 3 d-3$, [Holt-Klee, 98]
- $d \geq 14$, [Holt-Klee, 98]
- $d \geq 8$, [HoltFritzsche, 05]
- $d \geq 7$, [Holt, 04]

$f-2 d$	0	1	2	3	4	5	6	7	\cdots
$\frac{d}{2}$	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
3	$=$	$<$	$<$	$<$	$<$	$<$	$<$	$<$	\cdots
4	$=$	$=$	$<$	$<$	$<$	$?$	$?$	$?$	\cdots
5	$=$	$=$	$=$	$?$	$?$	$?$	$?$	$?$	\cdots
6	$=$	$=$	\geq	\geq	$?$	$?$	$?$	$?$	\cdots
7	\geq	\cdots							
8	\geq	\cdots							
\vdots									
≥ 14	\geq	\cdots							

Hirsch-sharpness for $f \leq 3 d-3$ [Klee-Holt]

When we wedge in a Hirsch-sharp polytope . . .

. . . we get two edges with Hirsch-distant vertices ...so we can cut a corner on each side

Hirsch-sharpness for $f \leq 3 d-3$ [Klee-Holt]

When we wedge in a Hirsch-sharp polytope . . .
... we get two edges with Hirsch-distant vertices. . .

Hirsch-sharpness for $f \leq 3 d-3$ [Klee-Holt]

When we wedge in a Hirsch-sharp polytope ...
... we get two edges with Hirsch-distant vertices. . .
...so we can cut a corner on each side

Hirsch-sharpness for $d \leq 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet . . . the new polytope is "Hirsch-sharp-minus-1". . . unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

Hirsch-sharpness for $d \leq 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet . . . the new polytope is "Hirsch-sharp-minus-1". . . unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

Hirsch-sharpness for $d \leq 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet . . .the new polytope is "Hirsch-sharp-minus-1"...
before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

$$
d\left(s_{1}, t_{2}\right)=d\left(s_{1}, t_{1}\right)+d\left(s_{2}, t_{2}\right)-1
$$

Hirsch-sharpness for $d \leq 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet . . . the new polytope is "Hirsch-sharp-minus-1". . unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

$$
d\left(s_{1}, t_{2}\right)=d\left(s_{1}, t_{1}\right)+d\left(s_{2}, t_{2}\right)
$$

Hirsch-sharpness for $d \leq 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet . . . the new polytope is "Hirsch-sharp-minus-1". . unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we also create "forbidden neighbors"

Hirsch-sharpness for $d \leq 8$ [Klee-Holt-Fritzsche]

(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet . . . the new polytope is "Hirsch-sharp-minus-1". . unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we also create "forbidden neighbors"

Theorem [Holt-Fritsche '05]

After wedging 4 times in the KW (9,4)-polytope, we can glue and preserve Hirsch-sharpness

Hirsch-sharpness for $d=7$ [Holt]

(polar view)

Same idea, but instead of based on forbiden neighbors, based on gluing along more than one simplex: Wedging three times on the KW $(9,4)$-polytope creates two "cliques of four simplices on eight vertices". We can glue on those eight vertices.

Hirsch-sharpness for $d=7$ [Holt]

(polar view)

Same idea, but instead of based on forbiden neighbors, based on gluing along more than one simplex: Wedging three times on the KW (9,4)-polytope creates two "cliques of four simplices on eight vertices". We can glue on those eight vertices.

Hirsch-sharpness for $d=7$ [Holt]

(polar view)

Same idea, but instead of based on forbiden neighbors, based on gluing along more than one simplex: Wedging three times on the KW (9,4)-polytope creates two "cliques of four simplices on eight vertices". We can glue on those eight vertices.

Network flow polytopes

Network
 Directed ara h, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

> Transportation problem in a network
> Minimize a certain linear functional ("cost") having one variable for each edge x_{e} and the restrictions:
> - For each edge e $0 \leq x_{e}$.
> - For each vertex v, the sum
> e exits $v \quad e$ enters v
> equals the supply (positive) or demand (negative) at v.

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network
Minimize a certain linear functional ("cost') having one variable for each edge x_{e} and the restrictions:

- For each edge e
- For each vertex v, the sum
e exits v
e enters v
equals the supply (positive) or demand (negative) at v.

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost') having one variable for each edge x_{e} and the restrictions:

- For each edge e
- For each vertex v, the sum
e exits $v \quad e$ enters v
equals the supply (positive) or demand (negative) at v.

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost') having one variable for each edge x_{e} and the restrictions:

- For each edge e

$$
0 \leq x_{e} .
$$

- For each vertex v, the sum
e exits $v \quad e$ enters v
equals the supply (positive) or demand (negative) at v.

Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost') having one variable for each edge x_{e} and the restrictions:

- For each edge e

$$
0 \leq x_{e} .
$$

- For each vertex v, the sum
X
e exits v
$X_{e}-\underset{e \text { enters } v}{ } X_{e}, ~$
equals the supply (positive) or demand (negative) at v.

Network flow polytopes

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \leq E-V$ and number of facets $f \leq E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]
Every network flow polytone has diameter bounded bv
$O(E V \log V)$, that is, $O\left(f^{2} \log f\right)$.

Remark: these are very particular polytopes (e.g., their 2-faces have at most six sides), but extremely important in optimization.

Network flow polytopes

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \leq E-V$ and number of facets $f \leq E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97] Every network flow polytope has diameter bounded bv $O(E V \log V)$, that is, $O\left(f^{2} \log f\right)$.

Remark: these are very particular polytopes (e.g., their 2-faces have at most six sides), but extremely important in optimization.

Network flow polytopes

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \leq E-V$ and number of facets $f \leq E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]Every network flow polytope has diameter bounded by $O(E V \log V)$, that is, $O\left(f^{2} \log f\right)$.

Remark: these are very particular polytopes (e.g., their 2-faces have at most six sides), but extremely important in optimization.

Network flow polytopes

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \leq E-V$ and number of facets $f \leq E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(E V \log V)$, that is, $O\left(f^{2} \log f\right)$.
\square

Network flow polytopes

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \leq E-V$ and number of facets $f \leq E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(E V \log V)$, that is, $O\left(f^{2} \log f\right)$.

Remark: these are very particular polytopes (e.g., their 2-faces have at most six sides),

Network flow polytopes

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \leq E-V$ and number of facets $f \leq E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(E V \log V)$, that is, $O\left(f^{2} \log f\right)$.

Remark: these are very particular polytopes (e.g., their 2-faces have at most six sides), but extremely important in optimization.

Transportation polytopes

Transportation polytope
 The network flow polytopes of complete bipartite graphs.
 Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices $\left(x_{i j}\right)$ with
 $$
x_{i j}=a_{i} \quad \forall i \quad y \quad x_{i j}=b_{j} \quad \forall j .
$$

Example

$$
\begin{aligned}
& m=2, n=3 \\
& a=(10,6), b=(4,5,7) .
\end{aligned}
$$

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with

[^0]
Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with

$$
\mathrm{X}_{j} x_{i j}=a_{i} \quad \forall i \quad \text { y } \quad{ }_{i}^{\mathrm{X}} x_{i j}=b_{j} \forall j .
$$

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with

$$
\mathrm{X}_{j} x_{i j}=a_{i} \quad \forall i \quad \text { y } \quad{ }_{i}^{\mathrm{X}} x_{i j}=b_{j} \forall j .
$$

[^1]
Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with

$$
{ }_{j}^{x_{i j}}=a_{i} \quad \forall i \quad \text { y } \quad{ }_{i} \quad x_{i j}=b_{j} \quad \forall j .
$$

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with

$$
{ }_{j}^{\mathrm{X}} x_{i j}=a_{i} \quad \forall i \quad \text { y } \quad{ }_{i} x_{i j}=b_{j} \forall j .
$$

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with

$$
{ }_{j}^{x_{i j}}=a_{i} \quad \forall i \quad \text { y } \quad{ }_{i} \quad x_{i j}=b_{j} \quad \forall j .
$$

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with

$$
\mathrm{X}_{j}^{x_{i j}}=a_{i} \quad \forall i \quad \text { y } \quad \mathrm{X}_{i} x_{i j}=b_{j} \quad \forall j .
$$

$$
\begin{aligned}
& \text { Example } \\
& \begin{array}{l}
m=2, n=3 ; \\
a=(10,6), b=(4,5,7) .
\end{array}
\end{aligned}
$$

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with

$$
{ }_{j}^{\mathrm{X}} x_{i j}=a_{i} \quad \forall i \quad \text { y } \quad{ }_{i}^{x_{i j}=b_{j} \quad \forall j .}
$$

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with
X

X

$$
x_{i j}=a_{i} \quad \forall i \quad y \quad x_{i j}=b_{j} \quad \forall j .
$$

j

Example

$$
\begin{aligned}
& m=2, n=3 ; \\
& a=(10,6), b=(4,5,7) .
\end{aligned}
$$

Example

$$
m=n ; a=b=(1, \ldots, 1) \Rightarrow
$$ Birkhoff polytope.

Transportation polytopes

Transportation polytope
 The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices $\left(x_{i j}\right)$ with

$$
x_{i j}=a_{i} \quad \forall i \quad y \quad x_{i j}=b_{j} \quad \forall j .
$$

Theorem
Every transportation polytope has linear diameter $\leq 8(f-d)$.
[Brightwell-van den Heuvel-Stougie, 2006].

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.

$$
\begin{aligned}
& \text { Also: the set of contingency tables with specified marginals: } \\
& \text { given two vectors } a \in \mathbb{R}^{m} \text { and } b \in \mathbb{R}^{n} \text {, the matrices }\left(x_{i j}\right) \text { with }
\end{aligned}
$$

Theorem
Every transportation polytope has linear diameter $\leq 8(f-d)$. [Brightwell-van den Heuvel-Stougie, 2006].

Transportation polytopes

Transportation polytope

The network flow polytopes of complete bipartite graphs.
Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, the matrices ($x_{i j}$) with
X
X

$$
x_{i j}=a_{i} \quad \forall i \quad y
$$

${ }^{j}$

Theorem
Every transportation polytope has linear diameter $\leq 8(f-d)$. [Brightwell-van den Heuvel-Stougie, 2006].

3-way transportation polytopes

We now consider tables with three dimensions.

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{l}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$,
1-marginal 3-way transportation polytope associated to them is defined in Imn non-negative variables $x_{i, j, k} \in \mathbb{R}>0$ with the $I+m+n$ equations

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $I m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $l+m+n$ equations

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $/ m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $I+m+n$ equations

$$
{ }_{j, k}^{X} \quad x_{i, j, k}=a_{i} \forall i,
$$

$$
x
$$

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $/ m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $I+m+n$ equations

$$
\begin{aligned}
& \mathrm{X} \quad x_{i, j, k}=a_{i} \forall i, \\
& \mathrm{X}^{j, k} \\
& x_{i, k, k}=b_{j} \forall j,
\end{aligned}
$$

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $I m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $I+m+n$ equations

$$
\begin{aligned}
& X^{X, k} x_{i, j, k}=a_{i} \forall i, \\
& X^{j} \quad x_{i, j, k}=b_{j} \forall j, \\
& X^{j, k} \quad x_{i, j, k}=c_{k} \forall k .
\end{aligned}
$$

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $/ m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $I+m+n$ equations

$$
\begin{aligned}
& \mathrm{X}_{x_{i, j, k}}=a_{i} \forall i, \\
& \mathrm{X}^{j, k} \\
& x_{i, j, k}=b_{j} \forall j, \\
& \mathrm{X}_{i, j}^{j, k} \\
& x_{i, j, k}=c_{k} \forall k .
\end{aligned}
$$

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $/ m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $I+m+n$ equations

$$
\begin{aligned}
& X^{x_{i, j, k}}=a_{i} \forall i, \\
& X^{j, k} \quad x_{i, j, k}=b_{j} \forall j, \\
& X^{j, k} \quad x_{i, j, k}=c_{k} \forall k .
\end{aligned}
$$

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $/ m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $I+m+n$ equations

$$
\begin{aligned}
& \mathrm{X} \quad x_{i, j, k}=a_{i} \forall i, \\
& \mathrm{X}_{j, k}^{j} \\
& x_{i, j, k}=b_{j} \forall j, \\
& \mathrm{X}^{j, k} \quad x_{i, j, k}=c_{k} \forall k .
\end{aligned}
$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{/ m}, B \in \mathbb{R}^{/ n}$ and $C \in \mathbb{R}^{m n}$,

X

$$
x_{i, j, k}=A_{i j} \quad \forall i, j,
$$

k

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $/ m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $I+m+n$ equations

$$
\begin{aligned}
& \mathrm{X} \quad x_{i, j, k}=a_{i} \forall i, \\
& \mathrm{X}_{j, k}^{j} \\
& x_{i, j, k}=b_{j} \forall j, \\
& \mathrm{X}^{j, k} \quad x_{i, j, k}=c_{k} \forall k .
\end{aligned}
$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{/ m}, B \in \mathbb{R}^{/ n}$ and $C \in \mathbb{R}^{m n}$,

X

$$
x_{i, j, k}=A_{i j} \forall i, j,
$$

k

$$
X \quad x_{i, j, k}=B_{j} \forall i, k,
$$

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^{\prime}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in $/ m n$ non-negative variables $x_{i, j, k} \in \mathbb{R}_{\geq 0}$ with the $I+m+n$ equations

$$
\begin{aligned}
& X^{X, k} x_{i, j, k}=a_{i} \forall i, \\
& X^{j} \quad x_{i, j, k}=b_{j} \forall j, \\
& X^{j, k} \quad x_{i, j, k}=c_{k} \forall k .
\end{aligned}
$$

2-marginal version

Given three matrices

$$
A \in \mathbb{R}^{/ m}, B \in \mathbb{R}^{/ n} \text { and }
$$

$$
C \in \mathbb{R}^{m n},
$$

$$
x
$$

$$
x_{i, j, k}=A_{i j} \quad \forall i, j,
$$

k

$$
X \quad x_{i, j, k}=B_{j} \forall i, k,
$$

$$
j
$$

$$
x
$$

$$
x_{i, j, k}=C_{k} \forall j, k .
$$

Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]
Given any polytope P, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to P.
- There is a 1-marginal 3 -way transportation polytope with a face isomorphic to P.
- Moreover, both can be computed in polynomial time starting from the description of P.

> Theorema: De Loera-Kim-Onn-Santos 2007]
> Every 1-marginal 3-way transportation polytope with f facets has diameter bounded by $4 f^{2}$.

Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]

Given any polytope P, defined via equations with rational coefficients,
> - There is a 2-marginal 3-way transportation polytope isomorphic to P.
> - There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.
> - Moreover, both can be computed in polynomial time starting from the description of P.

[^2]
Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]

Given any polytope P, defined via equations with rational coefficients,

- There is a 2-marginal 3 -way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.
- Moreover, both can be computed in polynomial time starting from the description of P.

Every 1-marginal 3-way transportation polytope with f facets has diameter bounded by $4 f^{2}$.

Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]

Given any polytope P, defined via equations with rational coefficients,

- There is a 2-marginal 3 -way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.

- Moreover, both can be computed in polynomial time starting from the description of P.

Every 1-marginal 3-way transportation polytope with f facets has diameter bounded by $4 f^{2}$.

Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]

Given any polytope P, defined via equations with rational coefficients,

- There is a 2-marginal 3 -way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.
- Moreover, both can be computed in polynomial time starting from the description of P.

Every 1-marginal 3-way transportation polytope with f facets has diameter bounded by $4 f^{2}$.

Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]

Given any polytope P, defined via equations with rational coefficients,

- There is a 2 -marginal 3 -way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.
- Moreover, both can be computed in polynomial time starting from the description of P.

Theorema: De Loera-Kim-Onn-Santos 2007]

Every 1-marginal 3-way transportation polytope with f facets has diameter bounded by $4 f^{2}$.

The end

THANK YOU!

[^0]: Example
 $m=2, n=3$;
 $a=(10,6), b=(4,5,7)$.

[^1]: Example

 $$
 m=2, n=3 ;
 $$

 $$
 a=(10,6), b=(4,5,7) .
 $$

[^2]: Every 1-marginal 3-way transportation polytope with f facets has diameter bounded by $4 f^{2}$

