Katchalski's fractional transversal problem:

$T(k)$-families and α-transversals in the plane

Andreas F. Holmsen
KAIST

Katchalski's fractional transversal problem

Given a finite family F of convex sets in the plane such that any three can be intersected by a line. Does there always exist a line that intersects at least $\frac{2}{3}|F|$ members of F ?

Definitions

$F=\left\{A_{1}, \ldots, A_{n}\right\}$: Family of convex sets in the plane.

Common transversal : A straight line that intersects every member of F.
$T(k)$ - family : Every subfamily of size at most k has a common transversal.
α - transversal : A straight line that intersects at least αn members of $F(0 \leq \alpha \leq 1)$.

No Helly type theorem for line transversals

For every positive integer k there exists
a $T(k)$-family that does not have a transversal.

Regular $(k+1)$ - gon.

$d<w$

No Helly type theorem for line transversals

For every positive integer k there exists a $T(k)$-family that does not have a transversal.
F has a
$\frac{k}{k+1}$ - transversal.

A basic result
Theorem. (Katchalski-Liu, 1980)
For every $k \geq 3$ there exists a maximal number $\alpha(k) \in(0,1)$ such that every $T(k)$-family has an $\alpha(k)$-transversal. Moreover,

$$
\lim _{k \rightarrow \infty} \alpha(k)=1
$$

Problem. Determine the function $\alpha(k)$.

Some conjectures concerning $\alpha(k)$

Conjecture. (Katchalski, 1978)

$$
\alpha(3)=\frac{2}{3}
$$

Conjecture. (Eckhoff, 2008)

$$
\alpha(k)=\frac{k-1}{k}
$$

Previous results

Hadwiger-Debrunner (1963) : $\quad \alpha(4) \geq \frac{1}{4}$
Eckhoff (1973) :

$$
\alpha(4) \geq \frac{1}{2}
$$

Kramer (1974) :
$\alpha(3) \geq \frac{1}{5}$
Eckhoff (1993) :

$$
\alpha(3) \geq \frac{1}{4}
$$

Gallai - type theorems

Katchalski- Liu (1980) :

$$
\lim _{k \rightarrow \infty} \alpha(k)=1
$$

Eckhoff (2008) :

$$
1-\frac{\sqrt{2}}{\sqrt{k-1}} \leq \alpha(k), k \geq 4
$$

Gallai type theorems for transversals

Theorem. (Eckhoff, 1973)
If F is a $T(4)$-family, then there is a partition $F=F_{1} \cup F_{2}$ such that each F_{i} has a transversal.

Theorem. (Eckhoff, 1993)
If F is a $T(3)$-family, then there is a partition $F=F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$ such that each F_{i} has a transversal.

Remark. Eckhoff has conjectured that three parts suffice, which is best possible.

(p, q) - theorem for transversals

Theorem. (Alon-Kalai, 1995)
For every $p \geq q \geq 3$ there exists a minimal positive integer $h(p, q)$ such that the following holds:

If every subfamily of F of size p contains a subfamily of size at least q which has a transversal, then there exists a partition $F=F_{1} \cup \cdots \cup F_{m}$, with $m \leq h(p, q)$, such that each F_{i} has a transversal.

A direct argument by Alon-Kalai (1995) method gives $\alpha(3) \geq \frac{1}{20}$ (reproduced in Matoušek: Lectures on Discrete Geometry).

Recent results

A generalization of the $T(3)$-property and a Tverberg type lemma.

Hadwiger's transversal theorem: Now in color!
The space of transversals and $T(k)$-families.
A construction: $\alpha(3) \leq \frac{1}{2}$

The $T(3)$ - property

Three convex sets $\left\{A_{1}, A_{2}, A_{3}\right\}$ have a transversal if and only if there is a partition
$\left\{A_{j}\right\} \cup\left\{A_{i}, A_{k}\right\}$ such that

$$
A_{j} \cap \operatorname{conv}\left(A_{i} \cup A_{k}\right) \neq \emptyset
$$

Tight triples

A triple of convex sets $\left\{A_{1}, A_{2}, A_{3}\right\}$ is called tight if the following holds:

$$
\bigcup_{1 \leq i<j \leq 3} \operatorname{conv}\left(A_{i} \cup A_{j}\right)=\operatorname{conv}\left(\bigcup_{i=1}^{3} A_{i}\right)
$$

Tight triples

$\left\{A_{1}, A_{2}, A_{3}\right\}$ is tight
॥

$$
\bigcap_{1 \leq i<j \leq 3} \operatorname{conv}\left(A_{i} \cup A_{j}\right) \neq \emptyset
$$

\Uparrow
$\bigcup \operatorname{conv}\left(A_{i} \cup A_{j}\right) \quad$ is topologically trivial. $1 \leq i<j \leq 3$

Tight triples

Observation. If $\left\{A_{1}, A_{2}, A_{3}\right\}$ has a transversal, then $\left\{A_{1}, A_{2}, A_{3}\right\}$ is tight.

Lemma. Let $F=\left\{A_{1}, \ldots, A_{2 k}\right\}$. If every triple of F is tight, then there is a partition of F into disjoint pairs $F=P_{1} \cup \cdots \cup P_{k}\left(\left|P_{i}\right|=2\right)$ such that

$$
\operatorname{conv}\left(P_{1}\right) \cap \cdots \cap \operatorname{conv}\left(P_{k}\right) \neq \emptyset
$$

Tight triples

Theorem. If every triple of F is tight, then F has a $\frac{1}{8}$ - transversal.

Remark. The best possible value in the theorem is $\frac{2}{5}$.
Remark. By the (p, q)-theorem for transversals F can be stabbed by a finite number of lines.

Tight triples

Theorem. If every triple of F is tight, then F has a $\frac{1}{8}$ - transversal.

Proof.

Hadwiger's transversal theorem

Theorem. (Hadwiger, 1957)
Let $F=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a family of pairwise disjoint convex sets. If for every $1 \leq i<j<k \leq n$ there is a line that intersects A_{i}, A_{j}, A_{k} in the given order, then F has a transversal.

We can replace the ordering condition with the following:

$$
A_{j} \cap \operatorname{conv}\left(A_{i} \cup A_{k}\right) \neq \emptyset
$$

Hadwiger's transversal theorem

Theorem. (Wenger, 1990)
Let $F=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. If for every
$1 \leq i<j<k \leq n$ we have $A_{j} \cap \operatorname{conv}\left(A_{i} \cup A_{k}\right) \neq \emptyset$, then F has a transversal.

Hadwiger's transversal theorem

Theorem. (Arocha-Bracho-Montejano, 2008)
Let $F=F_{1} \cup F_{2} \cup F_{3}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. If for every $1 \leq i<j<k \leq n$ where A_{i}, A_{j}, A_{k} belong to distinct parts (F_{p} 's) we have $A_{j} \cap \operatorname{conv}\left(A_{i} \cup A_{k}\right) \neq \emptyset$, then one of the F_{p} has a transversal.

Application to general $T(3)$-families

Application to general $T(3)$-families

The space of transversals

Disjoint pairs:

Observation. Suppose F contains at least one disjoint pair. Then F has a transversal if and only if a positive separating tangent of some disjoint pair of F is transversal to F.

Lower bound for $\alpha(k)$

Suppose F contains $d\binom{n}{2}$ intersecting pairs, $0 \leq d<1$. $X: k$-tuples containing at least one disjoint pair.
$Y: k$-tuples containing only intersecting pairs.

$$
\begin{aligned}
& |X| \geq\left(1-d^{k / 2}\right)\binom{n}{k} \\
& \frac{|X|}{(1-d)\binom{n}{2}} \geq\binom{ n}{k} /\binom{n}{2}
\end{aligned}
$$

$$
\Rightarrow \alpha(k) \geq\left(\frac{2}{k(k-1)}\right)^{\frac{1}{k-2}}
$$

$$
\alpha(3) \geq \frac{1}{3}, \alpha(4) \geq \underset{\frac{1}{2}}{048 \cdots}, \alpha(5) \geq 0484 \cdots, \alpha(6) \geq 0.508 \cdots, \cdots
$$

Construction

$\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}\right\}$ circles of decreasing radii centered at the origin.
D_{i} disk centered at $p_{i} \in \mathcal{C}_{i}$.
Directions p_{i} uniformly distributed

For all $1 \leq i<j \leq n$:
Any pair of
orthogonal lines that intersect in region R_{j}, at least one of them intersects D_{i}.

The $T(3)$ - property

Let $1 \leq i<j<k \leq n$.
The separating tangents of D_{j} and D_{k} form an angle less than $\frac{\pi}{2}$,

A pair of orthogonal transversals to D_{j} and D_{k} intersect inside $\mathcal{C}_{j} \subset R_{i}$.

One of these lines
 intersects D_{i}.

No α - transversal for $\alpha>\frac{1}{2}$
For a given line l let m be the greatest integer such that l intersects \mathcal{C}_{m}.

For $i<m, l$ intersects D_{i} only if the angle with p_{i} is $\leq \frac{\pi}{4}$.

For $i>m, l$ misses D_{i}.

Conclusion

Some progress...

$$
\begin{aligned}
& \frac{1}{3} \leq \alpha(3) \leq \frac{1}{2} \\
& \frac{1}{2} \leq \alpha(4) \leq 0.76 \cdots \\
& \frac{1}{2} \leq \alpha(5)
\end{aligned}
$$

$$
0.506 \leq \alpha(6)
$$

