Katchalski's fractional transversal problem:

T(k)-families and α -transversals in the plane

Andreas F. Holmsen KAIST

Katchalski's fractional transversal problem

Given a finite family F of convex sets in the plane such that any *three* can be intersected by a line. Does there always exist a line that intersects at least $\frac{2}{3}|F|$ members of F?

Definitions

 $F = \{A_1, \ldots, A_n\}$: Family of convex sets in the plane.

Common transversal : A straight line that intersects every member of F.

T(k) - family : Every subfamily of size at most k has a common transversal.

 α - *transversal* : A straight line that intersects at least αn members of F ($0 \le \alpha \le 1$).

No Helly type theorem for line transversals

For every positive integer k there exists a T(k)-family that does not have a transversal. Regular (k+1) - gon.

No Helly type theorem for line transversals

For every positive integer k there exists a T(k)-family that does not have a transversal.

F has a $\frac{k}{k+1}$ - transversal.

A basic result

Theorem. (Katchalski-Liu, 1980) For every $k \ge 3$ there exists a maximal number $\alpha(k) \in (0, 1)$ such that every T(k)-family has an $\alpha(k)$ -transversal. Moreover,

$$\lim_{k \to \infty} \alpha(k) = 1$$

Problem. Determine the function $\alpha(k)$.

Some conjectures concerning $\alpha(k)$

Conjecture. (Katchalski, 1978)
$$\alpha(3) = \frac{2}{3}$$

Conjecture. (Eckhoff, 2008)
$$\alpha(k) = \frac{k-1}{k}$$

Previous results

Hadwiger-Debrunner (1963) : $\alpha(4) \ge \frac{1}{4}$ Eckhoff (1973) : $\alpha(4) \ge \frac{1}{2}$ Kramer (1974) : $\alpha(3) \ge \frac{1}{5}$ Eckhoff (1993) : $\alpha(3) \ge \frac{1}{4}$

Gallai - type theorems

Katchalski- Liu (1980) : $\lim_{k \to \infty} \alpha(k) = 1$ Eckhoff (2008) : $1 - \frac{\sqrt{2}}{\sqrt{k-1}} \le \alpha(k), \ k \ge 4$

Gallai type theorems for transversals

Theorem. (Eckhoff, 1973) If F is a T(4)-family, then there is a partition $F = F_1 \cup F_2$ such that each F_i has a transversal.

Theorem. (Eckhoff, 1993) If F is a T(3)-family, then there is a partition $F = F_1 \cup F_2 \cup F_3 \cup F_4$ such that each F_i has a transversal.

Remark. Eckhoff has conjectured that *three* parts suffice, which is best possible.

 $\left(p,q\right)$ – theorem for transversals

Theorem. (Alon-Kalai, 1995)

For every $p \ge q \ge 3$ there exists a minimal positive integer h(p,q) such that the following holds:

If every subfamily of F of size p contains a subfamily of size at least q which has a transversal, then there exists a partition $F = F_1 \cup \cdots \cup F_m$, with $m \leq h(p,q)$, such that each F_i has a transversal.

A direct argument by Alon-Kalai (1995) method gives $\alpha(3) \geq \frac{1}{20}$ (reproduced in Matoušek: Lectures on Discrete Geometry).

Recent results

A generalization of the T(3)-property and a Tverberg type lemma.

Hadwiger's transversal theorem: Now in color !

The space of transversals and T(k)-families.

A construction: $\alpha(3) \leq \frac{1}{2}$

The T(3) - property

Three convex sets $\{A_1, A_2, A_3\}$ have a transversal if and only if there is a partition $\{A_j\} \cup \{A_i, A_k\}$ such that

$$A_j \cap \operatorname{conv}(A_i \cup A_k) \neq \emptyset$$

A triple of convex sets $\{A_1, A_2, A_3\}$ is called *tight* if the following holds:

$$\bigcup_{1 \le i < j \le 3} \operatorname{conv}(A_i \cup A_j) = \operatorname{conv}(\bigcup_{i=1}^3 A_i)$$

$$\{A_1, A_2, A_3\} \text{ is tight}$$

 $\hat{\mathbf{n}}$

$$\bigcap_{1 \le i < j \le 3} \operatorname{conv}(A_i \cup A_j) \neq \emptyset$$

$$\bigcup_{1 \le i < j \le 3} \operatorname{conv}(A_i \cup A_j) \quad \text{is topologically trivial.}$$

Observation. If $\{A_1, A_2, A_3\}$ has a transversal, then $\{A_1, A_2, A_3\}$ is tight.

Lemma. Let $F = \{A_1, \ldots, A_{2k}\}$. If every triple of F is tight, then there is a partition of F into disjoint pairs $F = P_1 \cup \cdots \cup P_k \ (|P_i| = 2)$ such that

 $\operatorname{conv}(P_1) \cap \cdots \cap \operatorname{conv}(P_k) \neq \emptyset.$

Theorem. If every triple of F is tight, then F has a $\frac{1}{8}$ - transversal.

Remark. The best possible value in the theorem is $\frac{2}{5}$.

Remark. By the (p, q)-theorem for transversals F can be stabbed by a finite number of lines.

Theorem. If every triple of F is tight, then F has a $\frac{1}{8}$ - transversal.

Proof.

Hadwiger's transversal theorem

Theorem. (Hadwiger, 1957) Let $F = \{A_1, A_2, \ldots, A_n\}$ be a family of pairwise disjoint convex sets. If for every $1 \le i < j < k \le n$ there is a line that intersects A_i , A_j , A_k in the given order, then F has a transversal.

We can replace the ordering condition with the following:

 $A_j \cap \operatorname{conv}(A_i \cup A_k) \neq \emptyset$

Hadwiger's transversal theorem

Theorem. (Wenger, 1990) Let $F = \{A_1, A_2, \dots, A_n\}$. If for every $1 \le i < j < k \le n$ we have $A_j \cap \operatorname{conv}(A_i \cup A_k) \ne \emptyset$, then F has a transversal.

Hadwiger's transversal theorem

Theorem. (Arocha-Bracho-Montejano, 2008) Let $F = F_1 \cup F_2 \cup F_3 = \{A_1, A_2, \dots, A_n\}$. If for every $1 \le i < j < k \le n$ where A_i, A_j, A_k belong to distinct parts $(F_p$'s) we have $A_j \cap \operatorname{conv}(A_i \cup A_k) \ne \emptyset$, then one of the F_p has a transversal.

Application to general T(3)-families

Application to general T(3)-families

The space of transversals

Disjoint pairs:

Observation. Suppose F contains at least one disjoint pair. Then F has a transversal if and only if a positive separating tangent of some disjoint pair of F is transversal to F.

Lower bound for $\alpha(k)$

Suppose F contains $d\binom{n}{2}$ intersecting pairs, $0 \le d < 1$.

- X : k-tuples containing at least one disjoint pair.
- Y: k-tuples containing only intersecting pairs.

$$\Rightarrow \alpha(k) \ge \left(\frac{2}{k(k-1)}\right)^{\frac{1}{k-2}}$$

 $\alpha(3) \ge \frac{1}{3}, \ \alpha(4) \ge 0.408 \cdots, \ \alpha(5) \ge 0.464 \cdots, \ \alpha(6) \ge 0.508 \cdots, \ \dots$ $\frac{1}{2}$ $\frac{1}{2}$

<u>Construction</u>

 $\{C_1, \ldots, C_n\}$ circles of decreasing radii centered at the origin.

 D_i disk centered at $p_i \in \mathcal{C}_i$.

Directions p_i uniformly distributed

For all $1 \le i < j \le n$: Any pair of orthogonal lines that intersect in region R_j , at least one of them intersects D_i .

The T(3) - property

Let $1 \le i < j < k \le n$. The separating tangents of D_j and D_k form an angle less than $\frac{\pi}{2}$,

A pair of orthogonal transversals to D_j and D_k intersect inside $C_j \subset R_i$.

One of these lines intersects D_i .

No α - transversal for $\alpha > \frac{1}{2}$

For a given line l let mbe the greatest integer such that l intersects C_m .

For i < m, l intersects D_i only if the angle with p_i is $\leq \frac{\pi}{4}$.

For i > m, l misses D_i .

Conclusion

Some progress...

$$\frac{1}{3} \le \alpha(3) \le \frac{1}{2}$$
$$\frac{1}{2} \le \alpha(4) \le 0.76 \cdots$$
$$\frac{1}{2} \le \alpha(5)$$
$$0.506 \le \alpha(6)$$