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The Gaussian formula for the number of integer points

Let P ⊂ R
n be a polytope. We want to compute (exactly or approximately) the

number |P ∩ Z
n| of integer points in P .

P

We assume that P is defined by a system of linear equations

Ax = b

and inequalities
x ≥ 0.

Here A is an integer d × n matrix of rank d < n and b is an integer n-vector.
So the picture looks more like this

P
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Let us consider a function

g(x) = (x + 1) ln(x + 1) − x lnx for x ≥ 0
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Let us solve the optimization problem:

Find max

n
∑

j=1

g (xj)

Subject to: x = (x1, . . . , xn) ∈ P.

Since g is strictly concave, the maximum point

z = (z1, . . . , zn)

is unique and can be found efficiently by interior point methods, for example.
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Recall that
P =

{

x ∈ R
n : Ax = b and x ≥ 0

}

,

where A is a d × n integer matrix

A

* *

* * * *

* *

* * * *

integer entries

d

n

Let A = (aij).
Let Λ = Ax : x ∈ Z

n be the lattice in Z
d. Unless b ∈ Λ, we have P ∩ Z

n = ∅.
Let z = (z1, . . . , zn) be the point maximizing

g(x) =
n

∑

j=1

(

(xj + 1) ln (xj + 1) − xj lnxj

)

for x = (x1, . . . , xn) in P .
Let us compute a d × d matrix Q = (qij) by

qij =

n
∑

k=1

aikajk

(

z2
j + zj

)

.

We approximate the number of integer points in P by

|P ∩ Z
n| ≈

eg(z) det Λ

(2π)d/2 (det Q)
1/2

.
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An example

Let us compute the number of 4×4 non-negative integer matrices with row sums
220, 215, 93 and 64 and column sums 108, 286, 71 and 127.

127

* * * *

* * * *

* * * *

* * * *

215

220

93

64

108 286 71

The number of such matrices is

1225914276768514 ≈ 1.23 × 1015.

We have a system of 8 equations (row/column sums), they are dependent, however.
Let us throw one equation away. The Gaussian formula gives

1.3 × 1015

(an overestimate by about 6%).
J. De Loera computed more examples.
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The intuition

A random variable x is geometric if

Pr
{

x = k
}

= pqk for k = 0, 1, . . .

where p + q = 1 and p, q > 0. We have

Ex =
q

p
and varx =

q

p2
.

Conversely,

if Ex = z then p =
1

1 + z
, q =

z

1 + z
and varx = z2 + z.

Theorem. Let P ⊂ R
n be a polytope that is the intersection of an affine subspace

in R
n and the non-negative orthant R

n
+. Suppose that P has a non-empty-interior

(contains a point with strictly positive coordinates).
Then the strictly concave function

g(x) =

n
∑

j=1

(

(xj + 1) ln (xj + 1) − xj lnxj

)

attains its maximum on P at a unique point z = (z1, . . . , zn) with positive coordi-
nates.

Suppose that x1, . . . , xn are independent geometric random variables with expec-
tations z1, . . . , zn and let X = (x1, . . . , xn). Then the probability mass function of
X is constant on P ∩ Z

n and equal to e−g(z) at every x ∈ P ∩ Z
n. In particular,

|P ∩ Z
n| = eg(z)Pr

{

X ∈ P
}

.
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Now, suppose that

P =
{

x : Ax = b, x ≥ 0
}

.

Let Y = AX , that is, Y = (y1, . . . , yd), where

yi =

n
∑

j=1

aijxj .

Theorem implies that
|P ∩ Z

n| = eg(z)Pr
{

Y = b
}

.

We note that
EY = b

and that

cov (yi, yj) =

n
∑

k=1

aikajkvarxk =

n
∑

k=1

aikajk

(

z2
k + zk

)

.

Now, we observe that Y is the sum of n independent random vectors xjAj , where
Aj is the j-th column of A, so we make a leap of faith and assume that Y is close
to the Gaussian Y ∗ with the same expectation b and the covariance matrix Q.

b

As we estimate
Pr {Y = b}

by approximating a discrete random variable Y with a Gaussian random variable
Y ∗, it is crucial (and indeed very helpful) that EY = EY ∗ = b, so the Local
Central Limit Theorem arguments apply.
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More intuition from statistics and statistical physics

In 1957, E.T. Jaynes formulated a general principle. Let Ω be a large but finite
probability space with an unknown measure µ, let f1, . . . , fd : Ω −→ R be random
variables with known expectations

E fi = αi for i = 1, . . . , d

and let g : Ω −→ R be yet another random variable. Then to compute or estimate
E g one should assume that µ is the probability measure on Ω of the largest entropy
such that that E fi = αi for i = 1, . . . , d.

In 1963, I.J. Good argued that the “null hypothesis” concerning an unknown
probability distribution from a given class should be the one stating that the dis-
tribution is the maximum entropy distribution in the class.

In our case, Ω is the set Z
n
+ of non-negative integer vectors, fi are the linear

equations defining polytope P , and µ is the counting probability measure on P∩Z
n
+.

We approximate µ by the maximum entropy distribution on Z
n
+ subject to the

constraints E fi = αi, where fi are the linear equations defining P .

Fact: Among all distributions on Z+ with a given expectation, the geometric
distribution has the maximum entropy. The entropy of a geometric distribution
with expectation x is

g(x) = (x + 1) ln(x + 1) − x lnx.
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Ramifications: counting 0-1 points

Let us consider a function

h(x) = x ln
1

x
+ (1 − x) ln

1

1 − x
for 0 ≤ x ≤ 1
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Let us solve the optimization problem:

Find max
n

∑

j=1

h (xj)

Subject to: x = (x1, . . . , xn) ∈ P and

0 ≤ xj ≤ 1 for j = 1, . . . , n.

Since h is strictly concave, the maximum point

z = (z1, . . . , zn)

is unique and can be found efficiently by interior point methods, for example.
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Recall that
P =

{

x ∈ R
n : Ax = b and x ≥ 0

}

,

where A is a d × n integer matrix

A

* *

* * * *

* *

* * * *

integer entries

d

n

Let A = (aij).
Let Λ = Ax : x ∈ Z

n be the lattice in Z
d.

Let z = (z1, . . . , zn) be the point maximizing

h(x) =
n

∑

j=1

(

xj ln
1

xj
+ (1 − xj) ln

1

1 − xj

)

for x = (x1, . . . , xn) in P .
Let us compute a d × d matrix Q = (qij) by

qij =

n
∑

k=1

aikajk

(

zj − z2
j

)

.

We approximate the number of 0-1 points in P by

|P ∩ {0, 1}n| ≈
eh(z) det Λ

(2π)d/2 (det Q)
1/2

.
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A random variable x is Bernoulli if

Pr
{

x = 0
}

= p and Pr
{

x = 1
}

= q

where p + q = 1 and p, q > 0. We have

Ex = q and varx = pq.

Conversely,

if Ex = z then p = 1 − z, q = z and varx = z − z2.

Theorem. Let P ⊂ R
n be a polytope that is the intersection of an affine subspace

in R
n and the unit cube 0 ≤ xj ≤ 1 for j = 1, . . . , n. Suppose that P has a

non-empty-interior (contains a point with the coordinates strictly between 0 and 1).
Then the strictly concave function

h(x) =
n

∑

j=1

(

xj ln
1

xj
+ (1 − xj) ln

1

1 − xj

)

attains its maximum on P at a unique point z = (z1, . . . , zn) with the coordinates
strictly between 0 and 1.

Suppose that x1, . . . , xn are independent Bernoulli random variables with expec-
tations z1, . . . , zn and let X = (x1, . . . , xn). Then the probability mass function
of X is constant on P ∩ {0, 1}n and equal to e−h(z) at every x ∈ P ∩ {0, 1}n. In
particular,

|P ∩ {0, 1}n| = eh(z)Pr
{

X ∈ P
}

.

Now, approximate Y = AX by a Gaussian random variable with the same
expectation and the covariance matrix.
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Ramification: computing volumes

For a polytope P ⊂ R
n defined by the system Ax = b, x ≥ 0, where A is a d×n

matrix of rank d < n, we want to compute volP (with respect to the Lebesgue
measure in the affine span of P induced from the Euclidean structure in R

n).
Let us consider a function

f(x) = n +

n
∑

j=1

lnxj

and find the point z ∈ P , z = (z1, . . . , zn), maximizing the value of P (point z is
called the analytical center of P ).

Compute d × d matrix Q = (qij) by

qij =

n
∑

k=1

aikajkz2
k

and approximate

volP ≈
ef(z)

(

det AAT
)1/2

(2π)d/2 (det Q)
1/2

.

A random variable x is exponential with expectation c > 0

Pr
{

x > t
}

=

{

e−t/c if t ≥ 0

1 if t < 0.

Theorem. Let x1, . . . , xn be independent exponential random variables,
where Exj = zj , and let X = (x1, . . . , xn). Then the density of X is constant

on P and equal to e−f(z) at every point of P .

The maximum entropy distribution on R+ with expectation c > 0 is the expo-
nential distribution with the entropy 1 + ln c.

We consider a random variable Y = AX . Hence EY = b and the covariance
matrix of Y is Q. The density of Y at b is

e−f(z)
(

det AAT
)−1/2

volP.

We approximate Y by the Gaussian random variable Y ∗ with expectation b and
the covariance matrix Q.
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Examples: multi-index transportation

polytopes and multi-way contingency tables

Transportation polytopes. Let us choose positive r1, . . . , rm and c1, . . . , cn such
that

r1 + . . . + rm = c1 + . . . + cn = N.

The polytope P of non-negative m×n matrices (xij) with row sums r1, . . . , rm and
column sums c1, . . . , cn is called a (two-index) transportation polytope. We have

dim P = (m − 1)(n − 1).

Suppose ri and cj are integer. Integer points in P are called (two-way) contingency
tables while 0-1 points in P are called (two-way) binary contingency tables with
margins r1, . . . , rm and c1, . . . , cn.

ν-index transportation polytopes. Let us fix an integer ν ≥ 2. The polytope
P of ν-dimensional

k1 × . . .× kν

arrays (xj1...jν
) with prescribed sectional sums

∑

1≤j1≤k1
............

1≤ji−1≤ki−1

1≤ji+1≤ki+1
............
1≤jν≤kν

xj1...ji−1,j,ji+1...jν

are called ν-way transportation polytopes.

As long as the natural balance conditions are met, P is a polytope with

dim P = k1 · · ·kν − (k1 + . . . + kν) + ν − 1.

Integer points in P are called ν-way contingency tables and 0-1 points in P are
called ν-way binary contingency tables.
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Some results

Fix ν and let k1, . . . , kν grow roughly proportionately.
We can prove:

• The volume of P is asymptotically Gaussian provided ν ≥ 5. We suspect it is
Gaussian already for ν ≥ 3;

• The number of integer points and the number of 0-1 points in P are asymp-
totically Gaussian provided ν ≥ 6. We suspect it is Gaussian already for ν ≥ 3.

• In particular, for the volume of the (dilated) polytope Pk of polystochastic
tensors, that is, the polytope of k × · · · × k arrays with all sectional sums equal to
kν−1 is

volPk =
(

1 + o(1)
) ekν

(2π)(νk−ν+1)/2
as k −→ +∞,

provided ν ≥ 5.

• In particular, the number of non-negative integer k×· · ·×k magic cubes, that
is, contingency tables with all sectional sums equal to r = αkν−1 is

(

1 + o(1)
)

(

(α + 1)α+1α−α
)kν

(

2πα2 + 2πα
)−(kν−ν+1)/2

k(ν−ν2)(k−1)/2

as k −→ +∞,

provided ν ≥ 6, r is integer and α is separated away from 0;

• In particular, the number of k × · · · × k regular ν-partite hypergraphs, that is
binary contingency tables with all sectional sums equal to r = αkν−1 is

(

1 + o(1)
)

(

1 − α)1−ααα
)−kν

(

2πα − 2πα2
)−(kν−ν+1)/2

k(ν−ν2)(k−1)/2

as k −→ +∞,

provided ν ≥ 6, r is integer and α is separated away from 0 and 1.
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An interesting case of ν = 2

The asymptotic of the volume of the polytope of doubly stochastic matrices (the
Birkhoff polytope) was computed recently by E.R. Canfield and B. McKay. It is
not asymptotically Gaussian, it differs from the Gaussian estimate by an additional
factor of e1/3. This corresponds to the 4-th order kurtosis correction to the Gaussian
distribution.

The asymptotic of the number of integer contingency tables with equal row sums
and equal column sums was recently computed by E.R. Canfield and B. McKay. It
is differs from the Gaussian estimate by a constant factor (generally, greater than
1).

The asymptotic of the number of binary contingency tables with equal row sums
and equal column sums was recently computed by E.R. Canfield, C. Greenhill and
B. McKay. It differs from the Gaussian estimate by a constant factor (generally,
smaller than 1).

If not clear whether the Gaussian approximation falls within a constant factor
from the true asymptotic if the margins are allowed to be different (within reason).
For general margins, the main terms in logarithmic order are eg(z) (integer tables)
and eh(z) (binary tables) respectively.
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