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• A nice, but not so major problem in combinatorial geometry

• Open for nearly 20 years

• Completely solved [Guth-Katz 2008]

By a new, algebraic geometry machinery

• Which we “trivialize”, and extend in many ways

• The beginning of a long and beautiful friendship
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Joints (in 3-space)

L – Set of n lines in R3

Joint: Point incident to three non-coplanar lines of L

The Joints Problem. Show:

The number of joints in L is O(n3/2)

Worst-case tight:
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Joints in d dimensions

L – Set of n lines in R
d

Joint: Point incident to d lines of L,

not all in a common hyperplane

Show: The number of joints in L is O(nd/(d−1))

Again, worst-case tight (same grid construction)
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The Joints Problem

Long (but sparse) history (exclusively in 3D):

O(n7/4) = O(n1.75) joints
[Chazelle et al. 1992]

O(n23/14) = O(n1.643) joints
[Sharir 1994]

O∗(n112/69) = O(n1.6232) joints
[Feldman, Sharir 2005]

O∗(n3/2+ε/θ1/2+ε) “θ-fat” joints
[Bennett, Carbery, Tao 2005]

O(n5/3) line-joint incidences
[Sharir, Welzl 2004]
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The Joints Problem

Mildly related to cycles in the “depth order” of the lines:

Small perturbation of the lines turns a joint into a cycle

=⇒

(Much harder problem; limited progress;

Arises in spatial visibility problems)
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The Joints Problem

Older bounds obtained by “traditional” methods:

Forbidden subgraphs

Space decomposition

Plücker coordinates

Duality of sorts,

but no real progress ...
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The Joints Problem

And then a miracle happened...

[L. Guth and N. H. Katz, Algebraic methods in discrete analogs

of the Kakeya problem, arXiv:0812.1043v1, 4 Dec 2008]

A new algebraic proof technique, solving the 3D problem:

The number of joints in a set of n lines in 3-space is O(n3/2)
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• Proof uses basic tools from algebraic geometry

(E.g., Bézout’s Theorem)

• Somewhat involved

• We “trivialize” it, and extend it to any d ≥ 3:

Theorem: The number of joints in a set of n lines in Rd is

O(nd/(d−1))
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Note added in press:

In an unbelievable development:

Theorem: The number of joints in a set of n lines in R
d is

O(nd/(d−1))

[Kaplan, Sharir, Shustin]

On lines and joints

arXiv:0906.0558, posted June 2, 2009

[Quilodrán]

The joints problem in Rn

arXiv:0906.0555, posted June 2, 2009
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One algebraic tool

S set of m points in Rd

Claim: There exists a d-variate polynomial p(x1, . . . , xd) of

degree b, vanishing at all the points of S, for

(b + d

d

)

≥ m + 1 or b ≈ (d!m)1/d

Proof: A d-variate polynomial p of degree b has M =
(
b+d

d

)

monomials

Requiring p to vanish at m points =⇒
m < M linear homogeneous equations in the coefficients of the

monomials

Always has a nontrivial solution 2
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Proof of the bound on joints:

L – Set of n lines in Rd

J – Set of their joints; put m = |J |

Assume to the contrary that m > And/(d−1)

(A ≈ d a constant; to be fixed)

12



Step 1: Pruning

As long as L has a line ℓ incident to < m/(2n) joints,

Remove ℓ from L and its incident joints from J

Left with subsets L0 ⊆ L, J0 ⊆ J, with

• |J0| > m/2

• Each ℓ ∈ L0 is incident to ≥ m/(2n) points of J0

• Each a ∈ J0 is a joint of L0
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Step 2: Vanishing

Construct a polynomial p vanishing at all the points of J0

Of degree b ≤ (d!m)1/d

Crucial: Every line of L0 contains more than b points of J0:

m

2n
> (d!m)1/d, or m > (2dd!)1/(d−1)

︸ ︷︷ ︸

A

nd/(d−1)

p = 0 on more than b points on a line ℓ =⇒ p ≡ 0 on ℓ

So p ≡ 0 on every line of L0
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Step 3: Differentiating

a

a + tv

ℓ

Fix a ∈ J0 and an incident line of L0 ℓ = {a + tv | t ∈ R}

p(a + tv) = p(a) + (∇p(a) · v)t + O(t2)

for t small

p(a + tv) ≡ 0 for all t and p(a) = 0 =⇒ ∇p(a) · v = 0
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Step 3: Differentiating

∇p(a) · v = 0

for all directions v of lines of L0 incident to a

a is a joint =⇒ ∇p(a) = 0

All first-order derivatives of p vanish at all the points of J0

For each line ℓ ∈ L0, pxi, which has degree b − 1, vanishes at

more than b points of ℓ =⇒ pxi ≡ 0 on ℓ

All first-order derivatives of p vanish on all the lines of L0
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Step 3: Iterating

a

a + tv

ℓ

Fix a ∈ J0 and an incident line of L0 ℓ = {a + tv | t ∈ R}

pxi(a + tv) = pxi(a) + (∇pxi(a) · v)t + O(t2)

for t small

pxi(a + tv) ≡ 0 for all t and pxi(a) = 0 =⇒ ∇pxi(a) · v = 0

17



Step 3: Iterating

Arguing exactly as above:

All second-order derivatives of p vanish on all the lines of L0

Keep on going:

All partial derivatives of p, of any order, vanish on all the lines

of L0

Contradiction: Eventually reach derivatives with constant nonzero

values!

The end
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Some personal notes

György Elekes passed away in September 2008

About 6–7 years earlier, communicated ideas about joints in

arrangements of lines, showing:

Number of incidences between n equally inclined lines

(lines forming a fixed angle with the z-axis)

in space and their joints is O(n3/2 log1/2 n)

A very special case of a much harder problem he worked on,

related to distinct distances in the plane

coming up soon!
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Some personal notes

The paper he sent me in 2002 contained a scientific will:

... If I knew for sure that during the next thirty years — which is

a loose upper bound for my life span — no new method would

be developed to completely solve the n4/3 problem, then I would

immediately suggest that we publish all we have in a joint paper.

However, at the moment, I think we had better wait for the big

fish (à la Wiles :))

By the way, in case of something unexpected happens to me (car

accident, plane crash, a brick on the top of my skull) I definitely

ask you to publish anything we have, at your will.

Gyuri
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Some personal notes

Elekes’s son contacted me, having found a copy of this note,

and asked me to fulfill the will

I even managed to slightly improve Elekes’s bound to O(n3/2)

(but only for equally inclined lines!)

I sent the revised note to János Pach asking him whether it

would fit in DCG
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Some personal notes

János’s answer was merciless but very valuable:

Dear Micha:

Have you seen arXiv:0812.1043

Title: Algebraic Methods in Discrete Analogs of the Kakeya

Problem

Authors: Larry Guth, Nets Hawk Katz

If the proof is correct, DCG is not a possibility for the

Elekes-Sharir note.

Cheers, János
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Some personal notes

And since then I haven’t been sleeping much...
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New Results:

• Simpler and extended proof of the Guth-Katz bound

Already done

• Extensions of the algebraic technique (only in 3D):

•• The number of incidences between n lines and their joints is

O(n3/2)

•• The max number of incidences between n lines and m of their

joints is Θ(m1/3n) (for m ≥ n)
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New Results:

•• The max number of incidences between n lines and m arbitrary

points is Θ(m1/3n) (for m ≥ n), if

(i) No plane contains more than n points, and

(ii) Each point is incident to at least three lines

(In particular, 3m = O(m1/3n) =⇒ m = O(n3/2))
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New Results

•• Proof of Bourgain’s conjecture

(simpler variant of the proof of [Guth-Katz])

Bourgain’s Conjecture (now Theorem)

L a set of n lines in 3-space

P a set of points in 3-space

No plane contains more than n1/2 lines of L

Each line of ℓ contains at least n1/2 points of P

Then |P | = Ω(n3/2)

Best previous bound: Ω(n11/8)

[Solymosi, Tóth, 2008]
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New Results (Distinct Distances)

• Incidences between points and helices in R3

Related to distinct distances in the plane

(an [Erdős 46] classic)

• Some conjectures about number of such incidences

• If true, would imply:

Number of distinct distances in any set S of s points in the plane

is always Ω(s/ log s)

• Almost tight—Erdős’s upper bound is O(s/
√

log s)
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New Results (Distinct Distances)

• Several sharp upper bounds on the number of incidences,

And some implications:

(Still not fully resolving the conjectures)
c

b

c′

b′

a′

a

•• Number of rotations (rigid motions) which map (at least)

three points of S to three other points of S is O(s3)

Worst-case tight for collinear triples
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New Results (Distinct Distances)

•• Major open question: How many rotations map a pair of

points of S to another such pair? O(s3)?
a

b

a′

b′

•• Theorem: Number of distinct (mutually non-congruent) tri-

angles spanned by S is Ω(s2/ log s)

Almost worst-case tight:

The grid gives O(s2) distinct triangles (Or fewer?)
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Philosophical Interlude / Oxymoron:

• Such a “clash of disciplines” does not happen often

• When it does, the landscape changes and

• The gold rush should begin

• I should not be stressing this too much

(Keep all the gold to myself...)
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Extensions: Incidences and flat points

Only in 3D

• To please the connoisseurs

• And to awe the multitudes...
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Incidences with joints

Same general approach (make a polynomial vanish “everywhere”),

but:

When pruning “light” lines, cannot remove the incident joints

So some joints become “flat”

(but still incident to many (coplanar) lines)

32



Handling flat points: More algebraic tools

(Developed by [Guth-Katz] for solving Bourgain’s problem)

In a nutshell:

Point a is linearly flat for a polynomial p if

(i) a is a regular point, and

(ii) p vanishes on three distinct coplanar lines through a

Claim: If a is linearly flat then the second fundamental form of

p vanishes at a
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Handling flat points: An additional (gory) algebraic twist

Claim: If a is linearly flat then the second fundamental form of

p vanishes at a

Translation: Take the second-order Taylor expansion

p(a + u) ≈ p(a) + ∇p(a) · u +
1

2
uTHp(a)u

where Hp is the Hessian matrix





pxx pxy pxz

pxy pyy pyz

pxz pyz pzz






Then uTHp(a)u = 0 for every u in the tangent plane at a
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Vanishing second fundamental form

uT






pxx(a) pxy(a) pxz(a)
pxy(a) pyy(a) pyz(a)
pxz(a) pyz(a) pzz(a)




 u = 0

for every u in the tangent plane at a

⇒ Some (a-dependent) linear combinations of 2nd-order

derivatives vanish at a

Express this as q(a) = 0 for some “global” polynomials q
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Vanishing second fundamental form

Trick: e1, e2, e3 – Coordinate unit vectors

∇p(a) × ej lie in the tangent plane, so

(∇p(a) × ej)
THp(a)(∇p(a) × ej) = 0

for j = 1,2,3

≡ The three polynomials

Q
(j)
p = (∇p × ej)

THp(∇p × ej) vanish at a

Conversely, if they vanish at a, the second fundamental form

vanishes at a

Each Q
(j)
p has degree ≤ (b − 1) + (b − 2) + (b − 1) = 3b − 4
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Handling flat points — More tools from algebra

Call a regular point a flat for p if

p(a) = Q
(1)
p (a) = Q

(2)
p (a) = Q

(3)
p (a) = 0

Recall Claim: If the zero set p = 0 contains three coplanar lines

meeting at a regular point a then a is a flat point

Claim: If a line ℓ contains 3b − 3 flat points then

ℓ is a flat line — all its points are flat

Proof: The four polynomials p, Q
(1)
p , Q

(2)
p , Q

(3)
p vanish identically

on ℓ
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Handling flat points — More tools from algebra

How many flat lines can p have?

Claim: At most b(3b − 4) if it is square-free and has no linear

factors

Proof: Uses Bézout’s Theorem and other algebraic nuggets

Note: p has a linear factor ⇔ p ≡ 0 on a plane

Every point / line on that plane is flat
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Handling joints

Almost forgot: Handle points that are still joints after pruning

A joint a is a singular point of p:

We already showed that ∇p(a) = 0 at a joint

A line ℓ with more than b joints is a singular line of P :

px, py, pz, all of degree b − 1, vanish on ≥ b points on ℓ
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Handling joints

How many singular lines can p have?

Claim: At most b(b − 1) if it is square-free

Proof: Again, follows from Bézout’s Theorem
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Incidences with joints – High-level overview

• Prune away light lines, but keep the joints

(some may now be flat)

• Construct a square-free polynomial p to vanish at all the joints

(Same ideas, but more complicated)

• Each heavy (surviving) line is either singular, or flat, or lies in a

plane on which p ≡ 0 (a linear factor of p; at most b such planes)

•• At most b(b − 1) + b(3b − 4) < 4b2 ≪ n singular / flat lines

•• Use the Szemerédi-Trotter bound O(M2/3N2/3 + M + N) for

incidences in each vanishing plane

• Putting everything together, it somehow works...
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Conclusions, Prospects

• Somehow, and strangely, p “senses” the geometry

• Find a more “geometric” proof? Geometric interpretation?

• Find other applications of the algebraic approach

(Joints / incidences with other curves? Higher dimensions?)

• Push further analysis of distinct distances via incidences in 3D

• Repeated distances in the plane?

Long overdue problem, suspected to require algebra
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Whetting your appetite:

Spanning tree with small crossing number

• S – Set of n points in the plane

• Construct a bivariate polynomial p vanishing on S

Of degree d ≈ n1/2

• Use the zero set Z : p = 0 as a spanning tree

Shortcut its arcs into straight segments (if desired)

• Each line crosses Z in at most d = O(n1/2)

points!!
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Thank You
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