Sharing Joints, in Moderation
A Grounshaking Clash between Algebraic and Combinatorial Geometry

Micha Sharir

Tel Aviv University

Joint work with
György Elekes (in memoriam), Haim Kaplan, and Eugenii Shustin

- A nice, but not so major problem in combinatorial geometry
- Open for nearly 20 years
- Completely solved [Guth-Katz 2008]

By a new, algebraic geometry machinery

- Which we "trivialize", and extend in many ways
- The beginning of a long and beautiful friendship

Joints (in 3-space)

L - Set of n lines in \mathbb{R}^{3}
Joint: Point incident to three non-coplanar lines of L
The Joints Problem. Show:
The number of joints in L is $O\left(n^{3 / 2}\right)$
Worst-case tight:

Joints in dimensions

L - Set of n lines in \mathbb{R}^{d}
Joint: Point incident to d lines of L, not all in a common hyperplane

Show: The number of joints in L is $O\left(n^{d /(d-1)}\right)$
Again, worst-case tight (same grid construction)

The Joints Problem

Long (but sparse) history (exclusively in 3D):
$O\left(n^{7 / 4}\right)=O\left(n^{1.75}\right)$ joints
[Chazelle et al. 1992]
$O\left(n^{23 / 14}\right)=O\left(n^{1.643}\right)$ joints
[Sharir 1994]
$O^{*}\left(n^{112 / 69}\right)=O\left(n^{1.6232}\right)$ joints
[Feldman, Sharir 2005]
$O^{*}\left(n^{3 / 2+\varepsilon} / \theta^{1 / 2+\varepsilon}\right)$ " θ-fat" joints
[Bennett, Carbery, Tao 2005]
$O\left(n^{5 / 3}\right)$ line-joint incidences
[Sharir, Welzl 2004]

The Joints Problem

Mildly related to cycles in the "depth order" of the lines:

Small perturbation of the lines turns a joint into a cycle

(Much harder problem; limited progress;
Arises in spatial visibility problems)

The Joints Problem

Older bounds obtained by "traditional" methods:

Forbidden subgraphs
Space decomposition
Plücker coordinates
Duality of sorts,
but no real progress ...

The Joints Problem

And then a miracle happened...
[L. Guth and N. H. Katz, Algebraic methods in discrete analogs of the Kakeya problem, arXiv:0812.1043v1, 4 Dec 2008]

A new algebraic proof technique, solving the 3D problem:

The number of joints in a set of n lines in 3-space is $O\left(n^{3 / 2}\right)$

- Proof uses basic tools from algebraic geometry
(E.g., Bézout's Theorem)
- Somewhat involved
- We "trivialize" it, and extend it to any $d \geq 3$:

Theorem: The number of joints in a set of n lines in \mathbb{R}^{d} is $O\left(n^{d /(d-1)}\right)$

Note added in press:

In an unbelievable development:

Theorem: The number of joints in a set of n lines in \mathbb{R}^{d} is $O\left(n^{d /(d-1)}\right)$
[Kaplan, Sharir, Shustin]
On lines and joints
arXiv:0906.0558, posted June 2, 2009
[Quilodrán]
The joints problem in \mathbb{R}^{n}
arXiv:0906.0555, posted June 2, 2009

One algebraic tool

S set of m points in \mathbb{R}^{d}
Claim: There exists a d-variate polynomial $p\left(x_{1}, \ldots, x_{d}\right)$ of degree b, vanishing at all the points of S, for

$$
\binom{b+d}{d} \geq m+1 \quad \text { or } \quad b \approx(d!m)^{1 / d}
$$

Proof: A d-variate polynomial p of degree b has $M=\binom{b+d}{d}$ monomials

Requiring p to vanish at m points \Longrightarrow
$m<M$ linear homogeneous equations in the coefficients of the monomials

Always has a nontrivial solution

Proof of the bound on joints:

L - Set of n lines in \mathbb{R}^{d}
J - Set of their joints; put $m=|J|$

Assume to the contrary that $m>A n^{d /(d-1)}$
($A \approx d$ a constant; to be fixed)

Step 1: Pruning

As long as L has a line ℓ incident to $<m /(2 n)$ joints,

Remove ℓ from L and its incident joints from J

Left with subsets $L_{0} \subseteq L, J_{0} \subseteq J$, with

- $\left|J_{0}\right|>m / 2$
- Each $\ell \in L_{0}$ is incident to $\geq m /(2 n)$ points of J_{0}
- Each $a \in J_{0}$ is a joint of L_{0}

Step 2: Vanishing

Construct a polynomial p vanishing at all the points of J_{0}

Of degree $b \leq(d!m)^{1 / d}$

Crucial: Every line of L_{0} contains more than b points of J_{0} :

$$
\frac{m}{2 n}>(d!m)^{1 / d}, \quad \text { or } \quad m>\underbrace{\left(2^{d} d!\right)^{1 /(d-1)}}_{A} n^{d /(d-1)}
$$

$p=0$ on more than b points on a line $\ell \Longrightarrow p \equiv 0$ on ℓ

So $p \equiv 0$ on every line of L_{0}

Step 3: Differentiating

Fix $a \in J_{0}$ and an incident line of $L_{0} \quad \ell=\{a+t v \mid t \in \mathbb{R}\}$

$$
p(a+t v)=p(a)+(\nabla p(a) \cdot v) t+O\left(t^{2}\right)
$$

for t small
$p(a+t v) \equiv 0$ for all t and $p(a)=0 \Longrightarrow \nabla p(a) \cdot v=0$

Step 3: Differentiating

$\nabla p(a) \cdot v=0$
for all directions v of lines of L_{0} incident to a
a is a joint $\Longrightarrow \nabla p(a)=0$

All first-order derivatives of p vanish at all the points of J_{0}

For each line $\ell \in L_{0}, p_{x_{i}}$, which has degree $b-1$, vanishes at more than b points of $\ell \Longrightarrow p_{x_{i}} \equiv 0$ on ℓ

All first-order derivatives of p vanish on all the lines of L_{0}

Step 3: Iterating

Fix $a \in J_{0}$ and an incident line of $L_{0} \quad \ell=\{a+t v \mid t \in \mathbb{R}\}$

$$
p_{x_{i}}(a+t v)=p_{x_{i}}(a)+\left(\nabla p_{x_{i}}(a) \cdot v\right) t+O\left(t^{2}\right)
$$

for t small
$p_{x_{i}}(a+t v) \equiv 0$ for all t and $p_{x_{i}}(a)=0 \Longrightarrow \nabla p_{x_{i}}(a) \cdot v=0$

Step 3: Iterating

Arguing exactly as above:
All second-order derivatives of p vanish on all the lines of L_{0}

Keep on going:
All partial derivatives of p, of any order, vanish on all the lines of L_{0}

Contradiction: Eventually reach derivatives with constant nonzero values!

The end

Some personal notes

György Elekes passed away in September 2008

About 6-7 years earlier, communicated ideas about joints in arrangements of lines, showing:

Number of incidences between n equally inclined lines (lines forming a fixed angle with the z-axis) in space and their joints is $O\left(n^{3 / 2} \log ^{1 / 2} n\right)$

A very special case of a much harder problem he worked on, related to distinct distances in the plane coming up soon!

Some personal notes

The paper he sent me in 2002 contained a scientific will:
... If I knew for sure that during the next thirty years - which is a loose upper bound for my life span - no new method would be developed to completely solve the $n^{4 / 3}$ problem, then I would immediately suggest that we publish all we have in a joint paper.

However, at the moment, I think we had better wait for the big fish (à la Wiles :))

By the way, in case of something unexpected happens to me (car accident, plane crash, a brick on the top of my skull) I definitely ask you to publish anything we have, at your will.

Gyuri

Some personal notes

Elekes's son contacted me, having found a copy of this note, and asked me to fulfill the will

I even managed to slightly improve Elekes's bound to $O\left(n^{3 / 2}\right)$ (but only for equally inclined lines!)

I sent the revised note to János Pach asking him whether it would fit in DCG

Some personal notes

János's answer was merciless but very valuable:

Dear Micha:
Have you seen arXiv:0812.1043
Title: Algebraic Methods in Discrete Analogs of the Kakeya
Problem
Authors: Larry Guth, Nets Hawk Katz
If the proof is correct, DCG is not a possibility for the Elekes-Sharir note.

Cheers, János

Some personal notes

And since then I haven't been sleeping much...

New Results:

- Simpler and extended proof of the Guth-Katz bound Already done
- Extensions of the algebraic technique (only in 3D):
- The number of incidences between n lines and their joints is $O\left(n^{3 / 2}\right)$
- The max number of incidences between n lines and m of their joints is $\Theta\left(m^{1 / 3} n\right)$ (for $m \geq n$)

New Results:

- The max number of incidences between n lines and m arbitrary points is $\Theta\left(m^{1 / 3} n\right)$ (for $m \geq n$), if
(i) No plane contains more than n points, and
(ii) Each point is incident to at least three lines
(In particular, $3 m=O\left(m^{1 / 3} n\right) \Longrightarrow m=O\left(n^{3 / 2}\right)$)

New Results

-• Proof of Bourgain's conjecture
(simpler variant of the proof of [Guth-Katz])
Bourgain's Conjecture (now Theorem)
L a set of n lines in 3-space
P a set of points in 3-space
No plane contains more than $n^{1 / 2}$ lines of L Each line of ℓ contains at least $n^{1 / 2}$ points of P

Then $|P|=\Omega\left(n^{3 / 2}\right)$

Best previous bound: $\Omega\left(n^{11 / 8}\right)$ [Solymosi, Tóth, 2008]

New Results (Distinct Distances)

- Incidences between points and helices in \mathbb{R}^{3}

Related to distinct distances in the plane (an [Erdős 46] classic)

- Some conjectures about number of such incidences
- If true, would imply:

Number of distinct distances in any set S of s points in the plane is always $\Omega(s / \log s)$

- Almost tight-Erdős's upper bound is $O(s / \sqrt{\log s})$

New Results (Distinct Distances)

- Several sharp upper bounds on the number of incidences, And some implications:
(Still not fully resolving the conjectures)

- Number of rotations (rigid motions) which map (at least) three points of S to three other points of S is $O\left(s^{3}\right)$

Worst-case tight for collinear triples

New Results (Distinct Distances)

-ค Major open question: How many rotations map a pair of points of S to another such pair? $O\left(s^{3}\right)$?

- Theorem: Number of distinct (mutually non-congruent) triangles spanned by S is $\Omega\left(s^{2} / \log s\right)$

Almost worst-case tight:
The grid gives $O\left(s^{2}\right)$ distinct triangles (Or fewer?)

Philosophical Interlude / Oxymoron:

- Such a "clash of disciplines" does not happen often
- When it does, the landscape changes and
- The gold rush should begin
- I should not be stressing this too much (Keep all the gold to myself...)

Extensions: Incidences and flat points Only in 3D

- To please the connoisseurs
- And to awe the multitudes...

Incidences with joints

Same general approach (make a polynomial vanish "everywhere"), but:

When pruning "light" lines, cannot remove the incident joints

So some joints become "flat" (but still incident to many (coplanar) lines)

Handling flat points: More algebraic tools

(Developed by [Guth-Katz] for solving Bourgain's problem)

In a nutshell:

Point a is linearly flat for a polynomial p if
(i) a is a regular point, and
(ii) p vanishes on three distinct coplanar lines through a

Claim: If a is linearly flat then the second fundamental form of p vanishes at a

Handling flat points: An additional (gory) algebraic twist

Claim: If a is linearly flat then the second fundamental form of p vanishes at a

Translation: Take the second-order Taylor expansion

$$
p(a+u) \approx p(a)+\nabla p(a) \cdot u+\frac{1}{2} u^{T} H_{p}(a) u
$$

where H_{p} is the Hessian matrix

$$
\left(\begin{array}{lll}
p_{x x} & p_{x y} & p_{x z} \\
p_{x y} & p_{y y} & p_{y z} \\
p_{x z} & p_{y z} & p_{z z}
\end{array}\right)
$$

Then $u^{T} H_{p}(a) u=0$ for every u in the tangent plane at a

Vanishing second fundamental form

$$
u^{T}\left(\begin{array}{lll}
p_{x x}(a) & p_{x y}(a) & p_{x z}(a) \\
p_{x y}(a) & p_{y y}(a) & p_{y z}(a) \\
p_{x z}(a) & p_{y z}(a) & p_{z z}(a)
\end{array}\right) u=0
$$

for every u in the tangent plane at a
\Rightarrow Some (a-dependent) linear combinations of 2 nd-order derivatives vanish at a

Express this as $q(a)=0$ for some "global" polynomials q

Vanishing second fundamental form

Trick: $e_{1}, e_{2}, e_{3}-$ Coordinate unit vectors
$\nabla p(a) \times e_{j}$ lie in the tangent plane, so

$$
\left(\nabla p(a) \times e_{j}\right)^{T} H_{p}(a)\left(\nabla p(a) \times e_{j}\right)=0
$$

for $j=1,2,3$
\equiv The three polynomials
$Q_{p}^{(j)}=\left(\nabla p \times e_{j}\right)^{T} H_{p}\left(\nabla p \times e_{j}\right)$ vanish at a
Conversely, if they vanish at a, the second fundamental form vanishes at a
Each $Q_{p}^{(j)}$ has degree $\leq(b-1)+(b-2)+(b-1)=3 b-4$

Handling flat points - More tools from algebra

Call a regular point a flat for p if

$$
p(a)=Q_{p}^{(1)}(a)=Q_{p}^{(2)}(a)=Q_{p}^{(3)}(a)=0
$$

Recall Claim: If the zero set $p=0$ contains three coplanar lines meeting at a regular point a then a is a flat point

Claim: If a line ℓ contains $3 b-3$ flat points then ℓ is a flat line - all its points are flat

Proof: The four polynomials $p, Q_{p}^{(1)}, Q_{p}^{(2)}, Q_{p}^{(3)}$ vanish identically on ℓ

Handling flat points - More tools from algebra

How many flat lines can p have?

Claim: At most $b(3 b-4)$ if it is square-free and has no linear factors

Proof: Uses Bézout's Theorem and other algebraic nuggets

Note: p has a linear factor $\Leftrightarrow p \equiv 0$ on a plane Every point / line on that plane is flat

Handling joints

Almost forgot: Handle points that are still joints after pruning

A joint a is a singular point of p : We already showed that $\nabla p(a)=0$ at a joint

A line ℓ with more than b joints is a singular line of P : p_{x}, p_{y}, p_{z}, all of degree $b-1$, vanish on $\geq b$ points on ℓ

Handling joints

How many singular lines can p have?

Claim: At most $b(b-1)$ if it is square-free

Proof: Again, follows from Bézout's Theorem

Incidences with joints - High-level overview

- Prune away light lines, but keep the joints
(some may now be flat)
- Construct a square-free polynomial p to vanish at all the joints (Same ideas, but more complicated)
- Each heavy (surviving) line is either singular, or flat, or lies in a plane on which $p \equiv 0$ (a linear factor of p; at most b such planes)
- At most $b(b-1)+b(3 b-4)<4 b^{2} \ll n$ singular / flat lines
-. Use the Szemerédi-Trotter bound $O\left(M^{2 / 3} N^{2 / 3}+M+N\right)$ for incidences in each vanishing plane
- Putting everything together, it somehow works...

Conclusions, Prospects

- Somehow, and strangely, p "senses" the geometry
- Find a more "geometric" proof? Geometric interpretation?
- Find other applications of the algebraic approach (Joints / incidences with other curves? Higher dimensions?)
- Push further analysis of distinct distances via incidences in 3D
- Repeated distances in the plane?

Long overdue problem, suspected to require algebra

Whetting your appetite:

Spanning tree with small crossing number

- S - Set of n points in the plane
- Construct a bivariate polynomial p vanishing on S Of degree $d \approx n^{1 / 2}$
- Use the zero set $Z: p=0$ as a spanning tree Shortcut its arcs into straight segments (if desired)
- Each line crosses Z in at most $d=O\left(n^{1 / 2}\right)$ points!!

Thank You

