## Geometric Summaries: Coresets (and Beyond)

Pankaj K. Agarwal


Duke University
dUKE COMPUTER SCIENCE

## Large Data Sets

$S$ : Set of $n$ points in $\mathbb{R}^{d}$

- Both $n$ and $d$ are becoming large
- Other geometric objects
\& Intractability
- NP-, PSPACE-hardness
- Even quadratic-time algorithms impractical
- Curse of dimensionality: exponential dependency on $d$

设 Approximation algorithms

- Work with a sparse representation (summary) of $S$



## Overview

\& Part I: Early Results

- Coresets, $\varepsilon$-kernels

से Part II: Recent Results

- Dynamic coresets
- Coresets in streaming model
\& Part III: Other Summaries
- Coresets for nonextent measures
- Spanners
[Vapnik-Chervonenkis]
\& $X=(S, R), R \subseteq 2^{S}$ : Set system (range space)
- $\delta$ : VC-dimension of $X$

设 $A \subseteq S \varepsilon$-approximation if for all $r \in R$

$$
\left|\frac{|r|}{|S|}-\frac{|r \cap A|}{|A|}\right| \leq \varepsilon
$$

~ A random subset $A \subset S$ of size $\frac{\delta^{2}}{\varepsilon^{2}} \log \frac{\delta}{\varepsilon}$ is an $\varepsilon$-approximation of $S$ with high probability

Efficient deterministic algorithms for computing an $\varepsilon$-approximation [Matoušek, Chazelle]

## -Approximations

A: $\varepsilon$-approximation of $S$
i. $A$ is a coreset of $S$ in a combinatorial/statistical sense

- E.g. Approximate range counting
- Approximates the distribution
~ $A$ is not a coreset of $S$ in a metric/geometric sense
- $\operatorname{diam}(A)$ does not approximate $\operatorname{diam}(S)$
- A best-fit circle for $A$ does not approximate the best-fit circle for $S$

What about other sampling schemes?


Directional width: For $u \in \mathbb{S}^{d-1}$,

$$
\omega(u, S)=\max _{p \in S}\langle u, p\rangle-\min _{p \in S}\langle u, p\rangle
$$

$\varepsilon$-kernel: $Q \subseteq S$ is an $\varepsilon$-kernel of $S$ if

$$
\omega(u, Q) \geq(1-\varepsilon) \omega(u, S) \quad \forall u \in \mathbb{S}^{d-1}
$$

## Computing $\varepsilon$-Kernels

Theorem A: [AHV, Ch, YAPV] $S \subseteq \mathbb{R}^{d}, \varepsilon>0$. An $\varepsilon$-kernel of $S$ of size $1 / \varepsilon^{(d-1) / 2}$ can be computed in time $n+1 / \varepsilon^{d-3 / 2}$.

Lemma 1: $\exists$ affine transform $M$ s.t.
\& Unit hypercube $[-1,+1]^{d}$ is the smallest box enclosing $S$
\& $M(S)$ is fat
~ $Q$ is an $\varepsilon$-kernel of $S \Leftrightarrow M(Q)$ is an $\varepsilon$-kernel of $M(S)$


Lemma 2：$S$ ：Set of $n$ fat points in $[-1,+1]^{d}$ ， $\varepsilon>0$ ．An $\varepsilon$－kernel of $S$ of size $1 / \varepsilon^{(d-1) / 2}$ can be computed in time $n+1 / \varepsilon^{d-3 / 2}$ ．
Sketch：Algorithm in two phases


论 Compute $1 / \varepsilon^{d-1}$－size approximation $Q$
设 Draw a sphere $B$ of radius 2 centered at origin
\＆Draw a grid of size $1 / \varepsilon^{(d-1) / 2}$ on $B$
\＆For each grid point $q$ ，select its nearest neigh－ bor in $Q$
－Suffices to compute approximate NN
－Use Arya－Mount ANN software library

## Applications of $\varepsilon$－Kernels

$n+1 / \varepsilon^{O(1)}$－time approximation algorithms for computing f extent measures：diameter，width से smallest enclosing convex shapes
－ball，ellipse
－rectangle，simplex，
$\vdots$
Fails to approximate
设 Extent of moving points
\＆Smallest enclosing non－convex shapes
－Minimum－width annulus
－Minimum－width cylindrical shell

## Extents of Functions

㕸 $F=\left\{f_{1}, \ldots, f_{n}\right\}: d$-variate functions

- $U_{F}$ : Upper envelope of $F U_{F}(x)=\max _{i} f_{i}(x)$
- $L_{F}$ : Lower envelope of $F L_{F}(x)=\min _{i} f_{i}(x)$


Extent of F:

$$
E_{F}(x)=U_{F}(x)-L_{F}(x)
$$

$\varepsilon$-kernel: $G \subseteq F$ is an $\varepsilon$-kernel of $F$ if

$$
(1-\varepsilon) E_{F}(x) \leq E_{G}(x) \quad \forall x \in \mathbb{R}^{d}
$$

## $\varepsilon$-Kernels of Polynomials

$F=\left\{f_{1}, \ldots, f_{n}\right\}: d$-variate polynomials
Linearization [Yao-Yao, A.-Matoušek, . . .]

$$
\operatorname{Map} \varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, \varphi(x)=\left(\varphi_{1}(x), \ldots, \varphi_{k}(x)\right)
$$

\& Each $f_{i}$ maps to a $k$-variate linear function $h_{i}$;

$$
f_{( }(x)>0 \Leftrightarrow h_{i}(\varphi(x))>0
$$

设 $k$ : Dimension of linearization
Using linearization + duality:
Theorem C: $F$ : a family of $n d$-variate polynomials, $k$ : dimension of linearization, $\varepsilon>0$. We can compute an $\varepsilon$-kernel of $F$ of size $1 / \varepsilon^{k / 2}$ in time $n+1 / \varepsilon^{k-1 / 2}$.

Applications

Nonconvex－shape fitting
is $n+1 / \varepsilon^{O(1)}$ time approximation algorithms
－minimum－width annulus
－cylindrical shell
约 Exact algorithms quite expensive
Kinetic data structures（KDS）
\％maintaining approximate
－diameter，width
－smallest enclosing shape：box，ball，ellipse
－\＃events： $1 / \varepsilon^{O(1)}$ ，update time： $\log ^{O(1)} 1 / \varepsilon$
is Exact KDS require $\Omega\left(n^{2}\right)$ events

## Robust Kernels

访 Notion of $\varepsilon$－kernel is susceptible to outliers！
～$S^{k}[u]$ ：$k$ th extremal point in direction $u$

$$
\omega_{k, \ell}(u)=\left\langle u, S^{k}[u]\right\rangle-\left\langle u, S^{k}[-u]\right\rangle
$$

$(k, \varepsilon)$－kernel：$Q \subseteq S$ is $(k, \varepsilon)$－kernel if

$\omega_{a, b}(u, Q) \geq(1-\varepsilon) \omega_{a, b}(u, S) \quad \forall u \in \mathbb{S}^{d-1}, a, b \leq k$
$\delta=\varepsilon / 4, S_{0}=S$
for $0 \leq i \leq 2 k$ do
$T_{i}: \delta$－kernel of $P_{i} ; \quad S_{i+1}=S_{i} \backslash T_{i}$
令 $Q=\bigcup_{i=0}^{2 k} T_{i}|Q|=k / \varepsilon^{(d-1) / 2}$
Theorem G：$Q$ is a $(k, \varepsilon)$－kernel．
\& Computing $(d / \varepsilon)^{O(1)}$-size coresets in high dimensions
[Bădoiu, Har-Peled, Indyk], [Bădoiu, Clarkson], [Har-Peled, Varadarajan], [Kumar, Mitchell, Yildirim], [Kumar, Yildirim]

- Smallest enclosing ball $\lceil 1 / \varepsilon\rceil$
- Smallest enclosing ellipsoid $O(d / \varepsilon)$
- 1-median $1 / \varepsilon^{O(1)}$
~ Relation to the Frank-Wolfe algorithm for quadratic programming [Clarkson]
~ Coresets for distance between two polytopes [Gärtner, Jaggi]
约 Computing coresets for clustering [Bădoiu, Har-Peled, Indyk], [Har-Peled, Ke], [Ke], [A., Procopiuc, Varadarajan]
- $k$-centers, $k$-medians, $k$-line-centers


## PART II

~ Dynamic coresets: insertion/deletion of points

- Linear size
- Small update time
\& Corsets in streaming model: insertion only
- Small Size: independent of $n$
- Small update time

Maintain $\varepsilon$－kernel as points are inserted and deleted！
［A．，Har－Peled，Varadarajan］
Size： $1 / \varepsilon^{(d-1) / 2}$ ，Update time：$(\log n / \varepsilon)^{O(d)}$
［Chan］
Size： $1 / \varepsilon^{(d-1) / 2}$ ，Update time：$\left(1 / \varepsilon^{d-1}\right) \log n$

Algorithms work in two stages：
设 Maintains a $(\varepsilon / 2)$－kernel $\mathcal{L}$ of size $1 / \varepsilon^{d-1}$
～Computes a $(\varepsilon / 2)$－kernel $\mathcal{K}$ of $\mathcal{L}$
古 $\mathcal{K}$ ：$\varepsilon$－kernel of $S$

## Chan＇s $O\left(1 / \varepsilon^{d-1}\right)$－Size Algorithm

～Anchor points
－$a_{0}, \ldots, a_{d}$
－Define affine transform
－Define bounding box $B$
该 Anchor points fixed：Update is easy
～Updating anchors
－Partition $S$ into $\log n$ layers
$S_{0}, S_{1}, \ldots, S_{u}$
－$\left|S_{i}\right| \geq \alpha\left|S_{i-1}\right|$
－$\bigcup_{j<i} S_{j}$ acts as anchors for $S_{i}$
－$\bigcup_{j<i} S_{j} \neq \emptyset$ ：Use above algorithm

$\mathcal{K}$ may completely change after each update!
设 [A., Phillips, Yu] Maintain an $\varepsilon$-kernel $\mathcal{K}$

- Size: $1 / \varepsilon^{(d-1) / 2}$, Update time: $\log n+1 / \varepsilon^{(d-1) / 2}$
- $O(1)$ changes in $\mathcal{K}$ at each update

H Main idea

- Fixed anchors: stable updates for the $1 / \varepsilon^{(d-1) / 2}$ size $\varepsilon$-kernel
- Stable version of Chan's $1 / \varepsilon^{d-1}$-size algorithm
- "Gradual" morphing of the two algorithms

Stable (deterministic) algorithms for maintaining $\varepsilon$-nets and $\varepsilon$-approximations?

## Streaming Model

访 $S$ : Stream of points in $\mathbb{R}^{2}$; points arrive one-by-one
~ Maintain the $\varepsilon$-kernel using $1 / \varepsilon^{O(1)}$ space
[A., Har-Peled, Varadarajan], [Chan], [A., Yu]
Theorem $\mathbf{F}$ [AY]: $\varepsilon$-kernel in $\mathbb{R}^{2}$ can be in the streaming model using $O(1 / \sqrt{\varepsilon})$ space and $O(\log (1 / \varepsilon))$ update time.
~ Problem is easy as long as anchor points fixed
\& Keep track of NN of each grid point

- Update time: $\log (1 / \varepsilon)$



## Streaming: Algorithm Overview

Maintaining anchor points: epochs and subepochs

h $o$ : first point in the stream
o $x_{i}$ : first point in the $i$ th epoch
if $y_{j}$ : first point in the $j$ th subepoch of the current epoch
in $x_{i}$ starts a new epoch if $\left\|o x_{i}\right\|>2\left\|o x_{i-1}\right\|$
\& $y_{j}$ starts a new subepoch if $d\left(y_{j}, \ell(o, a)\right)>2 d\left(y_{j-1}, \ell(o, a)\right)$

## Streaming: Algorithm Overview

解 Maintain $\varepsilon$-kernels for $\log (1 / \varepsilon)$ epochs

- Maintain $\varepsilon$-kernels for $\log (1 / \varepsilon)$ subepochs within each epoch
- Points in earlier epochs are too close to $o$
- Points in earlier subepochs are too close to the line $o x_{i}$
- Size: $(1 / \sqrt{\varepsilon}) \log ^{2}(1 / \varepsilon)$
~ Prune coresets from older epochs and subepochs
- Size: $(1 / \sqrt{\varepsilon})$
in $d$ is large and part of the input
[4. Raghvendra] For $\varepsilon=d^{1 / 3}$, size of $\varepsilon$-kernel is $\Omega\left(\exp \left(d^{1 / 3}\right)\right)$.
设 Coresets of size $(d / \varepsilon)^{O(1)}$ for some problems
* Are there streaming algorithms that use $(d / \varepsilon)^{O(1)}$ space to maintain coresets?


## Streaming in High Dimensions

该 Minimum enclosing ball (MEB) [Chan, Zarrabi-Zadeh]

- Maintains a single ball
- Size: $O(d)$
- $(1+\sqrt{2}) / 2$-approximation
- Bound is tight for any structure that maintains only one ball
\& Diameter [Indyk]
- $c$-approximation, for $c>\sqrt{2}$
- Size: $d n^{1 /\left(c^{2}-1\right)}$
- Update time: $d n^{1 /\left(c^{2}-1\right)}$
[A., Raghvendra]
~ $\mathcal{H}$ Diameter
- $\left(\sqrt{2}-1 / d^{1 / 3}\right)$-approximation, size: $\Omega\left(\exp \left(d^{1 / 3}\right)\right)$
- $(\sqrt{2}+\varepsilon)$-approximation, size: $O\left(\left(d / \varepsilon^{3}\right) \log (1 / \varepsilon)\right)$
\& Minimum enclosing ball (MEB)
- $\left((1+\sqrt{2}) / 2-1 / d^{1 / 3}\right)$-approximation, size: $\Omega\left(\exp \left(d^{1 / 3}\right)\right)$
- $((1+\sqrt{3}) / 2+\varepsilon)$-approximation, size: $O\left(\left(d / \varepsilon^{3}\right) \log (1 / \varepsilon)\right)$

论 Lower bounds are proved using communication complexity
约 Upper bounds based on a notion of blurred ball cover


## Lower Bound：Diameter

Lemma：$\exists K \subset \mathbb{S}^{d-1}$ s．t．
（i）$|K|=\exp \left(d^{1 / 3}\right)$ ，（ii）$p \in K \Rightarrow-p \in K$ ，
（iii）$p, q \in K, p \neq q \Rightarrow\|p q\| \approx \sqrt{2}$

出 $X=K \cap\left\{x_{d} \geq 0\right\}, \phi:[1: k] \rightarrow X, k \approx \exp \left(d^{1 / 3}\right)$
； $\mathbb{D}$ ：Maintains $\sqrt{2}$－diameter in the streaming model
－Returns $s, t \in S$ s．t．$\forall p, q \in S\|p q\| \leq \sqrt{2}\|s t\|$

> Alice
> कर $\forall a \in A$ insert $\phi(a)$ to $\mathbb{D}$
> क. Communicate $\mathbb{D}$ to Bob

$$
\begin{aligned}
& \text { Bob } \\
& \forall b \in B \text { insert }-\phi(b) \text { to } \mathbb{D} \\
& \text { If } \mathbb{D} \text { returns an antipodal pair } \\
& \quad \text { Return } A \cap B \neq \emptyset
\end{aligned}
$$

Communication complexity： $\operatorname{Size}(\mathbb{D})$

## Lower Bound：Diameter

出 $\operatorname{diam}(\phi(A)) \approx \sqrt{2}$
绊 $\operatorname{diam}(\phi(A) \cup-\phi(B)) \approx \begin{cases}2 & A \cap B \neq \emptyset \\ \sqrt{2} & A \cap B=\emptyset\end{cases}$
约 $\mathbb{D}$ can distinguish the two case
if Communication complexity $=\operatorname{Size}(\mathbb{D})=\Omega(k)=\Omega\left(\exp \left(d^{1 / 3}\right)\right.$
\& $S$ : set of points
设 $\mathcal{K}=\left\{K_{1}, \ldots, K_{u}\right\}, K_{i} \subseteq S$, $\left|K_{i}\right| \approx 1 / \varepsilon$
设 $B_{i}=\operatorname{MEB}\left(K_{i}\right), r_{i}=r\left(B_{i}\right)$
\& $K$ : $\varepsilon$-blurred ball cover if

- $r_{i+1} \geq\left(1+\varepsilon^{2}\right) r_{i}$
- $\forall j \leq i, K_{j} \subseteq B_{i}$
- $S \subset \bigcup_{i}(1+\varepsilon) B_{i}$
$r_{u} \leq r_{1} / \varepsilon \Rightarrow u \approx \frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}, \sum_{i}\left|K_{i}\right| \approx \frac{1}{\varepsilon^{3}} \log \frac{1}{\varepsilon}$


## Inserting a Point

Case I: $\exists i, p \in(1+\varepsilon) B_{i}$


Case II: $\forall i, p \notin(1+\varepsilon) B_{i}$


\& $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ : Pairwise-disjoint convex obstacles in $\mathbb{R}^{3}$
㕸 $\mathcal{F}(\mathcal{P})=\mathbb{R}^{3} \backslash \bigcup P$ : Free space
设 For $s, t \in \mathcal{F}(\mathcal{P}), d_{\mathcal{P}}(s, t)$ : length of the collision-free shortest path
Given $\varepsilon>0$, is there a small-sketch $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{k}\right\}$,
(i) $P_{i} \subseteq Q_{i}$
(ii) $\sum_{i}\left|Q_{i}\right|$ small
(iii) $\forall s, t \in \mathcal{F}(Q) d_{\mathcal{Q}}(s, t) \leq(1+\varepsilon) d_{\mathcal{P}}(s, t)$

## Coresets for Shortest Paths

[A., Raghvendra, Yu]
$d=2:$
\& $\sum_{i}\left|Q_{i}\right|=\Theta(k / \sqrt{\varepsilon})$
$d=3:$
~ No small-size sketch exists if neither $s$ nor $t$ is given
\& If $s$ is fixed (but $t$ is arbitrary)

- $\sum_{i}\left|Q_{i}\right| \approx O\left((k / \varepsilon)^{3}\right)$
- $\sum_{i}\left|Q_{i}\right| \approx \Omega\left(k^{2}\right)$

Is there a binary spce partition of a set of disjoint $k$ convex objects in $\mathbb{R}^{3}$ of size $O\left(k^{2}\right)$ ?

出 $\mathcal{P}: k$ pairwise disjoint polygons in $\mathbb{R}^{2}$
却 $n$ ：\＃vertices in $\mathcal{P}$
of $S=\left\{x_{1}, \ldots, x_{n}\right\}: n$ points in $\mathbb{R}^{2}$
Geodesic－distance graph： $\mathbb{G}(\mathcal{P}, S)=S \times S$ ，

$$
w\left(x_{i}, x_{j}\right)=d_{\mathcal{P}}\left(x_{i}, x_{j}\right)
$$

Visibility graph： $\mathbb{V}(\mathcal{P}, S)=(S, E)$ ，

$$
\left(x_{i}, x_{j}\right) \in E \Leftrightarrow x_{i} x_{j} \subset \mathcal{F}(\mathcal{P}) \quad w\left(x_{i}, x_{j}\right)=\left|x_{i}-x_{j}\right|
$$

Given a graph $G, H \subseteq G t$－spanner of $G$ if

$$
d_{H}(u, v) \leq t \cdot d_{G}(u, v) \forall u, v \in V(G)
$$

Are there small－size spanners of $\mathbb{G}$ and $\mathbb{V}$ ？

## Spanners

［Abam，A．，de Berg］：Work in progress
Visibility graph
访 $F$ is a simple polygon
－$t \leq 3-\varepsilon,|H|=\Omega\left(n^{2}\right)$
－$t \geq 6+\varepsilon,|H| \approx n^{4 / 3}$
is $F$ has holes
－$t \leq 5-\varepsilon,|H|=\Omega\left(n^{4 / 3}\right)$
Geodesic distance graph
访 $F$ is a simple polygon
－$t \leq 2-\varepsilon,|H|=\Omega\left(n^{2}\right)$
－$t \geq 3+\varepsilon,|H| \approx n \log ^{2} n$
设 Some weak results when $P$ has holes

