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If the set of entries of an n X n matrix is the set of integers
from 1 to n? then there is a row or a column of the matrix
that has two neighbouring entries with difference at least n.

If a rectangle is tiled with rectangles each having an edge
of integer length then the original rectangle has an edge of
integer length.

Let A, B,C and D be different points of the plane such that
AB and CD are perpendicular. Let point P be the inter-
secition of lines AC' and BD, @ be the intersection of AD
and BC and R be the intersection of AB and CD. Then
P',@Q and R are collinear, where P’ is the mirror image of P
on CD.

Assume we have a token on position (0,0) of an infinite
tableaux, and all other positions are empty. In a move we
are allowed to remove a token from position (i, ) provided
that positions (7 4+ 1,7) and (i,7 + 1) are empty and to put
two new tokens on these positions. Then it is impossible
that after some moves all positions with coordinate sum at
most two become empty.

Let us assume that between any two cities of a country there
is a train or a coach connection in at least one direction.
Then there is a city C of the country such that the inhabi-
tants of C can travel from C to any other city of the country
by using only one of a train pass and a coach pass.
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If H C Z"™ is a Hilbert basis and vector z can uniquely be
expressed as a nonnegative integer combination of H then
at most n elements of H have positive coeflicient in the ex-
pression.

A d-dimensional 0/1-polytope has O((d—2)!) vertices. (Tamés
Fleiner, Volker Kaibel and Gunter Rote, Upper bounds on

the maximal number of facets of 0/1-polytopes, European J.
Combin., 21(1): 121-130, 2000.)

If M \ e is a binary matroid with no dual Fano minor for
some matroid M and element e, then M has a basis of its
cycle lattice that consists of circles of M. (Tamés Fleiner,
Winfried Hochstéattler, Monique Laurent and Martin Loebl,
Cycle bases for lattices of binary matroids with no Fano dual
minor and their one-element extensions, J. Combin. Theory
Ser. B 77(1): 25-38, 1999.)

The proof of Pevzner for the linear size of 3-cross-free fami-
lies is not easy to read. (P. A. Pevzner, Non-3-crossing fami-
lies and multicommodity flows, in Selected topics in discrete
mathematics (Moscow, 1972-1990), pages 201-206. Amer.
Math. Soc., Providence, RI, 1994.)

Playing soccer on a conference is not the wisest thing one
can do.

If a bicycle was stored for n days on the same place, and one
wants to send it home on the (n+ 1)st day, it does not mean
that it will not get stolen by then.

There is an essential difference between fotétel-feltétel and
fottétel feltéttel.

Although from an old babybed it is quite easy to install a
"fregoli’, this practical Hungarian invention is not known in
The Netherlands.

De Belastingdienst kent de euro niet.
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Introduction

This thesis consists of two parts. The first one (Chapter II) concerns crossing
and uncrossing related problems that emerge in Combinatorial Optimization. In the
second part (Chapter IIT), we describe a link between stable matching-related results
in Combinatorial Optimization, Mathematical Economics, Set-, Lattice-, Graph- and
Game Theory. Beyond establishing a theoretical background of several known theo-
rems, we include new observations as well. Chapter I contains the preliminaries.

In Chapter II, we describe three crossing-related results: an algorithmic, a struc-
tural and an extremal one. In Section 6, Theorem 6.4, we generalize the well-known
uncrossing algorithm of Hurkens et al. [54] to a more general model originated from
a theorem of Frank and Jordan (Theorem 4.2) [37]. Our result will be published as:

Tamés Fleiner. Uncrossing the system of pairs of sets. (Accepted for
publication in Combinatorica).

Motivated by the same theorem of Frank and Jorddn, we prove in Section 7 a
conjecture of Frank, concerning symmetric posets, that model the structure of crossing
sets (see Theorem 7.2). The minmax formula that we prove there will be used in 7.3,
where we explain some consequences for the problem of /;-embedding of metric spaces.
The main result of this section also appears in

Tama&s Fleiner. Covering a symmetric poset by symmetric chains. Com-
binatorica:17(3), 339-344, 1997.

We close Chapter IT with a result on extremal set-systems. We consider a conjecture
of Karzanov about the maximum size of a set-system where the number of pairwise
crossing sets in the system is restricted. In Theorem 8.3 we confirm the conjecture
when that number is at most two. This provides a simple and straightforward proof
for a fairly complicated theorem of Pevzner [76]. This result will be published as

Tamés Fleiner. The size of 3-cross-free families. (Accepted for publication
in Combinatorica).

Chapter III is probably the most interesting part of this thesis. It is based on a
simple observation, namely that the fixed-point theorem of Knaster and Tarski (the
special case of Theorem 10.1 for subsetlattices: see also [62]) naturally explains several

9



10 INTRODUCTION

well-known theorems from different areas of Mathematics. The most surprising fact
about these interconnections is that in spite of their straightforward nature so far
they remained unobserved.

In Chapter III, we provide new proofs for several generalizations of the stable
marriage theorem of Gale and Shapley (Theorem 9.7, see also [42]), well-known in
Game Theory and Mathematical Economics. Already the origin of this theorem is
unusual. It was published in the American Mathematical Monthly, a journal meant
for students and for the general public rather than for specialists. The paper describes
a model about n men and n women, each ranking the members of the opposite sex
according to their preferences as a marriage partner. A natural question is whether
there exists a so-called stable marriage scheme in which no potential partners would
quit their marriages to marry each other. To justify the existence of such a matching,
the authors introduced the so-called deferred acceptance algorithm and proved that
in finite time, it terminates with a stable scheme. Gale and Shapley end their paper
as follows.

Finally, we call attention to one additional aspect of the preceding analysis
which may be of interest to teachers of mathematics. This is the fact that
our result provides a handy counterexample to some of the stereotypes which
non-mathematicians believe mathematics to be concerned with.

Most mathematicians at one time or another have probably found them-
selves in the position of trying to refute the notion that they are people with
“a head for figures” or that they “know a lot of formulas.” At such times it
may be convenient to have an illustration at hand to show that mathematics
need not be concerned with figures, either numerical or geometrical. For this
purpose we recommend the statement and proof of our Theorem 1!. The ar-
gument is carried out not in mathematical symbols but in ordinary English;
there are no obscure or technical terms. Knowledge of calculus is not presup-
posed. In fact, one hardly needs to know how to count. Yet any mathematician
will immediately recognize the argument as mathematical, while people without
mathematical training will probably find difficulty in following the argument,
though not because of unfamiliarity with the subject matter.

We shall point out that the stable marriage theorem is a straightforward conse-
quence of the fixed point theorem of Knaster and Tarski. The deferred acceptance
algorithm turns out to be a set-function iteration, that finds a fixed point of an appro-
priate monotone mapping. I believe that our observation about the interconnection
between the theory of stable matchings and of lattices improves the understanding
of the former structures. I also believe that this does not contradict at all the above
citation of Gale and Shapley; it only proves that by introducing certain “obscure and
technical terms” some already simple and robust argument in the English language
might be simplified even further.

To point out some other consequences of the stable matching theorem to Graph
Theory, we deduce a result of Sands et al. (Theorem 13.1, see also [90]) on monochro-
matic paths and the theorem of Pym (Theorem 13.2, see also [77, 78]) on path linking
also in Chapter III. Another interesting observation is that the Mendelsohn-Dulmage
theorem (Theorem 10.3, see also [71]) (that can be seen as a generalization of the

I The theorem about the existence of a stable marriage scheme.
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Cantor-Bernstein theorem (Theorem 10.2)) also follows easily from the stable mar-
riage theorem. However, we cannot prove the Kundu-Lawler theorem (Theorem 17.1,
see also [65]), a matroid-generalization of the Mendelsohn-Dulmage theorem, directly
from the stable marriage theorem of Gale and Shapley. Instead, we show a matroid
generalization of this latter theorem about the existence of matroid-kernels, and that
implies the Kundu-Lawler theorem similarly as Mendelsohn-Dulmage follows from
Gale-Shapley.

This matroid theorem yields an appropriate model in which other facts about sta-
ble matchings can be generalized. In this course, we point out an abstract property
of set-functions: the increasing property. It is a sufficient condition for the so-called
lattice property of comonotone kernels (these are generalized stable matchings). This
increasing property holds for all cases in which the lattice property has been proved.
Under different names, this very same condition was used by Feder [30] and Subra-
manian [96] when they formulated the stable roommates problem (the nonbipartite
generalization of the stable marriage problem) as a specific stable network problem.
(See sections 15 and 19.)

Finally, based on the lattice property, we prove an extension of earlier results of
Vande Vate [99] and Rothblum [89] by characterizing the kernel-polytope for increas-
ing comonotone set-functions in Corollary 20.4. Our linear description is especially
interesting because it also characterizes the matroid kernel polytope for the case
where injective functions define the kernel. The matroid-kernel polytope for con-
stant functions is closely related to the matroid intersection polytope, described by
Edmonds [25]. A possible generalization of our result, the linear description of the
kernel-polytope for the non-injective case is left to the reader as an open problem. We
close the discussion by showing in Theorem 20.7 that without requiring the increasing
property, the optimization over the kernel-polytope is NP-complete.

The most interesting results in Chapter III is contained in

Tamés Fleiner. A fixed point approach to stable matchings and some
applications. (Submitted to the Mathematics of Operations Research.)

Game Theory seems to me an area of mathematics wrongly neglected by the
Combinatorial Optimization and Graph Theory community. There are examples of
particularly important results found by Game Theorists now extensively used by
the latter groups. Such results are linear programming duality (see Theorem 5.6),
the partial solution of the conjecture of Berge and Duchet on perfect graphs (see
Conjecture 9.5) by Boros and Gurvich, or the use of stable matchings in the result
of Galvin on list colourings of the edges of bipartite graphs (see Theorem 9.9), to
mention just three of them. Or an other example, closer to our topic is the theorem
of Kelso and Crawford (Theorem 16.2 in 16.1), which is though somewhat weaker
than our main tool in Chapter III (Theorem 11.3), several results we present there
already follow from it. I hope that the interconnections explained in Chapter III are
going to help the communication between these disciplines by bringing them a tiny
bit closer to each other.
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Chapter 1

Preliminaries

This chapter contains an overview of notions and results used in this thesis. It is
somewhat more extensive than strictly necessary so as to provide some background
of the areas we are going to touch.

The notation we use is fairly standard. Symbols N,Z,Q,R denote the set of
natural, integer, rational and real numbers, respectively. The powerset of a set X is
denoted by 2X := {Y : Y C X}. In particular, §, X € 2X. If k is a natural number
then [k] denotes the set of the first k positive integers: [k] = {1,2,...,k} and for a
set X, (%) denotes the family of all k-element subsets of X.

1 Partial orders and lattices

1.1 Partial orders

A partial order is a binary relation < on a groundset (say X) with the following three
properties:

foralze X, z<=z (1.1)
forallz,y € X, ifz<yandy<zthenzx=y (1.2)
forall z,y,z€ X, ifz<yandy <z then z < 2. (1.3)

Property (1.1) is called reflexivity, (1.2) is antisymmetry, and (1.3) is transitivity. If
xz <yory <z, wesay that x and y are comparable, otherwise they are uncomparable.
If x and y are uncomparable and there are elements | and u of X such that [ < z,
l <y, z <wuandy < u then we say that x and y are crossing elements. If < is a
partial order, then we introduce the notation > for its converse

z>y if y<ua,
moreover we define

r<yifzr<yandz#y.

15



16 CHAPTER I. PRELIMINARIES

For the above partial order, an element x of X is a minimal element if there is no
y € X such that y < z. It is a mazimal element if there is no y € X such that = < y.
If X has an element that is less than any other element of the groundset then it is
called the zero-element of X and denoted by 0. It there is an element that is greater
than any other element of the groundset then it is called the unit-element and denoted
by 1.

A partial order is called a linear order (or sometimes a total order) if any two
elements z and y of X are comparable.

A partially ordered set or shortly a poset is a pair P = (X, <), where < is a partial
order on set X. P is finite if X is a finite set (and then the size of P is | X|), otherwise
P is infinite. For poset P = (X, <) and subset Y of X the restriction < |y= is a partial
order on Y. By an abuse of notation we denote this poset by Ply = (¥, <) C P.
Because of this declaration, we have to be careful with the meaning of certain notions,
like with the one of “crossing elements”. That is, to decide the crossing property of two
elements x and y, besides the partial order, we should also know the other elements
of the groundset of the poset.

Poset P = (X,<) is a chain if < is a linear order. It is an antichain if z < y
implies x = y, that is, different elements are uncomparable. The length of a finite
chain C = (X, <) is I(C) := | X|. By a well-ordered set we mean a chain C = (X, <),
with the property that every nonempty subset ¥ of X has a <-minimal element. A
well-order is a linear order that defines a well-ordered set. A poset in which each
chain is well-ordered is called a partial well-ordered set. The corresponding partial
order is called a partial well-ordering, or pwo.

An example of a chain is Rjx = (X, <), where X is a set of real numbers. (Here,
< is the usual order on R = <y if y — z is positive.) For X = Ror X = Q, R|x is
not well-ordered, but R|y is a well-ordered set.

For poset P = (X, <) and elements a,b € X, the interval between a and b is
denoted by X! := {r € X : a <z < b}. A subset Y of X is called convezif X! CY
for any a,b€ Y.

If P = (X, <) is a poset then the height of element x of X is

h(z) := hp(z) := max{l(P|¢) : P|c is a chain of P with maximum z} .

The height (or length) of poset P is h(P) := max{h(z) : ¢ € X}. If h(z) or h(P) is
not defined, it is said to be infinite.

Posets P; (for i € I) coverposet P = (X, <) if P; = Ply; fori € I and |J,¢, Y; = X.
The size of this cover is |I] if I is a finite set, otherwise it is infinite. The height and
covers of a poset are related via a well-known minmax relation.

Theorem 1.1. For poset P = (X, <) the minimum size of an antichain cover of P
is equal to h(P).

Proof. As a chain and an antichain of P have at most one element in common, it is
clear that h(P) is not less than the minimum in the theorem. Hence, if h(P) = oo
then there is no finite antichain cover of P, so the minimum size of an antichain cover
is also infinite. Otherwise, define X; := {# € X : h(z) =¢}. Then A4; := (X;,<) is an
antichain cover of P for i € [h(P)]. O



1. PARTIAL ORDERS AND LATTICES 17

If in Theorem 1.1, we interchange the role of chains and antichains we get Dilworth’s
theorem. Its proof is not so trivial as the one above. (We will give it later on.)
The width of a poset is the maximum size of its antichains if the maximum is finite,
otherwise it is infinite.

Theorem 1.2 (Dilworth [18]). The width of poset P = (X, <) is equal to the min-
imum size of a chain cover of P. O

For poset (X, <) and elements a,b of X we say that a covers b if a # b and
X} = {a,b}. Note the unfortunate coincidence that we use the same term “cover” for
different notions: here we used the word cover in algebraic sense, unlike for covering
posets, which rather has a set theoretical meaning. If 0 € X then elements that cover
0 are called atoms, and if 1 € X then elements covered by 1 are co-atoms. Sometimes
we represent a finite poset P = (X, <) by its Hasse diagram, that is we represent the
elements of X by points and we add arrows from element x to element y of X if y
covers x. Often, instead of arrows, we use only line segments with the understanding
that the corresponding arrow should point to the higher end of the segment. With this
convention, the diagram of an antichain is a set of points representing the elements of
X, along a horizontal line, without line segments in between. The diagram of a finite
chain is a set of points along a vertical line with line segments connecting consecutive
points. Observe that for a finite poset P, the diagram of P determines the partial
order, as a < b if and only if there is a sequence a = x1, 2, ..., = b such that z;;4
covers x;. Figure 1.1 shows the diagram of two special posets, N5 and M3.

Ny M,

Figure 1.1: Diagrams of poset N5 and Ms3.

If P=(X,<)and Q = (Y, X) are posets then f : X — Y is called monotone from
P to Q, if x < z' implies f(z) = f(') for all z,2' € X. P and @ are said to be
isomorphic posets if there is a bijection f between X and Y such that both f and its
inverse map f~' are monotone.

Our next example of a poset is P(F) = (F,C), where F C 2X is a family of
subsets of groundset X and C is the usual set-inclusion relation. If § € F then 0 is
the zero-element of P(F), if X € F, then it is its unit-element. (It is not true though
that the zero-element of such a poset must be §.) If A, AU{z} € F for some z € X \ A
then AU {z} covers A. Atoms of P(2%) are sets of the form {z} and co-atoms are
sets of type X \ {z}, for z € X. For a finite groundset X, h(P(2¥)) = |X| and a

well-known theorem of Sperner says that the width of P(2%X) is ([QW) For A C B,
2

the interval P(2%)% is isomorphic to poset P(2P\4) and the ismorphism is given by
FY) =Y\ A.
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1.2 Lattices

For a poset P = (X, <), element a of X is the greatest lower bound or meet of subset
Y of X if a < y for all elements y of Y and if o’ < y for all y of Y then o' < a.

Element b of X is said to be the lowest upper bound or join of Y if b > y for all
elements y of Y and if &’ > y for all € Y implies b < b'.

Poset L = (X,<) is a lattice if any two elements x,y of X have both a meet
(denoted by  Ay) and a join (denoted by =V y). If L is a lattice, its partial order <
is called a lattice-order.

Lattices can also be defined through the above lattice operations: L = (X, A, V)
is a lattice if for all z,y,z € X

rAz =2z and rVer=zx (1.4)

Ay =y Az and rVy=yVz (1.5)
zA(yANz)=(xAy)Azand zV(yVvz)=(xVy)Vz (1.6)
zA(zVy) ==z and zV(@Ay) =z (1.7)

If L = (X, A, V) satisfies properties (1.4-1.7) then the binary relation < on X defined
by x <y if z = x Ay is a lattice-oder. This way, (X, <) becomes a lattice and A and
V will be its meet and join operations, respectively. In what follows we will call the
above triples (X, A, V) also lattices.

1.3 Homomorphisms and sublattices

Observe that the above definitions define different structures: lattice as a special
binary relation on a groundset, and lattice as an abstract algebra with two special
operations (A and V) on a groundset. Although, as we have seen, these definitions are
essentially the same, yet there is a point that one should be careful about. Namely,
the definitions of substructures depend on the way we think about the lattice.

Poset L' = (X',<) is a lattice subset of poset L = (X, <), if X' C X and <
induces a lattice-order on X’. Structure L' = (X', A',V') is a sublattice of lattice
L =(X,A,V),if X' C X and A" and V' are the restrictions of A and V on X', i.e.
sANy=zAyand 2V y =z Vy for al z,y € X'. It is easy to see that every
sublattice L' of L is also a lattice subset of L: the partial order on L' defined from
the lattice operations is the restricted partial order to L'. But if the restriction of <
is a lattice order on some subset X' of X, it does not mean that the corresponding
lattice operations A’ and V' are restrictions of A and V to X'.

Another difference between lattices as abstract algebras and lattices as special
posets is the meaning of homomorphism (structure-preserving mapping) in the two
cases. If L = (X, A,V) and L' = (X', N, V') are posets then ¢ : X — X' is a lattice-
homomorphism from L to L' if ¢(x Ay) = ¢(z) A ¢(y) and ¢(zVy) = é(x) V' é(y) for
all z,y € X. Clearly, if ¢ is a lattice-homomorphism then ¢ is necessarily monotone
between posets L and L', but the converse is not true.

However, if both f and f~! are monotone for some bijective function f between
lattices, then f and f~! are both lattice-homomorphisms. This observation shows
that the notion of lattice-isomorphism does not depend on the way we look at lattices.
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If we view lattices as special posets, then the analogous notion of a lattice-
homomorphism is strict monotonicity. Function f : X — Y is strictly monotone
for posets P = (X, <) and Q = (Y, X) if

z < z' if and only if f(z) < f(z')

for any pair of elements z and z' of X. It is clear that if f : X — Y is strictly
monotone from lattice P = (X, <) to poset @ = (Y, <), then f(X) is a lattice subset
of Q.

Let £ be some class of lattices. We say that lattice L = (X, A, V) is a free lattice
in class £ generated by poset P = (V,<) if Y C X, the lattice order of L on Y is
identical with < and for any lattice L' in £ and for any monotone function f from P
to L' there exists a unique lattice-homomorphism extension ¢ of f from L to L'. In
other words, L is a smallest lattice in which every element can be obtained from YV
by lattice operations and if a lattice-identity is true on L then this identity is true on
the whole class L.

1.4 Special lattices

Our example for a poset in 1.2, P(2X) = (2%,C) is also an example of a lattice
with meet and join operations N and U, respectively. This example shows that by
“tapering”, we can generalize set theoretical relation C to partial order relation <,
and set theoretical operations N and U to lattice operations A and V.

If poset P = (X, <) has both a zero- and a unit-element, and for some z € X
there is an element T such that t AT = 0 and x VZ = 1, then we say that T is a
complement of x in P. If all elements of X have a complement then P is called a
complemented poset. In accordance with this, we say that lattice L = (X,A,V) is a
complemented lattice if for all x € X there is a complement T of x with x AT = 0 and
zVvVzT=1.

Lattice L is modular if modular property (1.8) holds for its elements.

Ifz<zthenzV@yAz)=(xVy) Az (1.8)

If L is a modular lattice with no infinite chain then modular equation (1.9) holds for
its height function:

h(z) + h(y) = h(z Ay) + h(z Vy) for all z,y € X. (1.9)

Function h is called submodular if (1.9) holds with “>” instead of “=", and it is called

supermodular if “<” stands for “=” in (1.9). There is a well-known characterization
of modular lattices in terms of forbidden substructures:

Theorem 1.3. Lattice L is modular if and only if it does not contain a sublattice
isomorphic to lattice N5 on Figure 1.1.

Proof. 1t is easy to see that N5 is not modular. On the other hand, let z < 2z
and y € X. Clearly, ¢ < (zx Vy),z < zand yAz < (xVy), y Az < z, hence
zV(yAz) < (xVy)Az Thus if modular law (1.8) is not true for z,y,z then
xV(yAz) < (zVy)Az. Tt is easy to check that elements zV(yAz), (xVYy)Az, zVz,y, yAz
form a sublattice isomorphic to Ns. O
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Theorem 1.4. The free modular lattice generated by 3 elements x,y, z is isomorphic
to lattice Log, and the free modular lattice generated by a chain v1 < z< ... <z, and
another element y is lattice L™, represented by the diagrams on Figure 1.2.
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Figure 1.2: Diagrams of lattice Log and L™.

Proof. Tt is finite work to check that Log and L™ are both modular lattices containing
only the generators and elements that are generated by the generators. Also, if an
identity holds on Lag or on L™ then it follows from the modular law (1.8). O

We remark that the free modular lattice generated by four elements is not a finite one.
One can strengthen the modular property even further to the following distributive
law:

zV(yAz)=(@Vy A(zVz) (1.10)

Lattice L is called distributive if distributive property (1.10) holds for its elements.
Note that for distributive lattices the “symmetric pair” of (1.10) holds:

eA(yVz)=(xAy)V(zAz).

Distributive lattices are modular, and lattices that isomorphic to some sublattice of
(2% ,N,U) are distributive by de Morgan’s law. Again, there is a well-known charac-
terization of distributive lattices:

Theorem 1.5. Lattice L is distributive if and only if it does not contain a sublattice
isomorphic to lattice N5 or M3 on Figure 1.1.
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Proof. (Sketch) Neither N5 nor M3 is modular. On the other hand, if L does not
contain N5 or Mjs then L is modular by Theorem 1.3. It is easy to see that if
distributive law (1.10) does not hold for some z,y, z, then there is a homomorphism
from Lsg to L which maps elements a,b,c,d, e of Lag into different elements of L,
exhibiting a sublattice of L isomorphic to M3s. O

Another well-known theorem says that distributive lattices are essentially the same
as subsetlattices:

Theorem 1.6. If lattice L is distributive then L is isomorphic to some sublattice of
(2%,N,U) for some set X. O

The interested reader can find further material on partially ordered sets and lat-
tices in the book of Birkhoff [5].

2 Graphs

A simple graph is a pair G = (V, E) consisting of a vertez-set V and of an edge-set E
of unordered pairs of vertices. Elements of V' are called vertices, elements of E are
edges. For different vertices u,v of V' we denote edge {u, v} by uv. We say that edge
uv is incident with v and v. A multigraph is a similar structure with the difference
that E is a multiset! of unordered pairs and singletons of vertices. Pairs in E are
called edges, just like for simple graphs, and singleton elements of E are loops.

A simple directed graph (or shortly simple digraph is a pair D = (V, A) consisting of
a vertez-set V and of an arc-set A of ordered pairs of vertices. A directed (multi)graph
(or shortly digraph) is a similar structure where A is a multiset containing arcs and
singleton vertices. Similarly, the abbreviated notion uwv € A stands for arc (u,v).
We shall use this abbreviation only if it is either clear or not important whether the
particular edge is directed or not. We say that arc a = uv is incident with tail v and
head v.

For (di)graphs G, we introduce operators V, E and A such that V(G), E(G) and
A(G) denotes the set of vertices, edges and arcs of G, respectively.

We call a directed graph G an orientation of an undirected graph G if V(G) =
V(G) and wv € E(G) if and only if v € A(G) or vu € A(G) (or both). If G is an
orientation of simple graph G then we call G the underlying (undirected) graph of G.

The complement of simple graph G = (V, E) is G := (V, (‘2/) \ E).

Undirected graph K, := ([n], ([g])) is the cliqgue or complete graph on n vertices,
its complement K, = ([n],0) is the coclique or empty graph on n vertices. P, :=
([n + 1], E(Py)) is the path of length n, where E(P,) := {{i,i + 1} : ¢ € [n]}, C), :=
([n], E(Pn=1) U {{1,n}}) is the cycle of length n. A cycle is odd if its length is odd.

For a (di)graph G and subsets U, W of V(G) we introduce

DU, W):=Dg(UW):={e=uv € EG):uecUwveV}, (2.1)
DT (U,W):=DE(U,W) :={e=uv € AG) :u e Uyw eV}, (2.2)
D~ (U,W) := DY (W,U). (2.3)

n a multiset, an element can have an integral multiplicity more than 1.
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Further, we denote D(U, V(G)\U) by D(U), and the star D({u}) of vertex u by D(u).
For digraphs, we use similar notations with + and — superscripts. In particular,
D" (u) and D~ (u) denotes the outstar and instar of vertex u, respectively. Notation
d stands for the cardinality of D, hence d(U) := |D(U)|, d*(U) := |D*(U)|, etc.
Clearly, d(u) is the number of edges incident with vertex u, in other words the degree
of u.

Similarly to the incident edges, we define notations for the adjacent vertices as
follows.

LU,W):=TqU,W)={veW :u € E(G) for some u € U}, (2.4)
I (U,W):=TLUW) ={veW :uv € A(G) for some u € U}, (2.5)
I~(U,W):=Tg(UW)={veW:vue A(G) for some u € U} (2.6)

for subsets U and W of V(G). We define I'U) := I'(U,V(G) \U) for U C V,
and I'(u) := T'({u}) for u € V. Similarly to the degree-function d, v denotes the
cardinality of I'; the number of neighbours of the certain set. For digraphs we use
similar notations with + and — superscripts.

2.1 Paths in graphs

For a (di)graph G, we introduce “graph distances” between vertices of G: we say that
distg(u,v) = k if the shortest (directed) path of G from z to y has length k. That is,
y € I () \ Uiz 1O (2),

Sequence w = (vg, €1, V1, €2, V2, ... , €k, V) iS a walk in graph G = (V,E) if k € N
and e; = v;—1v; € E for 1 <4 < k. If it does not cause ambiguity we might identify
walks with their edge- or vertex-sequence. V(w) = {vo, v1,... ,vx} denotes the set of
vertices, E(w) = {e1,ea,...,er} the set of edges, In(w) = vy the initial node, and
End(w) = v, the end node of the above walk w. We say that walk w is an ST -walk
if In(w) € S and End(w) € T. (In this context we may also denote one-element sets
by their unique element, like in the term ’st-walk’.)

If W is a family of walks, then operators V. (W), E(W), In(WV) and End(W) denote
the set of vertices, edges, initial nodes and end nodes of walks of W, respectively.
Family W is an edge-disjoint (vertex-disjoint) family if whenever E(w) N E(w') # 0
(V(w)NV(w') #0) for w,w' € W then w = w'.

If all the vertices v1,va, ... ,v; of V(w) of walk w are different then w is a simple
path. A circular path is a walk w for which In(w) = End(w), but all other vertices of
w are different. An infinite path is a (one or both way) infinite sequence of different
incident edges and vertices. A walk is a general path if it is either a simple path or a
circular path or an infinite path.

2.2 Subgraphs, minors and connectivity

If G =(V,E) is a graph with e € E and v € V then G\ e = (V, E \ {e}) is the graph
obtained by the deleting of edge e, G—v := (V\{v},{e € E : e is not incident with v})
is the graph after the deletion of vertex v. For an edge e = uwv (directed or not)
G + e := (V,E U {e}) is the graph obtained by adding edge e to G. For a set X of
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edges and a set Y of edges and vertices of G, G + X —Y denotes the graph obtained
by adding the elements in X as new edges to G and by deleting the edges and vertices
in Y from the resulted graph. A subgraph of G is a graph of the foorm G — Y. If
subgraph G’ of graph G can be obtained by only deleting vertices of G' then we say
that G' is an induced subgraph of G or that G spans G'.

For an edge e = wv of undirected graph G, G/e denotes the graph after the
contraction of e. The vertex-set of the contracted graph is V(G/e) = (V\{u, v})U{ve},
where v, ¢ V, and the edges of G//e are the edges of G not incident with u or v together
with the (possibly loop-)edges of D(u) U D(v) \ {e}, after substituting ends u and v
by v.. G' is a minor of graph G if there are disjoint subsets X, Y of the edge-set of
G, such that G' = G\ X/Y is the graph obtained from G by deleting the edges in X
and contracting the edges in Y. Observe that no matter in which order we execute
deletions and contractions, we get the same minor.

Graphs G = (V, E) and G' = (V', E') are isomorphic if there are bijections ¢y :
V — V' and ¢g : E — E' such that if uv = e € E then ¢.(e) = ¢y (u)dy (v). Often
we consider isomorphic graphs the same. So, “graph G is a subgraph (or minor)
of graph H” often means that there exists some subgraph (or minor) of H that is
isomorphic to G. Similarly, the statement that G is (say) a clique on n vertices we
mean that G is isomorphic to K.

For an undirected graph G, we define the equivalence relation ~ on V(G) by v ~ u
if there is a path between u and v. The equivalence classes of V under this relation
are called the components of G. By o(G) we denote the number of odd components
of graph G, i.e. the number of components that have odd number of vertices. A
vertex that is a component by itself is called an isolated vertex. We also use the name
“component” for a subgraph of G induced by a component. In case of a directed
graph, we distinguish between weak components, (these are the components of the
underlying undirected graph), and strong components. The latter are the equivalence
classes of the equivalence relation ~, defined by u~wv if there is a directed path in G
from u to v and a directed path from v to u, as well. Clearly, each weak component is
the union of strong components. A graph with only one component is called connected.
A digraph with only one weak component is weakly connected, and a digraph with
only one strong component, is strongly connected.

(Di)graph T' = (V, E) is a (directed) tree if it is (weakly) connected and the un-
derlying undirected graph does not have a cycle. A tree on n vertices has n —1 edges.
(Di)graph B is bipartite if the underlying undirected graph does not have a cycle
subgraph of odd length. Or, equivalently, B is bipartite if V(B) can be partitioned
into two sets (colour-classes) such that all edges of E(B) have ends in different parts.
Note that trees are bipartite graphs. We denote by Ky := ([n +m], {ij : 1 < i <
n < j < m}) the complete bipartite graph with n and m vertices in its colour-classes.
For an undirected graph G, we define its line-graph L(G) by V(L(G)) := E(G) and
E(L(@)) :={ef : e, f € E(G) are adjacent edges}.

2.3 Packing and covering in graphs

A matching is a subgraph M of graph G with dps(v) < 1 for any v € V, in other words,
such that no two edges of M are adjacent. If b: V' — N then M is a b-matching, if
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dy < b. M is a perfect b-matching if dy;y = b. A perfect 1-matching is also known
as a perfect matching or a 1-factor of G. By v(G) we denote the matching number
of G, that is the maximum number of edges of a matching of G, in other words the
maximum number of independent edges of G. When it is clear from the context, we
might use the term 'matching’ for a set of edges of some matching. Another related
quantity is the independence or coclique number a(G) of G, the maximum number of
independent vertices of G, or in other words the maximum size of an induced coclique
subgraph of G. Clearly, v(G) = a(L(G)). Further interesting parameters of graph G
are its vertex cover number

7(G) :==min{|U|: U CV with E(G —U) =0} (2.7)
and its edge cover number
p(G) :=min{|F|: F C E and d(y,r) > 1} = 7(L(G)). (2.8)

A set F of edges described in definition (2.8) is an edge cover, a set U of vertices in
definition (2.7) is a vertex cover. It is easy to see that a(G) < p(G) and v(G) < 7(G)
for a graph G. The following theorem of Gallai gives further connections between
these parameters:

Theorem 2.1 (Gallai [44]). o(G) + 7(G) = |V|, for any finite graph G. If G has
no isolated vertezx then v(G) + p(G) = |V|. O

A well-known theorem of Kénig gives another important relation for bipartite
graphs:

Theorem 2.2 (Kénig [61]). For any finite bipartite graph G, v(G) = 7(G). O

For general, not necessarily bipartite graphs, the Tutte-Berge formula [4] is a
minmax relation for parameter v.

Theorem 2.3 (Tutte-Berge formula [4]). If G = (V,E) is a finite undirected
graph then

e :min{%[|V|+|X| —o(G—-X)]: X C v}. (2.9)

O

The Edmonds-Gallai decomposition [24, 45, 46] of an undirected graph G is the
partition of V(G) into the following sets:

D(G) := {ve€ V:3 maximum matching of G not covering v},
AG) = I(D@G)),
C(G) = V\(DG)UAG)

The main property of the decomposition is that A(G) is an optimal choice for X in
(2.9). This is stated in the Edmonds-Gallai decomposition theorem:
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Theorem 2.4 (Edmonds-Gallai decomposition [22, 45, 46]). If G is a finite
graph, then
1
v(G) = S [IVI+|AG)] - o(G — AG))] - (2.10)
O

Edmonds [24] also gave a polynomial-time method to construct the above decom-
position.

3 Matroids

A matroid is a pair M = (E, ), of a finite groundset E and of a family of independent
sets T C 2F with the following properties:

Del. (3.1)
If I' C T €7 then I' € T. (3.2)

If |I'| < |I| for I,I' € T then there is an element
e € I'\ I' such that I' U {e} € Z. (3.3)

The inclusionwise maximal members of Z are the bases of M. The set B of bases of
a matroid has the following properties.

B # 0. (3.4)
If B,B' € B then |B| = |B'|. (3.5)

If B,B' € B and e € B\ B’ then there is an element
f of B"\ B such that B\ {e}U{f} € B. (3.6)

Property (3.6) is often called the weak basis-exchange axiom. Subset C of E is a circuit
of the above matroid M if C ¢ Z, but any proper subset C’ of C is independent. The
family C of circuits of a matroid has the following properties.

If C,C" € C and C' C C then C =C". (3.7)
If C,,Cy € C,C1 # Cq and e € Cy N Cs then there is
C € C such that C C (C1 U Cy) \ {e} (3.8)

Property (3.8) is called the weak circuit-exchange axiom. Finally, we define the rank
functionr =rpg : E — N of matroid M by r(X) := max{|I| : X D I € Z}. The rank
function has the following properties:

r(@) =0. (3.9)
r(XU{e}) <r(X)+1forany X CE ande€ E\ X. (3.10)
r(X)+r¥)>r(XNY)+r(XUY) for any X, Y CE (3.11)

Properties (3.9,3.10) together are called the subcardinality property, and property
(3.11) is referred to as the submodularity of the rank function.

Matroid bases, circuits and rank functions are characterized by the above proper-
ties.
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Theorem 3.1. If family B C 2F has properties (3.4-3.6) and T = {I C E : 3B €
B with I C B} then M = (E,I) is a matroid.

If family C C 27 has properties (3.7,3.8) and T = {I C E : AC € C with I D C} then
M = (E,7) is a matroid.

If function r : 28 — N has properties (3.9-8.11) and T = {I C E : r(I) = |I|} then
M = (E,7) is a matroid . O

In view of Theorem 3.1, we can also describe matroids by their bases, circuits or
rank function. So when later we talk about a matroid (E, B), (E,C) or (E,r), then by
these notations we implicitly mean that the particular matroid is given by its family
of bases, circuits, or its rank function, respectively.

3.1 Matroid operations and special matroids

An interesting class of matroids are the class of linear matroids over some field F.
Matroid M = (E,Z) is a linear matroid (over field F), if there is a representing
function ¢ : E — F” such that 7 is the family of subsets of E that are mapped by
¢ into linearly independent subcollections of F™. Bases of the above linear matroid
are the independent subsets I of E such that ¢(I) spans ¢(E) (over F). The rank-
function of M is r(X) = dim(spang(é(X))). As we see, the terms “independence”
and “basis” for matroids come from linear algebra. Vectors of F” representing E are
often arranged as columns of a matrix, and the rank function of column submatrices
is the rank function of the linear matroid. The linear example is also the motivation
for the notion of spanning: we say that element e of E is spanned by subset S of E in
matroid M = (E,C) if there is a circuit C of C such that e € C C SU{e}. The set of
elements spanned by subset S of E in matroid M is denoted by span(S) = span(S).

A binary matroid is a linear matroid over the binary field F». A special kind
of binary matroid is the graphic matroid M(G) = (E,C), where G = (V, E) is an
undirected graph, and C is the family of edge-sets of cycles of G. (To see that graphic
matroids are binary, we may represent each edge e = uv of the graph by its binary
characteristic vector x{%}.) This example indicates that the name of matroid-circuit
comes from graph theoretic notions.?

There are other well-known examples of matroids. Also, it is possible to construct
matroids from other matroids through different matroid operations. We consider two
most important ones: the minor and the dual operations. For disjoint subsets X,Y
of E, we define the matroid-minor

M/X\Y :=(E\(XUY),Z/X\Y),
where
I/X\Y:={JCE\(XUY):JuX'€eZforany X D X' €Z}.

We say that M /X \ Y is obtained from matroid M by the contraction of X and the
deletion of Y. The minor of a linear matroid is also linear over the same field and can

2 At least we should recognize some relation between words circuit and cycle. Anyway, the union
of disjoint circuits of a matroid is called a cycle. Never mind that a cycle of a graphic matroid does
not necessarily correspond to a cycle of the underlying graph.
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be represented by an appropriate submatrix of the representing matrix. For a graph
G, we have M(G)/X\Y = M(G/X \Y).

The dual matroid of matroid M = (E, B) is M* = (E,B*) where B* = {E\ B :
B € B} is the family of bases of M*. If M is a matroid, then clearly (M*)* = M
and it is easy to check that (M/X \Y)* = M*/Y \ X holds for any disjoint subsets
X and Y of E. As a convention, for a matroid M with set of independent sets, bases,
circuits and the rank function Z, B, C and r, respectively, we denote dual equivalents
by Z*,B*,C* and r*, and call them them the family of dual independent sets, cobases,
cocircuits and corank function of M, respectively.

The following theorem of Nash-Williams exhibits another matroid operation.

Theorem 3.2 (Nash-Williams [74]). If matroids My = (E,I;), M2 = (E, 1),
.ooy My = (E,I}) have rank functions r1,rs2,... 7 and I := {Uje[k] I : I; € I;}
then M = (E,T) is a matroid with rank function r(X) = min{| X \ T +Zj€[k] r;(T)
TCX). 0

Matroid M in Theorem 3.2 is called the sum (or the union) of the above ma-

troids My, My, ... , Mj. Theorem 3.2 generalizes the matroid partition theorem of
Edmonds.

Theorem 3.3 (Edmonds [23]). For matroids M, = (E,T,),Ms = (E,I»), ...,
M = (E,Iy) there are independent sets I; € ZI; for j € [k] such that U I; = E
if and only if |A| < Zje[k] rj(A) for any subset A of E. O

It is not difficult to see that Theorem 3.2 is equivalent with the minmax formula
of Edmonds on matroid intersection:

Theorem 3.4 (Edmonds [25]). If M; = (E,Z;) and My = (E, 1) are matroids
on the same groundset then max{|I|: I € TyNZ,} = min{ri(X)+r:(E\X) : X C E},
where vy and ro are the rank functions of My and Ms. O

3.2 The greedy algorithm

Edmonds gave another alternative way of characterizing a matroid than Theorem 3.1.

Theorem 3.5 (Edmonds [26]). For a finite set E and a family B C 2%, the fol-
lowing two statements are equivalent:

e M = (E,B) is a matroid.

o Ifw: E — R is any weight function, E = {e1,ea,... ey} such that w(e;) <
w(e;y1) for i € [n— 1] and B(n,w) is defined recursively by B(0,w) := 0 and

B(i —1,w)U{e;} if {e;} UB(i —1,w) € B
B(i,w) = for some B € B (3.12)
B(i — 1,w) else.

then B(n,w) is a minimum weight element of B, that is, for any B € B we have
w(B(n,w)) =3 cepmw w(Ee) Sw(B) =3 cpwle). O
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We say that basis B(n,w) has been selected by the greedy algorithm. (The name
‘greedy’ comes from the fact that in each step we select the most attractive element
we can. The content of Theorem 3.5 is that matroids are exactly those structures
where this simple method always gives an optimal result.) The minimum weight
basis B(n,w) in Theorem 3.5 has the following important properties:

For any e € E \ B(n,w) there exists a circuit C' € C such that
C C B(n,w) U {e} and w(c) < w(e) for any c € C.
For any e € B(n,w) there exists a cocircuit C* € C* such that
C* C (E\ B(n,w)) U {e} and w(c) > w(e) for any c € C™.

(These properties follow directly from the greedy algorithm and basis axiom (3.6) for
B and B*.)

The interested reader can find further material on matroids in the book of Welsh
[103] Oxley [75], Truemper [98] or of Recski [81].

4 Submodular functions

Recall that if L = (X,A,V) is a lattice then we say that function b : X — R is
submodular if the submodular inequality

b(z) +b(y) > bz Ay) +b(z Vy) (4.1)

holds for all elements x and y of X. A function p : X — R is supermodular if —p
is submodular. If we also have a convex set P of L then we can speak about cross-
ing submodular and crossing supermodular functions, which we define by requiring
inequality (4.1) only for elements = and y that are crossing in P. The most common
situation when we use submodular functions is in the case of subsetlattices. Here,
setfunction b : 2% — R is submodular if

b(A) + b(B) > b(AN B) + b(AU B) (4.2)

for any subset A and B of X. Subsets A and B of X are called crossing if none of
sets ANB,A\ B,B\ A, X \ (AU B) is empty, that is, if A and B are crossing in
lattice (2%,N,U) with respect to the convex set that we get by deleting () and X from
this subsetlattice. If (4.2) is required only for crossing subsets A and B of X, then
setfunction b is called crossing submodular. Setfunction p is (crossing) supermodular
if —p is (crossing) submodular.

We have already seen examples of submodular functions: the height function h
of any modular lattice L is both sub- and supermodular (shortly modular), and the
cut-function dg : V(G) — N of graph G defined in section 2 is submodular. (To prove
this latter fact it is enough to observe that any edge of graph G contributes to the left
hand side of (4.2) at least as much as its contribution to the right hand side.) The
rank-function of a matroid is also submodular.

In a sense, sub- and supermodular functions can be regarded as discrete convex
and concave functions for the following analogy. If f < g for some concave function
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f :R*" — R and convex function g : R — R then there is a linear function A : R* — R
such that f < h < g. (The proof follows from the fact that two disjoint convex sets in
R"*! can be separated by a hyperplane.) For sub- and supermodular functions there
is the following result of Frank:

Theorem 4.1 (Frank [36]). Let X be a finite set and b : 2% — 7Z be a submodular
and p : 2% — Z be a supermodular function with b(0) = p(0) = 0 and p < b. Then
there is a modular (both sub- and supermodular) function m : 2% — 2% such that
p<m<b. O

In most optimization problems involving submodular functions, these functions
are used as upper bounds of some quantity to be maximized. A most natural prob-
lem of this type is the minimization of an integer valued submodular function. Spe-
cial cases of this problem are the computation of the rank function of a matroid
sum (i.e. the calculation of r(A) in Theorem 3.2), the decision of partitionability
of the common groundset of k matroids into independent sets (that is, the deci-
sion problem in Theorem 3.3 whether submodular function b is nonnegative, where
b(A) = —[A[ + X,y ri(A4) for A C E) or the problem of finding a maximum size
common independent set of two matroids in Theorem 3.4. The general problem can
be efficiently solved using involved tools of Combinatorial Optimization (like the el-
lipsoid method see [48, 49]). Cunningham [15] designed an efficient ’combinatorial’
algorithm that minimizes an integer-valued submodular function in pseudopolyno-
mial time (that is the running time of the algorithm depends polynomially on the
maximum absolute value of the submodular function). Recently, using the ideas of
Cunningham, Fleischer et al. [35] and Schrijver [94] independently found a strongly
polynomial, ‘combinatorial’ algorithm for this problem.

We call function f : 2% — R symmetric if f(A) = f(X \ A) for any subset A of
X. If b: 2V — R is a symmetric submodular function then besides (4.2),

B(X) +b(Y) > b(X \ V) +b(Y \ X) (4.3)

holds for all subsets X,Y of V. The cut function dg : V(G) — N is an example of a
symmetric submodular function. We remark that for a nonnegative weight function
w : E(G) - Ry the weighted cut function dg,,, of graph G is also symmetric and
submodular (where dg,w(U) := 3¢ p, 17y w(e))- Note that the minimization problem
of the (nonnegative weighted) cut function is trivial, as clearly ® (and hence V(G),
too) minimizes dg (and dg ). In fact it is true in general, that if b is a symmetric
submodular function then by 2b(A4) = b(A) + b(X \ 4) > b(0) + b(X) = 2b(), so
() minimizes b. But finding a proper, nonempty subset of V(@) that minimizes the
cut function of a graph or a symmetric submodular function is not trivial. There are
several known methods for this problem in case of the cut function. To see that this
problem can be solved in polynomial time, it is enough to observe that after fixing a
source vertex s of G, the execution of |V (G)| — 1 maxflow-mincut algorithm between
source s and sink v (where v is any other vertex of G than s) provides a minimum cut
as the overall minimum cut of the |V (G)| — 1 outputs. (This is because some vertex
of G is separated from s by a minimum cut.) There is a more efficient minimum
cut algorithm of Nagamochi and Ibaraki [73] that has been extended by Queyranne
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[79, 80] to minimize symmetric submodular functions (for a simple proof and further
extensions see Rizzi [83]). There are also very fast nondeterministic algorithms solving
the minimum cut problem for graphs.

The rest of this section is devoted to an important theorem of Frank and Jordén
on covering crossing bisupermodular functions. Let us fix sets X; and X5. An element
(T, H) of 2%+ x 2%X2 we call a pair, and we say that T is the tail and H is the head
of the pair. Two pairs (T, H) and (T", H') are said to be tail-disjoint (head-disjoint)
if TNT =0 (HNH =0). A family F C 251 x 2X2 is half-disjoint if any two
pairs of F are tail- or head-disjoint. A function p: 2X1 x 2X2 — R is called crossing
bisupermodular, if

p(T,H) +p(T",H') < p(TNT',HUH") +p(TUT',HNH' (4.4)

forany T, T' C X; and H, H' C X, provided that TNT' #0 # HNH' and p(T, H) #
0# p(T',H'). A vector z of RX1 *X2 coyers function p : 251 x 2X2 — R if (T, H) >
p(T,H) for any T C X, and H C X5, where z(T,H) := } , .yerxn 2(%1,22).
Finally, 7, := min{z(X1, Xs) : z € ZX**2 covers p} and v, := max{p(F) : F C
2% x 2% is half disjoint}, where p(F) := 3y, ez P(T, H).

Frank and Jordan [37] proved the following minmax theorem:

Theorem 4.2 (Frank-Jorddn [37]). If p: 2%t x 2X2 — N is crossing bisupermod-
ular then v, = 7. O

To indicate the depth of Theorem 4.2, we remark that the following theorem of
Edmonds [21] on packing matroid bases is a consequence.

Theorem 4.3 (Edmonds [21]). Let By, Ba, ... By C 2F be the sets of bases and
P1,72, ... 7kt 2F = N be the rank functions of matroids My, Ma, ... , My, respec-
tively. There are pairwise disjoint bases B; € B; if and only if Zie[k] ri(Z) —ri(E\
Z) < |Z| for each subset Z of E.

(With the help of a (k+ 1)st matroid for one direction and by adding appropriate new
elements to E for the other, it is not difficult to prove that Theorem 4.3 is equivalent
with Theorem 3.3.)

5 Polyhedral combinatorics

Let X be a subset of the d-dimensional space F? for some field F € {R,Q}. For
arbitrary subsets X and Y of F*, X +Y := {x 4+ y : ¢ € X,y € Y} denotes the
Minkowski sum of X and Y. In this section, when we talk about subsets of vec-
torspaces then (unless we do not state the opposite) we always mean a closed subset
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of the vectorspace. For subset X of F¢ let
span(X) := {Zie[k] Aizi sz € X, )\ € Bk € N},
aﬁ(X) = {Zze[k] Nz x; € X,\ € F,Zie[k] Ni=1ke N},

cone(X) := {Zie[k] Xizi sz € X,0< \; € F,k € N},

conv(X) := {Zie[k] Nizicx; € X,0< \; €T, Zie[k} Ai =1,k € N},
dim(X) :=min{|Y| - 1: X C aff(})},

denote the span, the affine hull, the cone, the convexr hull and the dimension of set
X, respectively.

Subset X of F? is called an (affine) subspace if span(X) = X (aff(X) = X). Set
X is a cone if cone(X) = X and X is convez, if conv(X) = X. We can characterize
(affine) subspaces in terms of hyperplanes. Subset H of F¢ is an affine hyperplane if
there is a vector a of F¢ \ {0} and a number b of F such that H = {z € F? : 27a = b}.
If 0 lies in affine hyperplane H (that is, if b = 0), then H is a hyperplane. (The proof
of the following facts can be found in the book of Schrijver [93].)

Theorem 5.1. Subset X of vectorspace F* is a subspace if and only if X is an in-
tersection of hyperplanes.X is an affine subspace if and only if X is an intersection
of affine hyperplanes. O

(Affine) subspaces and cones are clearly convex. There is a characterization of
convex sets in terms of halfspaces. Subset H+ of vectorspace F? is an affine halfspace
if and only if there is a vector a of F? and a number b of R such that Ht = {z €
F¢:2Ta > b}. If b= 0 then H is a halfspace. If a # 0 then the above halfspace is
bordered by affine hyperplane H = {z € F¢ : zTa = b}.

Theorem 5.2. Subset X of vectorspace F® is convex if and only if X is the in-
tersection of affine halfspaces. X is a cone if and only if X is the intersection of
halfspaces. O

A polytope is the convex hull of a finite set, a polyhedron is the intersection of
finitely many affine halfspaces. A polyhedral cone is the intersection of finitely many
halfspaces.

Theorem 5.3 (Farkas [28, 29], Minkowski [72], Weyl [104]). Subset P of F¢
is a polytope if and only if P is a bounded polyhedron. P is a polyhedral cone if
and only if P is the cone of a finite set. O

Hyperplane H supports convex subset C of vectorspace F¢ if HNC # 0 and there
is a halfspace HT bordered by H that contains C. Element z of convex set C is an
extremal point if x & conv(C \ {z}). Each extremal point {z} of a polyhedron P has
the property that there is a supporting hyperplane H of P such that H N P = {z}.
Extremal points of polyhedra are called wvertices. For a polyhedron P, the set of
vertices of P are denoted by vert(P). Subset F of polyhedron P is a face of P if
F=Por F=0or F=PnH for some supporting hyperplane H of P. (That is,



32 CHAPTER I. PRELIMINARIES

F=0,or F={z € P:clz>cTyfor all y € P} for some c € F?.) Face F is a facet
if dim(F') = dim(P) — 1.

Theorem 5.4. If polyhedron P is the convex hull of some subset X of F* and F is a
face of P then vert(F) = FNvert(P) C X. If P is a polytope then F = conv(vert(F)).

If polyhedron P = ﬂie[k] H;" is the intersection of finitely many halfspaces then
the facets of P are of the form P N H,y for some j € [l] and i(j) € [k], where H;
is the hyperplane that borders Hi'". If, furthermore P is d-dimensional then P =

+
Njem Hi- O

Note, that any polytope P of F¢ can be described as {Mz : 0 < x € F¢, 17z =
1} by some d by n matrix M, with as columns the vertices of P. Similarly, any
polyhedron P can be described with the help of an n by d matrix A and a vector b
as P={z € F?: Az > b}.

5.1 Integer programming

One basic idea in Combinatorial Optimization is the following. We have some family
F of subsets of some finite set X (the family of ’solutions’) and we have some cost
function ¢ : X — R on X. We would like to choose a solution of minimum cost,
that is, an element Y of 7 minimizing ¢(Y') := ),y c(z). Problems of this type are
finding a maximum size chain of a poset or a minimum cut in a graph. In the first
case, the elements of F are linearly ordered subsets of elements of the poset and the
cost of each element is —1. In the second case, solutions are certain edge-sets, and
the cost of each edge is 1. Let x : 2X¥ — FX be the characteristic function, i.e. xY is
the characteristic vector® of subset Y of X, with z-coordinate

X(@_{Ongx

Define Pr := conv{xY : Y € F}. Instead of selecting the optimal solution by
brute force, checking possibly exponentially many vertices of a polytope, we try to
exploit the machinery of linear programming to optimize an objective function ¢
on Pr. That is, we are looking for a supporting hyperplane of Pr of the form
H, = {z € F! : ¢Tz = p} and try to find in H. N Pr a characteristic vector of
an element of F. To be able to do so, we should be able to characterize Pr in terms
of halfspaces. If we find a good characterization then we can apply e.g. the ellipsoid
method to solve the optimization problem.*

Often it is easy to describe a polyhedron P = {z € F? : Az < b} for which we
know that Pr NZ% = PN Z% hence Pr = conv(P N Z%). It means of course that
Py C P, and sometimes, only by standard methods of integer programming, it is
possible to prove that the two polyhedra are the same.

As an example, consider the case of Theorem 1.1. For poset (X, <), a maximum
size chain is nothing else but a minimum cost linearly ordered subset of X where the

3Note that sometimes the term characteristic function is used for the above vector.
4Note that the ellipsoid method is not practical. In practice, the simplex method (which is not a
polynomial one) works much better.
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cost of each element of X is —1. Let F be the set of chains in X. Clearly,
PrCP:={z€ RX! .z >0, (XA)TJJ < 1 for any antichain A of X} . (5.1)

Moreover, any integer vector of P is a characteristic vector of a chain. But at this
point, it is not clear whether P = Py or not. This question can be formulated as
deciding the integrality of polyhedron P, where polyhedron P is called an integer
polyhedron if P = conv(P N Z%). To answer this question positively, we use two
results.

Lemma 5.5 (Edmonds-Giles [27]). Polyhedron P in space F¢ is integer if and
only if max{c’x : x € P} € Z for any integer vector c of Z¢ for which the mazimum
is finite. 0

The other tool we need is linear programming duality.

Theorem 5.6 (von Neumann [101], Gale et al. [43]). For any n x d matriz A
over F and vectors ¢ € F* and b € T,

max{c'z:0<z,zcF, Az < b} = min{yTb: 0 < y,y € F*,yA > ¢}, (5.2)
if both sets in (5.2) are nonempty. O

The pair of linear programming problems in Theorem 5.6 is called a primal-dual
pair of linear programs. If one of them declared to be the “primal” problem then the
other is referred to as the “dual” one.

In case of our poset example, the nonemptyness condition of Theorem 5.6 trivially
holds, so we get that for P := {y: 0 <y € R4, y(a) > c(a) for a € X},

max{c’z:z € P} =min{y”1:y € P’}. (5.3)

where A is the family of antichains of poset (X, <), and y(a) := > c4c4¥(4). In
light of Lemma 5.5, to show that there is an equality in (5.1), we have to prove that
(5.3) is integer whenever ¢ € Z% But this is a direct consequence of the following
(trivial) generalization of Theorem 1.1.

Theorem 5.7. If (X, <) is a poset and ¢ : X — Z then the minimum number of
antichains such that each element a of X is contained in at least c(a) antichains is

the mazimum of ) .~ c(a) for chains C of X.

Proof. Apply Theorem 1.1 for partially ordered set (X., <.), where X, := {a(i): a €
X,i € [c(a)]} and partial order <. is defined by a(i) <. b(j) if a < b or a = b and
i <. 0
Recall that A denotes the family of antichains of poset P = (X, <), and let C be the
set of chains of P. According to Theorem 5.7, for any integer vector ¢ € F¢ there is
a chain C and a family of antichains A C A in such a way that ¢/ x¢ = (x*)T1. As

X € P and x* € P}, the common value in (5.3) is integer, indeed. What we got is,
that

conv{x® eFX :CeC}={z €FX :0<z,z(A) <1forany A € A}, (5.4)
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where z(A) =3 4 z(a).

Our next aim is to find a similar linear characterization for the convex hull of
antichains. To achieve this, we shall use blocking theory of polyhedra.

Polyhedron P C Fj_ is a blocking type polyhedron if P = P + IF‘_f_, and it is an
antiblocking type polyhedron if P = F% N (P +F%). Any finite subset H of FL defines
a blocking and an antiblocking polyhedron by

H':=conv(H)+F, and  H':=F% N (conv(H)+F%),
respectively. For a polyhedron P
B(P):={z€F! : 27y > 1for all y € P} and
AP):={zeFl 2"y <1foralye P}

are the blocking and antiblocking polyhedron of P, respectively. As suggested by the
name, if P is a polyhedron then both A(P) and B(P) are polyhedra.

Theorem 5.8 (Fulkerson [39, 40, 41]). If P is a blocking type polyhedron then

B(P) is a blocking type polyhedron and P = B(B(P)). If P is an antiblocking type

polyhedron then A(P) is an antiblocking type polyhedron and P = A(A(P)). Further-
more,

B({z1,23,... ,2,}") = {y e FL : yTx; > 1 fori € [n]} (5.5)

A({z1, 2, ... ,a:n}‘L) +Cu={ye€ IF"_f_ : yTa; <1 forie [n] and
y(m) =0 form € M} (5.6)
for any n € N and elements z; (i € [n]) of FL where for subset M of [d] cone

Cy :={zx €F :z >0andz(m) =0 form € [d]\ M} is the projection of the
positive orthant to F?. O

Observe that the polytope described in (5.4) is of antiblocking type. Combining
this with Theorem 5.8 we get the following.

Corollary 5.9. If (X, =) is a poset and C and A is the family of its chains and
antichains, respectively, then

conv{xy? eFX :Aec A} ={zeF:0<z,2(C)<1foranyCeC} O
After this result, we discuss the integrality of a general polyhedron
P={zeF: Az <b} (5.7)

(where A € F**4). According to Lemma 5.5 and linear programming duality, P is
integer if and only if for the optimum value of the dual

min{yTb:0<y €, yA=c} ¢F\Z (5.8)

holds for any d-dimensional integral vector ¢. (That is, if there is a finite optimum
then the objective value must be integral.) If for each vector ¢ of Z¢ with finite
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optimum in (5.8) there is an integer optimum vector of (5.8), we say that Az < b in
(5.7) is a totally dual integral system, or shortly a TDI system. So if Az < bis TDI
and b is integral, then polyhedron P in (5.7) is integral. There is a characterization
of TDI systems in terms of Hilbert bases. We say that subset H of F? is a Hilbert
basis, if for any element z of cone(H) N Z? there is a natural number k, a subset
{hi : @ € [k]} of H and coefficients A; € N such that z = 37, Aihi (that is any
integer vector in the cone of H is a nonnegative integer combination of H). Hilbert
basis H is integral if H C Z% 1t is well-known that for any rational cone C, there
exists a finite, integral Hilbert basis H such that cone(H) = C. Moreover, if C does
not contain a 1-dimensional subspace then there is a unique inclusionwise minimal
Hilbert basis of C'.

Theorem 5.10. System Az < b is TDI if and only if set Hp := {a; : i € [n],a;f =
b; for each f € F} is a Hilbert basis for any face F of {x € F¢ : Az < b}, where
ai,as, ... ,a, are the rows of A and b= (by,ba,... ,b,)7. O

The question about a possible integer analogue of Carathéodory’s theorem is an
interesting problem about Hilbert bases. The following bound has been proved by
Cook et al [13] .

Theorem 5.11 (Cook et al. [13]). If H is a Hilbert basis in Q¢ and C = cone(H)
does not contain a positive dimensional linear subspace then for any vector z of CNZ%
there is are elements h; of H and coefficients \; of N for i € [2d — 1] such that

Z = Zi€[2d71] Aihi. 0

Andrés Sebd proved the above theorem with bound 2d — 2 instead of 2d —1. It was
conjectured that this bound can be as small as d, but recently it has been disproved.
Still, it is an interesting question to determine a better bound than that of Sebd.

5.2 Linear description of combinatorial polyhedra

In what follows, we give linear characterizations of integer polyhedra Pr in case of
certain special families 7. We use the abbreviation z(H) := ),y z(e).

Theorem 5.12 (Birkhoff). If G = (V, E) is a finite bipartite graph then
conv{x" : F C E is a matching of G} =
{z:0<zecF (D)) <1 foreachveV} O
Edmonds [24] has characterized the matching polyhedra of nonbipartite graphs.

Theorem 5.13 (Edmonds [24]). If G = (V,E) is a finite graph and E(U) is the
set of edges of E spanned by U then

conv{x¥ : F C E is a matching of G} =
{z:0<zecF 2(Dw)) <1 forveV,z(EU)) < {%J forU CV}, (5.9)

conv{x" : F C E is a perfect matching of G} = (5.10)
{z:0< 2z €T (D)) =1 forveV,e(DU)) > 1 for odd sets U CV}. O
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A generalization of Theorem 5.12 to matroids is the description of the matroid
intersection polytope by Edmonds [25]:

Theorem 5.14 (Edmonds [25]). If My = (E,r1) and My = (E,re) are matroids
on the same groundset then

conv{x’ : I is independent both in My and in My} =
{z:0<z e€FP &(F) <riF) for any i € {1,2} and F C E}.

5.3 The ellipsoid method

One use of linear descriptions of integer polyhedra is that by well-known methods of
linear programming we can efficiently solve linear optimization problems over them.
That is, we can find e.g. minimum cost (stable) matchings or maximum weight com-
mon independent sets of matroids. Moreover, by linear programming duality, one can
prove the optimality of a certain solution of the primal program by finding a feasible
solution of the dual program of the same cost. Based on the well-known simplex
method, there are several ways to solve such optimization problems in practice. Al-
though this approach often works very satisfyingly, usually there is no proof that the
time the method takes is polynomial in the size of the input.

However, there is another approach to linear programming, namely the ellipsoid
method, that is a polynomial one in the above sense. The significance of this does not
lie in everyday applications (because in practice the simplex method performs much
better) but rather in the fact that we can use it to prove that some problems can be
solved in polynomial time.

With the help of the ellipsoid method, Grotschel et al. [48, 49] have shown that the
problem of optimizing a linear function over a polyhedron P in Q? and the problem
of separating a vector y from P by a hyperplane are polynomially equivalent in the
following sense. If P can be described by linear constraints of size at most m then there
exists an optimization algorithm that for a vector ¢ € Q? either computes an element
x € P maximizing {c¢’x : x € P} or proves that such a vector does not exist, in time
polynomial in d, m, the size of ¢, and the running time of the separation algorithm.
On the other hand, there exists a separation algorithm that for a vector y either
computes a halfspace that contains P and is disjoint from g, or proves that y € P
in time polynomial in d,m, the size of y, and the running time of the optimization
algorithm. (The size of the above terms are roughly the number of bits we need to
describe them.)

It is also proved that if there is a membership testing algorithm that decides
whether a vector x belongs to polyhedron P or not, and an element xg of P is known,
then there is an optimization algorithm that runs in time polynomial in d,m, the size
of zg, and the running time of the membership testing algorithm.

The interested reader is referred to the book of Schrijver [93] and Grotschel et al.
[49], where besides the missing proofs (s)he can find further material and references
on polyhedral optimization.



Chapter 11

Crossing structures

Our discussion in this chapter is mainly about crossing sets, that are crossing elements
of the family of nonempty proper subsets of a groundset. In 1.1, we have defined the
notion of crossing elements of a partially ordered set. By specializing that notion of
crossing to the poset of subsets of a groundset, we define subsets A and B of groundset
X to be crossing if none of AUB, A\ B,B\ A, X \ (AU B) is empty.

In this chapter, we discuss three crossing related problems. First, we describe an
uncrossing algorithm by exhibiting a finite winning strategy for a certain uncrossing
game. For this reason, we present a straightforward extension of a result of Hurkens
et al. [54] from subsets to lattices. We shall use this extension later, in Section
20 to prove a crucial consequence of the lattice structure of so-called FG-kernels.
Next, based on the result of Hurkens et al. [54], we describe a winning strategy of a
more involved uncrossing game motivated by Frank and Jordédn’s minmax relation for
covering a crossing bisupermodular function (Theorem 4.2). This winning strategy
implies an efficient algorithm to construct a half-disjoint family of pairs with maximum
demand as in Theorem 4.2.

In 7, we prove a conjecture of Frank (Theorem 7.2) on “symmetric posets” that
model crossing-related properties of sets. The result contains Dilworth’s theorem and
the edge-cover formula for graphs. Further, we indicate some consequences of this
result for the [;-embeddability problem of finite metric spaces.

We close the chapter with an extremal problem on 3-cross-free families, by solving
a special case of a conjecture of Karzanov. We show that if a family F of subsets of X
does not contain 3 pairwise crossing sets then the size of F is a linear function of the
size of X. By this, we provide a short and straightforward proof for a strengthening
of a complicated result of Pevzner [76].

In the rest of this introductory part of Chapter II, we mention some basic facts
about the notion of crossing sets. First, observe that A and B are crossing if and only
if A and X \ B are crossing.

A family F C 2% is laminar (or cross-free) if F does not contain two crossing
elements. Let F be a cross-free family on finite groundset X and fix an element x of
X. Consider family 7' := {A C X\ {z}: A€ F or X\ A € F}. It is straightforward
to prove that the diagram of poset (F',C) is a tree. This gives rise to a so-called

37
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tree-representation of cross-free families. For any cross-free family F C 2%, there
exists a superset W of X, a tree Tr = (W, E), and a subset E' of E in such a way
that

F'={CenV :e € E and C, is a component of Tx — e not containing z}.

It follows easily from the existence of this tree-representation that the size of a laminar
family is at most 4|X]|.

A family F of subsets of groundset X is crossing if for crossing members A, B of
F both AN B and AU B are members of F. If b: 2¥ — R is a (crossing) submod-
ular function then it follows directly from the submodular property that the set of
minima of b is a crossing family. Cross-free families are clearly crossing. Moreover,
similarly to the above tree-representation, symmetric crossing families can be repre-
sented by so-called hypercactus hypergraphs [58, 16, 34]). (A family is symmetric if
the complement of any member of the family is a member of the family.)

6 Uncrossing in lattices

In this section we shall deal with uncrossing problems that are motivated by Theorem
4.2 of Frank and Jordan. We will formulate the results in terms of lattices. After this,
we explain how they can be used in connection with Theorem 4.2. The main result
of this section also appears in [32].

6.1 The uncrossing game

Let P = (E, <) be a convex set of a lattice L = (X,A,V) (e.g. L= (2V,n,U)), and
assume that we want to optimize a function f : E — R4 that is a feasible solution
for our problem. Often the following exchange property is true. If f is a feasible
solution and f(z) > 0 < f(y) for some crossing elements x,y of P (that is,  and y
are uncomparable and z A y,x V y € E) then function f’ is also a feasible solution,
where

f)—eifz=zo0rz=y
fl(z)=% f(r)+eifz=xzAyorz=zVy
f(2) otherwise,

for € := min{f(x), f(y)}. Moreover, the value of the objective function on f’ is not
worse than on f. This means that if f was an optimal solution of the problem then
the above uncrossing step on f along x and y results in another optimal solution f’.
Solution f is called cross-free if no uncrossing step can be performed on it. Observe
that after the above uncrossing step, f'(z) =0 or f'(y) = 0.

Our aim is to determine from a solution f a cross-free solution f’ by performing
a sequence of uncrossing steps. By this, we can reach a twofold goal. On one hand,
the existence of a cross-free optimal solution might imply a stronger min-max relation
than linear programming duality. E.g., the proof of Theorem 4.2 is based on the fact
that there is a cross-free optimal solution of a related linear programming problem.
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On the other hand, if we have an efficient uncrossing rule then we can use it in an
algorithm to solve the particular combinatorial optimization problem, in polynomial
time. This is done in 6.4, for the special case we describe next.

Our main motivation to consider uncrossing problems is Theorem 4.2. There, a
fractional optimal solution for the dual packing problem (which we can find efficiently
by the ellipsoid method) is a function f : 2% x 2¥ — Q.. It is easy to see that if
ANA"#£0 # Bn B for some fractional optimum f then function f’ is an optimum
as well, where

f(T H)—¢ if(T,H)=(A,B)or (T,H)=(A",B")
f(T,HY+e if(TH)y=(ANnA',BUB'")

or (T,H)y=(AUA'",BNB')
f(T,H) otherwise,

(T, H) =

for e := min{ f(A, B), f(A', B')}. In [37], an essential step of the proof of Theorem 4.2
is to show that there exists a cross-free optimum f. Although, from the proof in [37],
one can easily construct a finite uncrossing method, it is not clear how to finish the
whole uncrossing process in polynomial time. In 6.4, we exhibit such an algorithm.
A consequence of this uncrossing algorithm is that there exists a polynomial time
algorithm that constructs a half-disjoint system of maximum demand, as in Theorem
4.2.

In [54], Hurkens et al. solved the uncrossing problem for the special case where
lattice L = (2¥,N,U) is the lattice of subsets of some groundset V', and the convex
set P in which they uncross is the lattice itself. The idea of the method is that the
uncrossing strategy depends only on the support of function f to be uncrossed (thus
it cannot depend on the concrete values of f on the certain subsets). This leads to a
more general problem on finding a winning strategy of the following uncrossing game.

The game is played by player 1 and player 2 on a convex subset P = (E, <) of a
lattice L. There is also given a finite subset F' of E. The game consists of generalized
uncrossing steps. In each such step the actual subset F' of E is modified as follows.
Player 1 selects two elements a and b of F' that cross in P. According to the choice of
player 2, F' is changed into F'\ {a,b}U{a A b,aV b} or into F'\ {a} U{aAb,aV b} or
into F\ {b}U{aAb,aVb}. (We can view this such that player 1 chooses two elements
to uncross, and player 2 salvages at most one of these two elements that player 1 tries
to eliminate by uncrossing.) Player 1 wins the game if there is no pair of crossing
elements in the actual subset F. Player 2 wins if the actual F' contains an earlier one.
Note that this game is a nontrivial generalization of the uncrossing problem for real
functions on E above, as any uncrossing step in the original problem can be regarded
as a generalized uncrossing step on the support F' of f with an appropriate move of
player 2.

Extending the result of Hurkens et al. [54], but using exactly the same ideas, we
show in 6.2 that if the generalized uncrossing problem is played on a lattice (in other
words, if P = L), then player 1 has a winning strategy. Next, in 6.3, we prove our
main result on uncrossing problems, by exhibiting a winning strategy for player 1 in
case of certain convex subsets of finite distributive lattices. We remark that player 1
does not have a winning strategy for all convex sets of all distributive lattices. We
illustrate this on Figure 6.1, where a diagram of a poset P’ is depicted, with labels
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on the elements. These labels show that P’ can be embedded into a subsetlattice, i.e.
there exists a distributive lattice L and a convex set P of L such that P’ on Figure
6.1 is a restriction of P. Moreover, we can choose the convex set P such that the set
F of those eight elements that are indicated by full dots constitute a cross-free set.
If the game starts on F' U {z} where z is one of the remaining elements of P, then
player 1 has a forced move and player 2 can choose her move so that F'U {z} turns
into F'U {y} for some other element y indicated by an empty dot. So player 2 can
win in this case. This example also shows that even when the convex set is the lattice
itself, player 1 might loose if she choose her uncrossing steps arbitrarily. Moreover, if
we extend convex set P with a zero- and a unit-element, then we get a lattice. This
shows that player 2 might have a winning strategy for convex sets of nondistributive
lattices that are unions of intervals between atoms and co-atoms.

{1,23456,8,9} {1,2,345,6,7,0}

{2,34,5,6,0}

Figure 6.1: Essential part of convex set of distributive lattice where player 1 has no
winning strategy.

6.2 The game on a lattice

In what follows we prove an easy extension of the result of Hurkens et al. [54].

Theorem 6.1. If the above uncrossing game is played on a lattice P = L = (X, <),
then player 1 has a finite winning strateqy. If the height of the lattice is bounded by
n, and the game starts with subset F = {x1,%9,...x} of X then player 1 can win
after 2nk generalized uncrossing steps.

Proof. As in a lattice any two noncomparable elements are crossing, the aim of player
1 is to transform F' into a chain. In order to achieve this goal, player 1 divides the
game into stages, and in each stage he wins a subgame on a subset of the actual set
F. After winning all stages, player 1 wins the entire game. In the ith stage player 1
starts an uncrossing game on a chain C; (C; := 0), together with element z;. After
player 1 has won the subgame, that is when C; U {x;} is transformed into chain Cj;1,
the (7 + 1)th stage starts.

In stage 4, player 1 partitions the actual subset into three subsets C', D and U
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with the property that

C,D and U are chains and

6.1
cVd<wuand cAd<d forany c€ C,d,d € D and u € U. (6.1)

To start the stage, player 1 chooses C = C;, D := {z;} and U; := 0. As long as
C # 0 # D, player 1 selects the maximal element ¢ of the actual C' and the maximal
element d of the actual D. If they are comparable, player 1 redefines C, D and U
by putting the greater element of ¢ and d into U, and starts the uncrossing step
anew. Observe that after this change, property (6.1) remains valid. If ¢ and d are
uncomparable (hence crossing), player 1 uncrosses them and puts ¢ V d into U and
c A dinto D. Then player 2 puts back at most one of ¢ or d, and this element stays
in the set C or D where it was before. Again, property (6.1) is preserved.

For an intermediate situation at stage , let a(|C/|, | D|) denote the maximal number
of further uncrossing steps that player 1 needs to win stage i if cAd ¢ D, and let
b(|C|,|D|) denote the same maximum when cAd € D (c and d are the maxima of C
and D that player 1 chooses to uncross in this situation). Clearly, a(l,0) = a(0,1) = 0,
and b(1,0) = b(1,1) = b(0,1) = 0, for any integer I. Using property 6.1, we get the
following recursions.

a(paq) 1+ma.x{b(p,q),a(p—1,q+1)}
b(p, q) 1+ max{b(p,q —1),a(p - 1,9),b(p — 1,9)}

It is easy to check that the solution of this recursion satisfies a(p,q) < 2p+ ¢ — 1 and
b(p,q) < 2p+ q— 2. Hence player 1 wins stage ¢ after at most 2|C;| uncrossing steps.

So far we described a finite winning strategy for player 1 to win a stage of the
uncrossing game on a lattice. As this finite winning strategy works for all stages,
player 1 can win all k stages (that is, the entire game), after finite number of steps.
If n is the height of lattice L then one stage of the uncrossing game takes at most 2n
time, and the winning strategy of player 1 requires at most 2nk uncrossing steps. O

<
<

Remark. If the game is played on a modular lattice, we may assume that each
stage is played on the free modular lattice L™ in Figure 1.2. Then, it is easy to prove
that at any point of the stage, the sublattice generated by C and D is a homomorphic
image of lattice L™* in Figure 6.2. In the situation depicted in Figure 6.2, player 1
Uncrosses ¢, with dy and puts ¢, V di, into U. According to the move of player
2, the lattice generated by the new chains C and D will be either L™~ k=1 m—Lk
or Lmk-1,

6.3 The distributive game

In 6.1, we mentioned that if P is a convex set of a distributive lattice, or if P is a
convex set of a not necessarily distributive lattice between atoms and co-atoms, player
1 might not have a winning strategy. Next we show that if P is a convex set between
a set of atoms and a set of co-atoms of a distributive lattice, then player 1 can win in
finite time.

Thus, in what follows L = (X,A,V) is a finite distributive lattice, and poset
P = LE is the convex set between some subset A = {ay,as2,...,a;} of atoms and
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Figure 6.2: Lattice L™* and the intermediate situation at a stage.

some subset B = {b1,b2,...,b;} of co-atoms of L. There is also given a set F' of
elements of P, which player 1 should uncross in P. The following lemma turns out
to be crucial:

Lemma 6.2. If L = (X,A,V) is a finite distributive lattice and a is an atom and b
is a co-atom of L, then xVy > a implies x > a ory > a, and x Ay < b implies x < b
ory <b for any z,y € X.

Proof. fxVy >athena=aA(xVy) = (aAz)V(aAy). As a covers 0, either
aNr=aoraAy=a,thatisa <z ora<y.

The above argument on (X,V,A) implies the analogous statement for the co-
atoms, and Lemma 6.2 follows. ([l

So we have the following corollary.

Corollary 6.3. Let P = L% be a convez set for a distributive lattice L = (X, A, V),
a set of atoms A and set of co-atoms B. Then for any pair of elements x,y of P, for
any minimal element a and mazimal element b of P, we have that x Vy > a implies
x>aory>a, andz Ay <bimpliesx <b ory <b. O

Note that by Theorem 1.6, we know that distributive lattices are isomorphic to
subsetlattices. In this sense, a winning strategy for our distributive uncrossing prob-
lem is not more general than a winning strategy for an uncrossing game where crossing
sets can be uncrossed. The reason that we use the language of lattices unlike in [32],
where the winning strategy is given in terms of sets, is twofold. On one hand, we can
prove a more general theorem by relaxing distributivity, and on the other hand, for
the application in 6.4, the lattice-form is more natural than the subset-language.

Theorem 6.4. If for convex set P = (E, <) of lattice L = (X, \,V) the consequence
of Corollary 6.3 holds, then player 1 has a finite strateqy to uncross a finite subset F'
of E. If the height of P is n, then player 1 can uncross F in 2kin(|F| + nkl) steps,
where k and 1 are the number of minima and maxima of P, respectively.
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Proof. Let A ={ay,as,...,ar} be the set of minima, and B = {by,bs,... ,b;} be the
set of maxima of convex set P, that is P = L. Clearly, each interval of P is a lattice,
so by to Theorem 6.1, player 1 can win the uncrossing game on F? := F N P? for any
interval P? of P. In a so called routine game G®, player 1 chooses an minimum a and a
maximum b of P, and plays an uncrossing game on F? until it is won. By this, player
1 transforms F' into a set that we denote by Fla,b]. We shall show that if player 1
wins these routine games for each interval P? in the lexicographic order of minimum-
maximum pairs (a,b), then F becomes cross-free. Recall, that F' is uncrossed if and
only if F? is a chain for each element a of A and b of B.

Claim 6.5. For any a € A, b,b' € B, if F? is cross-free then (F|a,b'])? is cross-free.

Proof. From Corollary 6.3, (Fla,b'])! \ (F[a,b'])! = Fb\ F?, which is a chain by
assumption. (F[a,b'])2 N (F[a,d'])? is a chain because G% is won. In the beginning
of G, every element of F?\ F?' is less than any element of F{"" !, and by Corollary
6.3, this property is preserved (6.3) after a generalized uncrossing step in G2. O

For a set F' and an element a; of A, let F[a;] denote the set that we get after winning
routine games G4 for all b € B. So Fla;] = (... ((Flai, b1])[ai, b2]) . ..). We call this
sequence of routine games the ith phase of the uncrossing game. Let A(%) := {a; :
1<) <i}.

Claim 6.6. If Ff(iq) is cross-free, then (F[ai])f(i) is cross-free.

Proof. Claim 6.5 implies that (F[a;])}, is a chain for any b € B. We have to show
that the same holds for (F[a;])} whenever a € A(i — 1) and b € B. By Claim 6.5,
(Flai])® N (F[as))}, is a chain and by Lemma 6.3, so is (Fla;])} \ (Fla;));,. We will
show that during the ith phase, for any intermediate set F' of the ith phase, for any
a€A(i—1)and any be B

z <z for anyzeF'Z\F'zi anda:eF'ZﬂF’Zi. (6.2)

By assumption, property (6.2) is true for F.

If, indirectly, this is not the case at the end of the ¢th phase, then there is a first
generalized uncrossing step which violates property (6.2). Suppose that it is first
violated for z € F'° \ F' fw right after a generalized uncrossing step in G%, (b =¥’ is
allowed), with elements z,y € F' Z'i, of some intermediate set F".

Ifz,y € F’Z then by (6.2) z < z and z < y, hence z < zAy < zVy. Property (6.2)
also holds when =,y ¢ F'Z as by Lemma 6.3z Ay, zVy & F’Z. Thus by symmetry
we may assume that x € F’Z Fy. Ifa £y £0bthen by Lemma 6.3 zAy,zVy & F’Z,
so (6.2) cannot be violated. If y < b and hence a £ y then zVy € F’Z F x Ay, again
by Lemma 6.3. As z < x <z V y, property (6.2) holds after the uncrossing.

The remaining case is @ < y £ b. Again from Lemma 6.3, z Vy ¢ F’Z. From
property (6.2) for ab, we have that z < & < b’. Hence property (6.2) for ab’' can be
applied to z and it implies that z < y. So z < x Ay, that is property (6.2) is preserved
after a generalized uncrossing step. O
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Let FOO := F and for 1 < i < n let F® = Ft=1) [a;]- By induction, using
Claim 6.6, (F9)% is cross-free. In particular, (F(™)% is cross-free, hence the above
method is a finite winning strategy for the uncrossing game for player 1. If n is an
upper bound on the length of chains of L then a routine game needs at most 2n|F|
uncrossing steps and there are kl routine games. As the new elements of F' that
emerge after a routine game form a chain, there are at most nkl new elements in the
final F. Hence, 2kin(|F| + nkl) is an upper bound on the number of uncrossing steps
player 1 has to make. ([l

6.4 An application to the set-pair cover problem

The motivation for solving the above particular uncrossing problem was to prove the
existence of a polynomial-time algorithm for the dual problem of optimizing v, in
Theorem 4.2 of Frank and Jordan.

To solve applications of Theorem 4.2, it is useful to have an efficient algorithm that
provides both a half-disjoint family with maximum demand, and an optimal covering
of p. The characteristic vector y of a half-disjoint family of maximum demand is an
optimum of the integer program

mam{yTp ¢ y >0,y integer and
y(z1,@2) < 1 for every (z1,2) € X1 x Xo}, (6.3)

where y : 2% x2%X2 — Rand y(z1,22) := Y {y(T,H) : &1 € T, x> € H}. Consider the
following integer program that solves the covering problem via an integer optimum z.

min{z(X; x Xo) : 2z >0,z integer and
2(T x H) > p(T, H) for (T, H) € 2% x 2%2}.  (6.4)

It is easy to see that the linear relaxation of 6.3 is the dual linear programming
problem of the linear relaxation of 6.4. Hence by linear programming duality (as both
problems are feasible), the fractional optimum values of the two relaxations are equal.
Theorem 4.2 can be interpreted such that for a crossing bisupermodular function p,
these linear relaxations of (6.3) and (6.4) have integer optima. Frank and Jorddn
[37] also indicate a way to find an integer optimum z* of (6.4) in polynomial time.
What they do is that they compute a fractional primal optimum z using the ellipsoid
method and with the help of this optimum they reduce the problem to another one
where the bisupermodular function p' is “small”. In this small problem, they can find
“reducing” edges one by one, and this is sufficient for the efficient construction of an
optimal solution z*.

Let us introduce partial order < on 2%t x 2X2 by (T, H) < (T",H') if T C T" and
H D H'. This partial order defines a distributive lattice L on 2%t x 2X2 with lattice
operations (T, H)A(T',H') = (TNT',HUH') and (T, H)V(T',H') = (TUT', HNH").
Define convex set P = LE, where A := {({z1}, X2) : 71 € X} is a set of atoms and
B := {(X1,{x2}) : 2 € X5} is a set of co-atoms of L. The bisupermodular property
(4.4) of p yields that if y is an optimal solution of (6.3) and (T3, H;) and (T3, H) are
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crossing pairs, then vector 3’ is also an optimal solution of (6.3), where

y(T,H)—¢,if (T,H) = (T\,Hy) or (T, H) = (T», H»)
y'(T,H) ={ y(T,H)+e,if (T,H) € {(T1, H) A (Ts, Hs), (T1, Hy) V (Ts, Hy)}
y(T,H) , otherwise

and € = min{y(T1, H1),y(T>, H2)}. That is, an uncrossing step transforms one opti-
mum of (6.3) into another one.

Let y be an optimum of 6.3 found (say) by the ellipsoid method. It means that
|F| is polynomial in the input size of the problem, where F := supp y. By Theorem
6.4, we can uncross F in polynomial time so that we get cross-free family F*. This
uncrossing procedure defines a sequence of transformations on the optima. This
sequence transforms y into some rational optimum y* in polynomial time such that
F* =supp y*. For the following proof, choose a positive integer M such that My* is
an integer vector.

Consider poset (2% x 2X2_ <) and function ¢(T, H) := My*(T, H) on its elements.
By (6.3), the total c-value of any chain of this poset is at most M. From Theorem 5.7,
there are M antichains of (2%t x 2%2, <) covering each pair (7, H) with multiplicity
at least ¢(T, H). The total p-weight of any antichain in this cover is at most (y*)p,
because any antichain corresponds to a half-disjoint family. On the other hand, the
total p-value of the M antichains together is at least ¢’ p = M (y*)Tp, as each element
(T,H) is covered at least c¢(T,H) times. It follows that all the M antichains in
the cover above must have p-weight exactly (y*)7p, that is, all antichains in the
optimal cover correspond to an optimal half-disjoint family. But we saw in the proof
of Theorem 5.7 that we can choose the optimal antichain cover in such a way that
one of the antichains is the set of <-minimal elements of supp y*. Hence the <-
minimal elements of any uncrossed optimum y* is a half-disjoint family with maximum
demand.

As a main application of Theorem 4.2, Frank and Jorddn obtained a min-max
formula for the unweighted directed node-connectivity augmentation problem. More
precisely, they proved that the minimum number of arcs needed to augment a given
directed graph to be k-node-connected equals the maximum total demand of a certain
independent family. Here independent means that any edge can decrease the demand
of at most one member of the family. By solving the primal problem (6.4), Frank and
Jordan can find an optimum augmentation. A dual optimum that can be constructed
via our uncrossing algorithm provides an independent family certifying the optimality
of the primal solution.

7 Symmetric chain covers of symmetric posets

In this section we prove a min-max result on special partially ordered sets, conjectured
by Andrés Frank. It is a common generalization of Dilworth’s theorem and of the
well-known min-max formula for the minimum size edge cover of a graph. We also
give an application of this result to the problem of minimum dimensional embedding
of metric spaces into l;-spaces. The results described in 7.1 and 7.2 also appear in
[33].
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To illustrate the method we are going to use, we show first a well-known con-
struction that derives Dilworth’s theorem from Kénig’s bipartite matching theorem
(Theorem 2.2).

Theorem 7.1 (Dilworth [18]). Let P = (V, <) be a partially ordered set. The
minimum number of chains of P that cover V equals the mazimum size of an antichain
of P.

Proof. As the intersection of a chain and an antichain has at most one element, the
size of any antichain of P is an lower bound on the size of any chain cover. In what
follows, we construct a chain cover and an antichain such that the size of the cover is
not more than the size of the antichain.

Define bipartite graph B on colour-classes V' and V', where V' = {v' : v € V'},
by E = E(B) := {uwv' : u < v}. Introduce perfect matching M := {vv' : v € V}.
Any chain v;1 < vy < ... < vg of P corresponds to a path in B + M with vertices
(v1,0], V2,05, ... ,Vk,0;) (& so-called M E-alternating path). Conversely, each M E-
alternating path of B + M is coming from a chain of P.

Hence the problem of covering P with the minimum number of (disjoint) chains
can be equivalently formulated as the problem of covering V(B) with the minimum
number of (vertex-disjoint) M E-alternating paths. If we have a cover of B by k M E-
alternating paths, then the E-edges of the paths in the cover form a matching of B
of size |V| — k. On the other hand, if N is matching of B of size k, then M U N is
the edge-set of |V| — k M E-alternating paths.

According to the above argument, the size of the minimum chain cover of P is
|V|—v(B). By Theorem 2.2, there is a subset U of VUV of size v(B) that is adjacent
to all edges of E(B). But this means that {v € V : v ¢ U # v'} is an antichain of P
of size at least |V| — |U| = |V| — v(B). O

In the following sections, we describe symmetric posets. With help of a nonbipartite
auxiliary graph and the Edmonds-Gallai decomposition, we show a theorem similar
to Theorem 7.1.

7.1 Symmetric posets
We prove the following result, conjectured by Andras Frank:

Theorem 7.2. Let P = (V,X, M) be a symmetric poset. The minimum number
of symmetric chains needed to cover P is equal to the mazximum value of a legal
subpartition of P.

Here P = (V, X, M) is a symmetric poset if (V, <) is a finite poset and M is a
perfect matching on V' such that v < v and uu',vv' € M implies v’ > v'. By u < v
we mean that v # u < v. A subset {u1v1,usvs,... ,urvr} of M is a symmetric chain
in the symmetric poset P = (V, X, M) if u; < u;4q for 1 <4 < k. Symmetric chains
S1,S82,...,S; cover symmetric poset P if M = U§:1 S;.

My, My, ... ,M; C M is a legal subpartition of P if

u1v1 € M;, usve € M; and u; < up implies i =j and (7.1)

there is no symmetric chain of length three contained in any M;. (7.2)
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U‘;fil

We proceed with the proof of Theorem 7.2 and discuss the algorithmic aspects.

Next, in 7.2 we derive from Theorem 7.2 two, in a sense extreme, cases: Dilworth’s
theorem and the well-known minmax relation for the minimum size edge covering of
a graph. Also in 7.2, a generalization of Theorem 7.2 is proved with help of a node
splitting construction. In 7.3, we explain how Theorem 7.2 applies in the problem of
embedding metric spaces in minimum dimensional /;-spaces. The discussion in 7.2
and 7.3 can be understood without mastering the proof of Theorem 7.2.
Proof of Theorem 7.2. By definition, any symmetric chain intersects at most one
member M; of a legal subpartition £ and such an intersection contains at most two
elements. So the value of a legal subpartition is a lower bound for the number of
symmetric chains needed to cover M.

For the reverse inequality, we prove that there exists a special symmetric chain
cover, in fact a symmetric chain partition, S of M and a legal subpartition £ of P
such that |S| is equal to the value of L.

Define undirected graph G = (V, E) by

The value of the legal subpartition £1is Y,/ . |-

E := {uv' : v such that vv' € M and u < v}. (7.3)

E is well defined, as the equivalence of u < v and u' > v' (where uu',vv' € M) implies
that uv' € E if and only if v'u € E.

Observe that {mi,ma,... ,mr} C M is a symmetric chain if and only if there
exist er, ea,... ,ex—1 € E such that mjeymees ... mg_1ex_1my is an M E-alternating
path. Observe moreover that transitivity of the partial order < means that if vo’ € M
and uv,usv’ € E then ujus € E (we refer to this property as the transitivity of E).
Because the order is acyclic, there is no M E-alternating cycle (i.e. a closed M E-
alternating path).

So now we are looking for the minimum number of M E-alternating paths covering
V. If some family of k M E-alternating paths covers V, it contains a matching of G
of size |[M| — k. On the other hand, if I C E is a matching of G then M U I
contains exactly |M| — |I| M E-alternating paths and some M E-alternating cycles
that together cover V. As there is no M E-alternating cycle, the minimum number of
symmetric chains needed to cover is |M| — v(G). Also, after contracting the edges of
a maximum matching of G the M-components in the contracted graph will be a set
of vertex-disjoint paths, defining an optimal symmetric chain partition S of P.

Thus it remains to construct a legal subpartition £ of P with value |S|. Using the

A4

fact that |M| = =+ we get from (2.10) that

|M| - v(G) = % [o(G — A(G)) - |A(G)]]

Observe that every node z € A(G) is adjacent to at least two components of
G — A(QG), as otherwise the only component hanging on x either would be completely
covered by every maximum matching, or there would be a maximum matching that
does not cover . This contradicts the definition of the Edmonds-Gallai decomposi-
tion. We claim that for every ¢ € A(G), if zz' € M then {z'} is a component of
G — A(G). Indeed: if not, 2’ has a neighbour u in some component of G — A(G) and z
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must be adjacent to some v in another component of G — A(G). From the transitivity
of E, we see that uv € E, a contradiction as two different components of G — A(G)
are non-adjacent.

Define M* := {m € M : m joins two different components of G — A(G)}. If
vv' € M* then again by the transitivity of E, v or v' is an isolated vertex of G — A(G).
Thus by contracting the edges of E in G — A(G) each component becomes a star of
M*-edges. Let £ = {M; : 1 < i < [} be the partition of M* formed by these
components. We claim that £ is a legal subpartition of P with value |S].

We prove legality first. From the definition of £, we see that there is no E-
edge joining two different M; € £, which proves (7.1). A symmetric chain of length
three implies the existence of an M E-alternating path that contains three M *-edges.
The middle edge of this path must connect two nonisolated vertices from different
components of G — A(G), which is impossible. Hence £ is a legal subpartition of P.

To calculate the value of £, define C; as the set of odd components of G — A(G)
that are incident with some edge in M;. From the structure of G — A(G), it is clear
that either C; consists of an even number of isolated vertices, each joined by M* to
a certain even component in C(G), or C; is an odd number of isolated vertices joined

by M* to an odd component of D(G). In both cases @ = [Mg—‘] Hence

l ) ! .
S| = |M| - (@) :%(O(G—A(G)) - [A@))) = Z% = Z [%W ’

the equality we need. (I

From the proof, it is clear that using any algorithm efficiently determining both
a maximum matching and the Edmonds-Gallai decomposition we can construct in
polynomial-time an optimal symmetric chain cover and a legal subpartition with
maximum value. We remark that if X is an inclusionwise minimal subset of V' that
attains the maximum in the Tutte-Berge formula 2.9 then the structure of G — X + M
has all the properties of the structure of G — A(G) + M that we needed in the above
proof. Hence we can in fact determine an optimal legal subpartition of P from any
subset X of V' attaining the maximum in the Tutte-Berge formula.

7.2 Special cases of the symmetric chain cover formula

As corollaries we deduce two, in a sense extreme, special cases of Theorem 7.2. We
prove again Dilworth’s theorem and derive the well-known min-max formula for the
minimum size edge cover of a graph. Note that by this we indicate the unifying nature
of our result rather than provide a simple proof for these two consequences: in the
first reduction instead of relying on Tutte’s theorem we use only Theorem 2.2 of Kénig
(as the auxiliary graph is bipartite) and in the second case the edge cover formula
itself is an immediate consequence of Tutte’s theorem which has already been used in
the proof of Theorem 7.2. We also prove a weighted generalization of Theorem 7.2.

Corollary 7.3 (Dilworth’s theorem [18]). Let P = (V, <) be a finite poset. Then
the minimal number of chains that cover V equals the mazximum size of an antichain
of P.
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Proof. Define V' := {v' :v € V}, M := {vv' : v € V}, and 3":=<X U{u'v' : v 2 u}.
Thus P' := (VUV', <", M) is a symmetric poset, and S C M is a symmetric chain
if and only if the elements of V covered by S form a chain in P. Observe that for
any antichain A, the system L4 := {{vv'} : v € A} is a legal subpartition of P’ with
value |A].

Thus it is sufficient to prove that for any legal subpartition £ of P’ there exists
an antichain A, of P with size not less than the value of £. For a legal subpartition
L let

LV ={XCV:{w:veX}eLly={Vi:1<i<l}.

From the definition of legality, we see that if v and v belong to different members
of £V then v and v are <-incomparable. Moreover, as no member of £V contains a
symmetric chain of length 3, we get that each part V; € £ can be decomposed as
V; = Vmaz yymin the union of its <-minimal and <-maximal elements. Now define

V* as the set among V;™% and V™" with greater cardinality. Clearly |V;*| > [J%L-I,

so Ag = Uf:=1 V;* is an antichain of P with size not less than the value of L. O

Corollary 7.4. Let G = (V, E) be an undirected graph without isolated vertices. The
minimum number of edges needed to cover V equals the maximum of
sV =X|+0G—-X)] for X CV.

Proof. Define V' := {v' : v € V}, M := {vv' : v € V}, and <:= {wv' : wv € E}.
Thus P':= (V UV’ <X, M) is a symmetric poset and S C M is a maximal symmetric
chain if and only if there is an edge uv € E such that S = {uv’,vv'}. Thus a minimal
symmetric chain cover of P’ corresponds to an edge cover of G. Observe that for
X C V the system Lx := {{vv' : v € C} : C is a component of G — X} is a legal
subpartition of P’ with value 1 [|[V — X| + o(G — X)].

Thus it is sufficient to find for any legal subpartition £ of P’ a subset X, of V such
that 3 [|[V — Xz| 4+ o(G — X,)] is not less than the value of £. For a legal subpartition
L let

LY ={y CV:{w :veY}el}y={V;:1<i<l}

be the natural subpartition of V corresponding to £. Let X, := V —J£". From
the definition of legality we see that each part V; € £V is the union of components
C},...,C¥ of G — X,. This means that

Ik

1 1 : ;

S IV =Xc|+0(G - Xp)] = 5 oG- Xc)+ > > |CY]| =
i=1 j=1

the value of L. O



50 CHAPTER II. CROSSING STRUCTURES

Finally, we use node splitting to prove a weighted generalization of the main result
unifying the weighted version of Dilworth’s theorem and to the so called b-matching
problem.

We say that symmetric chains Sy, Ss, ... ,S; cover symmetric poset P with multi-
plicity w if 2221 x% > w. The w-value of a legal subpartition £ is

* * o %ZmeM,- w(m)| if [M;| > 1
Mizecw (M;) where w*(M;) = { L(m) ] if M; = {m}

Corollary 7.5. Let P = (V, X, M) be a symmetric poset and w : M — N. The
minimal number of symmetric chains needed to cover P with multiplicity w is equal
to the mazximal w-value of a legal subpartition of P.

Proof. Define V' := {v; : vv' € M,1 < i < w(w')}, M' := {vv] : vv' € M,1 <
i <w(wv')} and <":= {uv; : wu', o0 € M,1 <i<ww),1<j<wlu)u<v}
Apply Theorem 7.2 to the symmetric poset P’ = (V',=', M'). Observe that if two
copies v;v;,v;v; € M' of a certain edge vv' € M lie in different parts of the optimal
legal subpartition £’ of P’ then we can assume that each copy of the edge vv' forms
a separate part of £ by itself. Thus the maximum value of a legal subpartition of P’
equals the maximum w-value of a legal subpartition of P. O

7.3 An application to the /;-embeddability problem

In this section, we describe a connection between Theorem 7.2 and the problem of
embedding a finite metric in an /;-space with minimal dimension. The background
of our discussion is explained in the book of Deza and Laurent [17]. Hereby I thank
Jack Koolen for pointing out the connection between Theorem 7.2 and the above
embedding problem.

We shall apply Theorem 7.2 to symmetric poset, (F,C, M¢(F)), where F C 2%
is a symmetric family of subsets of X. That is if A € F then A°:= X\ A € F and
Me(F) = {{4,X \ A} : A € F}. Function d : X2 — R, is a distance on X if it is
symmetric, i.e. d(z,y) = d(y,z) for z,y € X, and d(x,z) = 0 for any element x of X.
Distance d is called a semimetric, if the triangle inequality

d(z,y) < d(z,z) + d(z,y)

holds for every z,y,z € X. A semimetric d, that satisfies d(z,y) > 0 whenever
x # y is called a metric. Observe that if d; and dy are semimetrics then dy + ds is
a semimetric as well, and if at least one of d; and dy is a metric, then d; + ds is a
metric. Pair (X,d) is a distance space (metric space) if d is a distance (metric) on
X. For distance (metric) space (X, d) and subset Y of X, the distance (metric) space
(Y,d|y=) is a subspace of (X, d), where d|y= denotes the restriction of d to Y2. We
usually do not distinguish between d and d|y=z, so we say that (Y,d) is a distance
(metric) subspace of (X, d).

A split of a groundset X is a two-partition S := {4, X \ A} of X. We denote
the set of splits of X by S(X). The split semimetric §s on X determined by split
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S ={A, X\ A} is defined by

0,ifr,yec Aorz,yg A
1, else .

s = |

An example of a metric space is (V(G),distg), where G is an undirected graph.
Metric distg is called the path metric of graph G. Another example is (R",d;,) for
1 < p < 00, where the l,-metric d, is defined by the I,-norm || - |, as

dlp (m,y) = ”m - y”P 3

for z,y € R*. The [, norm of £ = (z1,%2,... ,Zy) is

n 1/p
llzllp := (Z Iwil”) -
i=1

If (X,d) and (X',d') are distance spaces and ¢ is a mapping from X to Y then ¢ is
an isometry from (X,d) to (X', d') if

d(z,y) = d'(¢(x), 6(y))

holds for all z,y € X. We say that distance space (X, d) can be isometrically embedded
in distance space (X', d') if there is an isometry from (X, d) to (X', d').

There is an important connection between split semimetrics and metric subspaces
of [;-metric spaces:

Lemma 7.6. For a finite metric space (X,d), the following are equivalent:
1.

d= Z Asds ,  for some Ag >0, and (7.4)
SES(X)

2. (X,d) can be isometrically embedded to (R, 1;) for some k € N.

Proof. To see that 1. implies 2., fix an element a of X. For any split S of X, define
function ¢g by

As ,ifa€eS;
¢s() := { OS else. '

It is easy to check that ¢ := (és,,ds,,...) is an isometry from X to RS(X) | where
S1,89,... are all the splits of X.

On the other hand, let ¢ : X — R* be an isometry, and for i € [k] let ¢; : X — R
be the ith coordinate function of ¢. Define distance d; on X by

di(z,y) = |pi(x) — ¢:i(y)] -

Fix i € [k] and let X = {z; : j € [n]}, such that ¢;(z1) < ¢i(z2) < ... < &i(wn).
Define Xy := ¢i(xj41) — ¢i(z;) if S = {{z1,22... ,2;}, {zj41,2j42,... ,2,}}, and
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fg := 0 if S is not of the above form. It is easy to check that d; = Zses(x) )\fgés is a
split-semimetric decomposition of d;, hence there is a split-semimetric decomposition
of d, namely

d=>d@i)= Y | D As]ds.

i€[k] SeS(X) \i€[k]

O

We say that isometry ¢ : X — RF corresponds to split-semimetric decomposition
Yoses(x) Asds, if As = Xo;cy A% for all S C X, where My is defined in the proof of
Lemma 7.6.

Note that it is not true that if d is an [;-embeddable metric, then it has a unique
split-semimetric decomposition as in (7.4) above. An example to this phenomenon is
the equidistant metric d on four points (d(x,y) = 1 iff x # y), which can be obtained
as d = Y ge5(x) Ases(x)0s = 2 g Ksds, where A\g = 0 and kg = L if S is a split into
parts of equal size, and Ag = % and kg = 0 if the parts of split S has unequal size.
Hence different /;-embeddings can correspond to different split-semimetric decompo-
sitions. Also, there might be substantially different /;-embeddings that correspond
to the same split-semimetric decomposition. In the proof of the first part of Lemma
7.6, we chose an in a sense maximal dimensional (and least economic) embedding. It
is a natural problem, to determine for a metric space (X,d) the smallest dimension
k such that (X, d) can be isometrically embedded into (R¥,1;). This question seems
to be a difficult one. Not only because it is already NP-complete to decide whether a
metric space is [j-embeddable at all (see [3]'), but because even if we know already
some l1-embedding, there is no known formula for the minimum dimension of an ;-
embedding. To illustrate this problem, let us mention the problem of /;-embedding
of equidistant spaces (i.e. spaces of the form (X, d), where § is the “Kronecker delta”:
d(z,y) = de,y). It is easy to see that ({£% : i € [k]},11) is an equidistant subspace of
(R¥,1;) on 2k elements, where e;,es, ... ,ex is the standard basis of RF. It is conjec-
tured that this example has maximum size amongst isometrically (R*,[;)-embeddable
equidistant spaces, that is if (X, d) is equidistant then the minimum dimension of an
l,-embedding of it is [%-I

The problem to determine the lowest dimension k for a certain metric space (X, d)
such that there is an isometry ¢ embedding (X,d) into (R¥,l;) can be divided into
two subproblems: the first problem is to determine an “optimal” split-semimetric
decomposition (as in (7.4)) for d, which corresponds to some minimal dimensional
l;-embedding. The second problem would be to find a minimal dimensional I;-
embedding that corresponds to a given split-semimetric decomposition. By applying

11t is shown there that the problem of I;-embeddability, i.e. the existence of a split-semimetric
decomposition is equivalent with testing the membership of d in the cut-cone. But as we know some
vector in the cut-cone, the optimization problem over the cut-cone can be polynomially reduced to
membership testing (see e.g. [49]). As the MAX-CUT problem is NP-complete, the membership
testing in the cut-cone is also NP-complete, hence our embedding problem turns out to be NP-
complete, as well.
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Theorem 7.2, we shall solve the second problem (indicating that the first problem is
probably a difficult one).

When one wants to find an isometric /;-embedding ¢ : X — R* corresponding
to a fixed split-semimetric decomposition ZSGS(X) Asdg, one has to find coefficients
Xg for i € [k] and S € S(X) in such a way that As = ;¢ As for all S € S(X)
and there is an isometry ¢; embedding metric space (X,d;) to (R,l;), where d; :=
Zses(x) Aids. In this case, ¢ = (¢1,02,...,¢x) suffices. If a split-semimetric
decomposition d = }_ e 5(x) Asds is given and we want to find coefficients AL, it is
handy to have a characterization of split-semimetric decompositions that correspond
to isometric embeddings into (R,[; ). This is done in the following easy observation:

Lemma 7.7. For a finite metric space (X,d) and for split-semimetric decomposition
d= ZSeS(X) Asds the following two statements are equivalent:

1. there exists an isometric embedding ¢ : X — R of (X, d) into (R, 1) correspond-
ing to split-semimetric decomposition Zses(x) Asds

2. F = {S € 8(X) : As > 0} is a symmetric chain in symmetric poset (2X,C
, Me(2%)).

Proof. In the proof of Lemma 7.6, we saw that ¢ = ¢; (the first coordinate-function of
¢) corresponds to a split-semimetric decomposition which has positive A-coefficients

only for splits of the form {{z1,z2,... ,z;}, {zj41,... ,@p}}. These splits form indeed
a symmetric chain. This proves that 1. implies 2.

If we know 2. then there is an ordering x1,x2, ... ,x, of the elements of X in such
a way that all splits in F are of the form {{z1,22,...,2;}, {241, Zj12,... ,2n}}.
Define ¢(x;) := qu)\{{xl,mz,...,zj},{xj+1,zj+2,...,mn}}- It is easy to check that ¢ :
X — R is indeed an isometry from (X,d) into (R,l1). O

From Lemma 7.7 it is clear that if we have given a split-semimetric decomposition
d=3gc S(X) Asds then the minimum dimension of an [;-space into which (X, d) can
be embedded with corresponding split-semimetric decomposition d = )~ ¢ S(X) Asds,
equals the minimum number of symmetric chains covering (F,C, M¢(F)) for F :=
{S € 8(X): s >0}.

To translate Theorem 7.2 to the language of /;-embeddings of split-semimetric
decompositions, we need a definition. By a legal split-subpartition of a family F C
S(X) of splits, we mean disjoint subsets Fi, Fa,...,F; of F (for some I € N) with
the properties that

{A, X\ A} e F;, {B,X \ B} € Fj and A C B implies i = j, and
there isno i € [I] and {4, X \ A},{B, X\ B}L{C,X\C} e F;
such that A C B C C.

The value of the above legal split-subpartition is -, [lj;—l-l Now Theorem 7.2

yields the following minmax formula:
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Theorem 7.8. The minimum dimension of an isometric l;-embedding of finite met-
ric space (X, d) that corresponds to split-semimetric decomposition d = ) ¢ Asds
(where F C S(X) and As > 0 whenever S € F) is equal to the mazimum value of a
legal split-subpartition of F. O

Although it is not known how to solve it efficiently, it is still hoped that deciding
the (R*,;)-embeddability of a metric space is a polynomially solvable problem. More
specifically, Malitz and Malitz have the following conjecture:

Conjecture 7.9 (Malitz-Malitz [70]). For all k € N there is a number f,(k) € N
such that if metric space (Y,d) can be isometrically embedded into (R¥,1;) for every
subset Y of X of size at most f1(k) then (X,d) can also be embedded isometrically
into (R, 1,).

If this conjecture is true then checking the isometric embeddability into R¥ ;) of
all fy(k)-tuples of X is an efficient way to decide isometric /;-embeddability of X into
RE.

The next observation is that the analogous statement to Conjecture 7.9 on the
l-embedding of a split-semimetric decomposition is true. This follows again from
Theorem 7.2. More specifically, we get

Theorem 7.10. There is an isometric embedding of finite metric space (X,d) to
(R, 1) corresponding to split-semimetric decomposition d = ZSGS(X) Asds if and
only if for every subset F of S(X) of size at most 2k + 1 there is an isometric
embedding of (X,dr) to (R¥,1;) corresponding to split-semimetric decomposition dr =

The proof of Theorem 7.10 follows immediately from the remark right after the
proof of Lemma 7.7 and the next lemma:

Lemma 7.11. Symmetric poset P = (V, =3, M) can be covered by k symmetric chains
if and only if any subset M' of M of size at most 2k+1 can be covered by k symmetric
chains of P.

Proof. As the ’only if’ part is trivial, we prove the ’if’ part. If P cannot be cov-
ered by k symmetric chains then by Theorem 7.2 there is a legal subpartition £ =
{M, Ma,..., M} of value more than k. Let M’ be an inclusionwise maximal sub-
set of UjepM; of size at most 2k + 1. Consider legal subpartition £' = {M] :=
MyNM,Mj:=MsNM,...,Mj:=MnM}. If|Ugy M| <2k+1then £ =L,
hence the value of £’ is more than k. Otherwise |[M'| = 2k + 1, and the value of £' is

5] ] -4 2o

ig(l] i€ll]

showing that M’ cannot be covered by k symmetric chains. ([l
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8 3-cross-free families

We have seen that Dilworth’s Theorem (Theorem 1.2 and Corollary 7.3) gives a
formula for the minimum size of a chain cover of a poset. Theorem 7.2 did the
same in the symmetric poset model. But Dilworth’s Theorem can be also regarded
as a formula for the maximum size of an antichain. In this sense, its symmetric
counterpart would be a formula on the maximum size of a ’symmetric antichain’ in
a symmetric poset. A natural definition of a symmetric antichain could be a set of
elements together with their mates that forms an antichain of the underlying order.
We might also define a symmetric weak antichain the same way as above except for
that we can allow comparability along mates.

The above problem of finding a maximum size symmetric (weak) antichain is
certainly a difficult one. Using the construction in Corollary 7.4, one can polynomially
reduce the NP-complete problem of finding the maximum size of an independent set
of a graph to this maximum size symmetric (weak) antichain problem.?

In this section, we consider a certain inverse problem of the above one. The
question is, what we can say about different parameters of the symmetric poset if we
have a restriction on the size of its symmetric antichains. We consider this problem
for symmetric poset used in 7.3, that is, for (F, C, M¢(F)), where F is a symmetric
family of subsets of a groundset V. We shall show that if this symmetric poset does
not have a symmetric antichain of size 3 (that is, F does not have 3 pairwise crossing
elements), then |F|, the size of the symmetric poset, is a linear function of the size of
the groundset, |V|. Results of this section also appear in [31].

8.1 k-cross-free families

A family F of subsets of V' is k-cross-free if F has no k pairwise crossing members.
We shall prove that if F C 2V is a 3-cross-free family then |F| < 10|V|.

It was conjectured by Karzanov and Lomonosov that |F| = O(kn) if F is k-cross-
free and |V| = n. For k = 2, this follows from the well-known tree representation of
laminar families. Pevzner [76] gave a quite complicated and lengthy proof for the case
k = 3. We will come back to this later. In 8.2, we present a direct and easy proof
for this result. Actually, we prove a slightly more general theorem. We call a family
F C 2V weakly k-cross-free with respect to a € V, if for every b € V' \ {a} there are
no k pairwise crossing members of F separating a from b. We say that X separates a
from b if it contains exactly one of them. Family F C 2V is weakly k-cross-free if F
is weakly k-cross-free with respect to some element a of V. In 8.2, we show that the
size of a weakly 3-cross-free family is at most 10 times greater than the size of the
underlying groundset.

2Tt is interesting to observe that if we use the polar version of Dilworth’s theorem (Theorem
1.1) instead of Dilworth’s, then the symmetric counterpart of the minimum antichain cover contains
the NP-complete problem of graph colouring (use the same construction). On the other hand, the
maximum-size symmetric chain problem is not difficult. For example, if no element is comparable
with its mate (like in all applications so far) then a maximum-size chain of the underlying partial
order together with the chain of the mates is a maximum size symmetric chain. It is also not difficult
to see that the general problem of finding a maximum size symmetric chain (where comparable mates
can occur, as well) can be reduced to the problem of finding a maximum-weight union of two chains
of a weighted poset.
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As far as we know, Karzanov’s conjecture is still open for £ > 3 and the best known
bound is |F| = O(knlogn) due to Lomonosov. Recently, Dress et al. [19, 20] have
found some new results concerning k-cross free families. They describe all maximum-
size 3-cross-free families and check the conjecture of Karzanov for so-called cyclic
4-cross-free families. There, cyclic means that there is a cyclic order on V' such that
any element of F is an interval in it. Dress et al. also show that unlike maximum-size
3-cross-free families, maximum-size 4-cross-free families are not cyclic.

The background of the investigation of 3-cross-free families is the so called locking
theorem of Karzanov and Lomonosov. Let G be a graph with a nonnegative capacity
function ¢ on the E(G), and let f be a fractional path-packing (a so-called multiflow).
That is, each edge is used by at most c(e) paths in total. Let subset V of V(G) be
given. Subset X of V is locked in G by f if the total value of the paths of f connecting
X to V'\ X equals the minimum capacity of an edge-cut of G separating X from V'\ X.
A family F of subsets of V is lockable if for any graph G with V C V(G), and any
nonnegative capacity function ¢, there is a multiflow f locking each member of F.
The locking theorem characterizes lockable families as follows.

Theorem 8.1 (Karzanov-Lomonosov [58, 67, 57]). A family F of subsets of fi-
nite set V is lockable if and only if F is 3-cross-free. O

For a shorter proof of the above result see also [38], where a stronger version is
proved. To formulate it, we define an undirected graph G with a fixed subset V' of its
vertices to be inner Fulerian if the degree of any vertex of G outside V is even.

Theorem 8.2 ([58, 67, 38]). A family F of subsets of finite set V is 3-cross-free if
and only if for any inner Eulerian graph G with V C V(Q), there is a collection P of
edge-disjoint paths of G such that for any member X of F, P contains a maximum
number of edge-disjoint paths connecting X to V \ X. O

8.2 Bounding the size of weakly 3-cross-free families
Throughout this section we use the following notation:

Flv = {X\{v}: X e F}

Fv) = {XeF:veXand X\ {v}eF}
Theorem 8.3. If F is a weakly 3-cross-free family of a finite set V' then |F| < 10|V|.

Proof. Assume to the contrary that F is a counterexample with |V| minimal, that is,
|F| > 10n and F is weakly 3-cross-free with respect to a. Let us define F' := {X €
F:ag X}U{V\X:a€ X € F}. Clearly, |F'| > 5|V| with the property that

V) if X,)Y,ZeF with XNYNZ#0D then X,Y,Z cannot pairwise cross.
Next we prove:

(2) For each x € V' \ a, there exist Ay, By € F'(x) such that By # Ay C B, and
VRES)

If {x} # P C Q C R is a chain of three different elements from F'(x), then
A, = Q, B, = Rsuffices. Otherwise each element of F'(z)\ {z} is either inclusionwise
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minimal or maximal. By (1), we see that F'(z) \ {z} contains at most two maxima
and at most two minima, hence altogether |F'(z)| < 5. As |F(z)| < 2|F'(x)|, we get
that |F/z| = |F| — |F(z)| > 10|V| — 2|F'(z)| > 10|V \ {x}|. This contradicts to the
minimality assumption as F/x is also a weakly 3-cross-free family with respect to a.
So (2) follows.

Choose © € V' \ a, such that |B,| is as small as possible. Let y,z € A, \ {z} be
different elements. Observe that y € A,N(B,\{z})NBy and that A, crosses B; \ {z}.
By the choice of z, |By| > |B,|. Hence, By must contain A, or B, \ {z} by (1). In
particular, we have that z € A, \ {z} C By. So z € A, N (B \ {z}) N (By \ {y}), and
the three members A;, B, \ {z} and By \ {y} of F' are pairwise crossing, contradicting
(1). O

8.3 Further comments on 3-cross-free families

As indicated, Karzanov’s conjecture about the linear size of k-cross-free families is still
open for £ > 3. However Lomonosov’s argument is also valid in our weakly k-cross-free
setting. Indeed, let ¢ := {X € F': |X| =i} fori =0,1,...,n, where 7' is defined
as in the proof of Theorem 8.3. Clearly, for every v € V' \ a there are less than k sets
in 7! covering v, hence |F| < 2|F'| =231 |F| <2 (14X, &) = O(knlogn).

Pevzner [76] published a paper about the linear size of 3-cross-free families. Al-
though the proof contains several important observations on 3-cross-free families, it is
not at all easy to understand. Beyond exploring some important properties of k-cross-
free and 3-cross-free families, Pevzner [76] also had some interesting remarks that are
worth citing. His question reads as follows (in our terminology, non-k-crossing is
k-cross-free).

Is it true that any non-k-crossing family on n elements can be decomposed into
7 non-(k — 1)-crossing families (7 is independent of n, k > 3)?

He also observes:

It is possible to show that for k = 3 the answer to the above problem is negative
(an example of an r-indecomposable non-3-crossing family is a family of stars
in a graph without triangles with a chromatic number exceeding ).

It is interesting to see that for families weakly k-cross-free with respect to a fixed point,
the answer to the above question is negative for all k. Let [n] :=={i e N: 1 <i <n};
(") := {X C [n] : |X| = k} and define F([n],k) == {{X € () :ie X}:ien]} C
2(%). Clearly, for n > 2k > 2 and X € (")) the family F([n], k) x = {F € F([n], k) :
X ¢ F} consists of pairwise crossing sets, F([n], k) is already weakly (k+ 1)-cross-free
with respect to X. Moreover, any k elements of F([n], k) x separate X from another
element Y of (1)), hence for n > (c + 1)k it is not possible to partition F([n],k)x
into ¢ families that are all weakly k-cross-free with respect to X.

Our last remark is that the bound in Theorem 8.3 is not very far from the best
possible one: notice that F[n, k] := {i + [j], [i{] + 4, [n] \ (6 + [§]), [n] \ ([i] +j) : i +1 €
[k],j € [n—i]} C 2 (where a+[b] := [a+b]\ [a]) is a k-cross-free family with roughly
4(k — 1)n members. In particular, there is a 3-cross-free family F[n, 3] with roughly
8n members.
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Chapter III

Kernels and stable structures

This chapter is based on a connection between a lattice-theoretic fixed-point theorem
and kernel-type results (like the stable marriage theorem of Gale and Shapley) in
Graph Theory and Combinatorial Optimization. We start by recalling some well-
known facts on graph-kernels.

9 Kernels and stable matchings in graphs

To motivate the notion of graph-kernels, we approach them from graph-colourings.
Let G = (V, E) be a graph. The chromatic number x(G) of G is the smallest number
k such that there exists k£ induced coclique subgraphs G1,Gs,...Gy of G such that
V(G) = UE_,V(G;). In other words, x(G) is the minimum number of colours needed
to colour the vertices of G in such a way that no edge is spanned by vertices of the same
colour. Observe that graph G is bipartite if and only if x(G) < 2. The chromatic index
(or sometimes edge-chromatic number) x'(G) := x(L(G)) is the minimum number of
colours needed to colour the edges such that no two adjacent edges receive the same
colour. Obviously, w(G) < x(G) and A(G) < X'(@), where w(GQ) := a(G), the size
of the largest clique subgraph of G, and where A(G) := max{d(v) : v € V'} denotes
the maximum degree in G. By Vizing’s theorem the latter inequality is a fairly good
estimate:

Theorem 9.1 (Vizing [100]). If G is a simple undirected graph then x'(G) is not
more than A(G) + 1. O

Moreover, for bipartite graphs these parameters are equal by Koénig’s theorem.

Theorem 9.2 (K&nig [60]). If G is a finite bipartite graph, then x'(G) = A(G)
O

Note that if we exchange the role of edges and vertices in the definition of x(G)
and w(@) then we get x'(G) and A(G), respectively. However, the translation of
Theorem 9.1, namely that the chromatic number is close to the clique number, is
not true. There exist graphs with arbitrarily large chromatic number and without a

=
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triangle (i.e. a K3) subgraph!. Still, the class of graphs for which the translation of
Theorem 9.2 is true (graphs that correspond to bipartite graphs in this vertex-edge
exchange sense) is a very important one.

Graph G is called perfect if x(H) = w(H) for every induced subgraph H of G.
Bipartite graphs are clearly perfect, just like complete or empty graphs. Cycle C,,
is perfect if and only if n = 3 or n is even. The “weak perfect graph theorem”,
an important result of Lovész, states that the class of perfect graphs is closed on
complementation.

Theorem 9.3 (Lovasz [68]). Graph G is perfect if and only if its complement G is
perfect. O

From above, it follows that if a graph G spans a Cagy1 or a Cogq1 subgraph for
some k > 1 (a so-called odd hole or odd antihole), then G is not perfect. According to
the strong perfect graph conjecture of Berge, it is a characterization of perfect graphs:

Conjecture 9.4 (Berge). Graph G is perfect if and only if G does not have an
induced subgraph isomorphic to Caogy1 or to Copqq for k > 1.

A well-known class of perfect graphs are comparability graphs, these are graphs
G = (V, E) for which there exist a partial order < on V such that E = {uv : u <
v or v < u}. Indeed, Theorem 1.1, the polar of Dilworth’s theorem, proves that any
comparability graph is perfect. Dilworth’s theorem (Theorem 1.2) justifies that the
complement of a comparability graph is perfect.

For a digraph D = (V, A), a subset K of V is a kernel of D if K spans no arc in
A and for every vertex v of V' \ K there is a vertex k in K such that vk is an arc in
A. Digraph D is said to be normal (or clique-acyclic), if every induced clique C of
D has a kernel, that is, there is a vertex ¢ of C such that zc € A(D) for each vertex
z of C different from c. According to an important conjecture of Berge and Duchet,
perfect graphs can be characterized in terms of kernels:

Conjecture 9.5 (Berge-Duchet). Graph G is perfect if and only if every normal
orientation of G has a kernel.

Note that if the strong perfect graph conjecture (Conjecture 9.4) is true, then the
'if” part of Conjecture 9.5 follows as soon as we exhibit a normal orientation of Cag41
and Chgy1 without a kernel for £ > 1.

Boros and Gurvich [8] have proved the only if part of the above equivalence and
obtained a partial result for the other direction. Aharoni and Holzman [1] showed how
the first result of Boros and Gurvich follows more or less directly from a lemma of Scarf
in [91]. Scarf’s lemma can be considered as an algorithmic version of Sperner’s lemma.
So we can say that the only if part of Conjecture 9.5 follows from the topological fixed
point theorem of Brouwer. We come back to this in Section 18.

An important special case of Conjecture 9.5 has been proved by Maffray [69]:

Theorem 9.6 (Maffray [69]). The line-graph L(G) of graph G is perfect if and only
if every normal orientation of L(G) has a kernel. O

! This fact was used by Pevzner to observe indecomposability of 3-cross-free families (see 8.3).
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Theorem 9.6 is a generalization of the well-known theorem of Gale and Shapley
on stable marriages. To state it, we need some definitions. Let G = (V,E) be a
multigraph, and for each vertex v of V' let <, be a linear order on D(v). A matching
M C E is said to be blocked by edge e = uv of E if there is no edge f of M with
f Sy eor f <X, e. Matching M is stable if it is not blocked by any edge of E, that is
if for every edge e = uv of E there is an edge f of M such that f <, eor f <, e.

Theorem 9.7 (Gale-Shapley [42]). If B is a finite bipartite (multi)graph with lin-
ear orders on the stars, then there exists a stable matching in B.2 O

Theorem 9.7 is often interpreted in such a way that colour-classes X and Y of
B represent a set of women and men, respectively, and edges of E indicate possible
marriages. A “marriage scheme” M is stable if there is no common interest of a man
and of a woman to quit their marriages in favour of each other. It is easy to see that
Theorem 9.7 is indeed a special case of Theorem 9.6: by Theorem 9.2, L(B) is perfect
and Theorem 9.7 is equivalent with the following kernel-result:

Theorem 9.8. If B is a bipartite graph then every normal orientation of L(B) has
a kernel. O

Gale and Shapley proved Theorem 9.7 by giving an algorithm that always ter-
minates with a stable matching. To describe this algorithm, it is convenient to use
the terminology of the “marriage model”. So men and women represent vertices of
the different colour-classes, and an edge between a man and a woman means that
they both can agree on participating in a certain marriage with each other. (That
is why there can be multiple edges between the same two persons, and they are not
indifferent which edge to choose when marrying the other person.)

The proposal (originally deferred acceptance) algorithm of Gale and Shapley works
in rounds. A round starts with each men proposing to his most preferable partner
(that is, he chooses the edge of the bipartite graph he likes most). Then each women
refuses all but the best proposals she received. That is, those edges of the bipartite
graph along which a refused proposal arrived get deleted. After this, the next round
starts. (So in this round each man who has not been refused proposes to the same
woman in the hope that sooner or later she will accept it.) The algorithm terminates
when each woman receives at most one proposal, hence, when no refusal takes place.
Then each woman who received a proposal accepts it. It is not difficult to show that
these marriages determine a stable marriage scheme. Gale and Shapley also show that
the stable matching constructed by the proposal algorithm is so called man-optimal,
that is, each man gets the best partner he can have in a stable marriage scheme. Of
course, if we interchange the role of men and women in the algorithm then it will find
the woman-optimal scheme.

Perhaps the main stream of stable matching studies is about its game theoretical
context. On the other hand, we have already indicated a connection between stable

2Gale and Shapley proved this result only for complete bipartite graphs where both colour-classes
are finite and have the same cardinality. However, their method (with natural modifications) works
for the above extension, too.
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matching and kernel problems®. There is yet another interesting link between stable
matchings and Graph Theory, namely Galvin’s theorem.

Theorem 9.9 (Galvin [47]). If G is bipartite then its list-chromatic index x)(G)
equals its chromatic index x'(G).

The list-chromatic index of graph G is the smallest integer [ for which no matter
how we label each edge of G with a set of I natural numbers, it is always possible to
find a proper edge-colouring of G by choosing the colour of each edge from its label.
Theorem 9.9 settles the famous List Colouring Conjecture for the case of bipartite
graphs?. The List Colouring Conjecture is the same as Theorem 9.9 for multigraphs.

Galvin used Theorem 9.6 to prove Theorem 9.9. Galvin’s method can be described
in terms of bipartite stable matchings: with the help of a A-colouring ¢ of E(G) (that
exists by Theorem 9.2 of Kénig), one can define linear orderings on the stars by

if c(e) < ¢(f) and z € X or
e f { if c(e) > ¢(f) and z € Y.

for e, f € D(z), where X and Y are the colour-classes of G. In this model, it is
relatively easy to prove that by iteratively colouring with colour ¢ a stable matching
of the subgraph of yet uncoloured i-colourable edges, one constructs a proper list-
colouring.

Although the proof of Theorem 9.7 works only in the bipartite case, the notion
of a stable matching makes sense for multigraphs as well. It follows from Theorem
9.6 that in the nonbipartite model stable matchings do not always exist, or, what is
stronger, there is a normal orientation of any non-perfect line-graph that does not
possess a kernel. Still, it is an interesting problem to decide whether a given normal
orientation of a line-graph has a kernel or not. Or, a bit more generally, to decide the
existence of a stable matching in the nonbipartite preference model. This question
is often referred as the stable roommates problem. It has been settled by Irving in
[56] (see also [50]), where he designed an efficient algorithm which either constructs
a stable matching or proves that none exists. Later, Feder [30] and Subramanian [96]
exhibited a different algorithm that essentially reduces the problem of finding a stable
matching to finding a fixed point of a certain set-function.

Another important result on stable matchings is the description of the stable
matching polyhedron. Vande Vate [99] did this for the original stable matching
theorem, (Theorem 9.7 with graph K, ,), and Rothblum extended it for bipartite
multigraphs.

Theorem 9.10 (Vande Vate [99] and Rothblum [89]). Let G = (V, E) be a fi-
nite bipartite graph and for each v € V let <, be a linear order on D(v). Define

3The notion of kernel seem to come from Cooperative Game Theory. Although what is known
as kernel there does not have too much to do with graph kernels. The connection is given by the
concept of the so called von Neumann-Morgenstern solution [102] (which is also known as stable
set). This is nothing else but a kernel of the domination digraph of a cooperative game. See 16.1 for
the details.

4The List Colouring Conjecture seems to be conjectured independently by several people (for the
history, see (7, 51, 2]).
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pley:={fe€eE:f,eorf=,e} for edgee=uv € E. Then

conv{x” : F C E is a stable matching of G} =
{z:0<z el z(Dw)) <1 forveV,z(pe)) >1 forec E}. O

10 Tarski’s fixed point theorem

In this section we describe the lattice-theoretic fixed point theorem of Tarski, our
main tool to handle kernel-problems.

Lattice L = (X, A, V) is complete if there is both a meet and an join for any subset
Y of X. These generalized meet and join operations on Y are denoted by A Y and
VY, respectively. Clearly, A X =0 € X and VX =1 € X. Let, by definition,
AD:=1,\/0 := 0. The following fixed-point theorem of Tarski is a most important
result on complete lattices:

Theorem 10.1 (Tarski [97]). If L = (X, A, V) is a complete lattice and f : X — X
is a monotone function, then Ly := (Xy, <) is a nonempty, complete lattice subset of
L, where Xy :={z € X : f(z) = z} is the set of fized points of f.°

Proof. Let Y be a (possibly empty) subset of Xy. By monotonicity of f, f(AY) <
f(y) =y for any y € Y, hence f(A\Y) < AY. Define

K:={keX:k<f(k)yn \Y}

and [ := \/ K . Clearly, if z = f(z) < AY for a fixed point z of f, then z € K and
x < I. Hence it is enough to show that f(I) = 1.

By definition, ¥ < [ < y for any £k € K and y € Y. Thus by monotonicity,
k< f(k) < f(1) < f(y). This means that I = \/ K < V{f(k) : k € K} < f(1) < \Y,
hence that | < f(I) < AY. Again, by monotonicity, f(I) < f(f(1)), that is f(I) € K.
We got that I < f(I) <V K =1. Thus ! is indeed the meet of Y in Xy.

Obviously, L=! = (X, >) is a complete lattice as well, and f is monotone on L.
According to the above argument, any subset Y of Xy has a >-meet in Xy, that is a
<-join in Xj.

We conclude that Ly is indeed a nonempty, complete lattice subset of L. O
We remark that in case of finite lattices (that are clearly complete) there is an al-

gorithmic proof for the existence of a minimal and a maximal fixed point in The-
orem 10.1. This is based on the observation that by monotonicity, 0 < f(0) <

5Theorem 10.1 seems to be proved first for (2X,C) by Knaster and Tarski in [62] as early as
1927. They used the notion increasing instead of monotone. Birkhoff published a weaker form of
Tarski’s Theorem (cf. [5, p. 54] where isotone refers to the monotone property). He proved only
the existence of a fixed point and remarked later in an exercise that the set of fixed points is not
necessarily a sublattice. In light of further applications of Theorem 10.1 for stable matching-type
results, it is interesting to observe that in [64], Kolodner (only six years after the pioneering paper
of Gale and Shapley [42], in the very same journal) announced essentially the same result with a
modified condition. Also, a special case of Theorem 10.1 is proved in the book of Roth and Sotomayor
(cf. Lemma 2.30. in [88]). It is even more interesting, that the same authors have even observed
that this fixed-point theorem has to do with some properties of the core of a certain stable matching
related assignment game [87].
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f(f(0)) < ... holds. This increasing chain has to stabilize after some iteration at
(say) z := f*)(0) = f*+1(0) = f(z), providing the zero-element of L. Similarly,
if we start to iterate f form 1, then we get a decreasing chain, that stabilizes at the
unit-element of Ly. Note that this algorithmic proof can be extended to a transfinite
induction proof of Theorem 10.1. An advantage of Tarski’s proof above is that unlike
transfinite induction, it does not lean on the axiom of choice.

We give another algorithm to find a fixed point of a monotone function on a finite
lattice. Let = be any element of lattice L and consider the iterated images £ (z) of
z, for i € N. As the lattice is finite, there are different indices 7 and ¢ + k such that
F@(x) = fOHR) (). Let

y= N\ f ().

JEK]

As y < fUt9)(z), by monotonicity, f(y) < f+ti+t1)(z), hence f(y) < y. But then,
sequence y > f(y) > f(f(y)) > ... must stabilize at a fixed point of f. Similarly,
if we define z := Vje[k] fU+3)(z) then sequence z < f(z) < f(f(2))... stabilizes at
some other fixed point. From here we got that if f has only one fixed point then we
can find it simply by iterating f, starting from any element of the lattice.

Next we recall a well-known set theoretical application of Theorem 10.1.

Theorem 10.2 (Cantor-Bernstein). If f : A — B and g : B — A are injections
between sets A and B then there is a bijection h between A and B.S

Proof. Define function fxg: A - A by fxg(X):= A\ (g(B\ f(X))) for X C A.
Clearly fxg is monotone, hence there is a subset X of A such that fxg(X) = X. But
this means that f is a bijection between X and f(X), and ¢ is a bijection between
B\ f(X) and A\ X, hence

h(a) ::{ f(a) ifae X

g Ya) else
defines a bijection h : A — B. O

Theorem 10.2 justifies the notion of cardinality, as it can be equivalently stated such
that |A| < |B| and |B| < |A| implies |A| = |B|. Theorem 10.2 is a special case of the
following well-known result from Graph Theory.

Theorem 10.3 (Mendelsohn-Dulmage [71]). If G = (U U V,E) is a bipartite
graph with colour classes U and V, and M, and Ms are matchings in G, then there
18 a matching M of G that covers all vertices U' of U that are covered by M, and all
vertices V' of V that are covered by M.

To see that Theorem 10.3 implies Theorem 10.2, we may assume that A and B
are disjoint, and we can define matchings M; and M, as the underlying undirected

SNote that Theorem 10.2 has several names. Sometimes, it is called Schréder-Bernstein or
Bernstein-Schroder. According to Levy’s account [66], it has been proved by Dedekind in 1887,
conjectured by Cantor in 1895 and proved again by Bernstein in 1898. Other sources talk about
Schréder, giving a wrong proof in 1896.
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graph of (AU B, f) and (A U B, g), respectively. (Remember that functions f and g
are sets of ordered pairs, i.e. arcs.) As My + M- is bipartite, by Theorem 10.3, there
is a matching M of M; + Ms covering all vertices of A covered by M, and all vertices
of B covered by M>. Hence M is a perfect matching between A and B, exhibiting a
bijection between these sets. We shall deduce Theorem 10.3 from the stable matching
theorem, on page 69.

11 Monotone and comonotone set-functions

In [97], Tarski gave the following application of Theorem 10.1. (A Boolean algebra is
a complemented lattice where complementation is unique. The notation a — b means
the meet of a and the complement of b.)

Corollary 11.1 (Tarski [97]). Let A = (X, <) be a complete Boolean algebra, a,b €
Xand f:{z:z<a} > X and g : {z: ¢ < b} - X be monotone functions. Then
there are elements a' and b’ such that f(a —a') =b and g(b—b') =a'. O

Note that the above theorem in case of subsetlattices was proved already in 1927
by Tarski and Knaster [62]. In what follows, we shall use only this latter result to
formulate our tool on so called comonotone functions. A setfunction f : 2X — 2%
is monotone, if A C B C X implies f(A) C f(B). We say that F : 2X — 2% is
comonotone if there is a monotone function f : 2% — 2X such that

F(A)=A\f(A) for ACX.
In particular, if F is comonotone then F is monotone, where
F(A):=A\F(A) =Anf(A), if AC X. (11.1)
The following statement gives equivalent reformulations of the comonotone property.

Proposition 11.2. For a set-function F : 2%X — 2% the following conditions are
equivalent:

1. F is comonotone.

2. FY)CY for any Y C X, and (11.2)
FY)nY' C F(Y") whenever Y' CY C X. (11.3)

3. For each x € X there exists a family Hy, C 2% such that F = Fyy, where Fy is
defined by

Fu(A):={a€A:2°NH, =0} for ACX. (11.4)

Proof. If f is comonotone then (11.2) follows by definition, and (11.3) is equivalent
with the monotonicity of F. So 1. implies 2.



66 CHAPTER III. KERNELS AND STABLE STRUCTURES

To deduce 3. from 2. let
Hy ={HC X :z2¢ F(HU{z})}.

By definition, Fy(A) C F(A) for all A C X. If a € A\ Fy(A), then there is a
subset H of A such that a € F(H U {a}). By (11.3), we see that (HU {a})NF(A4) C
F(HU{a}) C X \{a}, i.e. Fy(A) D F(A). Thus F = Fy, indeed.

To show 1. from 3., we observe that by (11.4)

FA)={acA:2nH, #0},
so F is monotone. The rest follows from the identity F(A4) = A\ F(A). O

To formulate the basic result of this section, a translation of Theorem 11.1 to comono-
tone language, we need further definitions. For F,G : 2%X — 2% we call (4, B) an
FG-stable pair if

AUB =X and
F(A) = An B = G(B).

We say that a subset K of X is an FG-kernel if there is an FG-stable pair (A, B)
such that K = AN B. We introduce the partial order < on 2% x 2% as in 6.4, by

(A,B) = (A",B")if AC A" and BD B'. (11.5)
Note that (2% x 2%, <) is a complete lattice with lattice operations

(A,B)A(A",B"Y=(ANA",BUB') and (A,B)V(A",B")=(AUA',BNB").
(11.6)

Theorem 11.3. If F,G : 2X — 2X are comonotone functions then the set of FG-
stable pairs is a nonempty complete lattice subset of (2% x 2%, <).

In the proof of Theorem 10.2 we saw an application of Theorem 10.1. Here we do
essentially the same construction.

Proof. Define f : 2% x 2% — 2% x 2X by
f(A,B) = (X \G(B),X \ F(A)). (11.7)

Clearly, the FG-stable pairs are exactly the fixed points of f.
If (A,B) < (A',B') then X \ F(4) C X \ F(4") and X \ G(B) 2 X\ G(B"),
because F and G are monotone. Hence f(A, B) < f(A’, B'), so f is monotone.
From Theorem 10.1, the set of fixed points of f (that is the set of FG-stable pairs)
is a nonempty lattice subset of (2% x 2%, <). O

Note that with natural modifications, the above proof works also for Corollary 11.1.
Nevertheless, the part of Theorem 11.3 claiming the existence of a fixed point is
clearly a special case of Corollary 11.1, and the lattice subset property is just an easy
extra observation that Tarski probably did not think important enough to put into
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the corollary. Our only reason to call 11.3 a *Theorem’ is because this is the basis of
all results in this chapter.

In case of a finite groundset X, we can construct the <-minimum and the <-
maximum FG-stable pair for comonotone functions F and G. To do this, we find the
<-maximum and <-minimum fixed points of f in (11.7) according to the algorithm
that we described in Section 10. That is, we iterate f starting from (0, X) and (X, 0),
respectively. This observation leads to the following algorithm that generalizes the
proposal algorithm of Gale and Shapley.

Define Ag := X, By := () and let

Bi+1 =X \ ?(Az) and AH—I =X \ g(B,) (118)

Then (A™** := A x|, B™" := B|x/) is the <-maximal FG-stable pair. If we start
the recursion with Ag := ) and By := X, then (11.8) will produce the <-minimal
FG-stable set (A™", Bma®) Note that this algorithm (just like the iterative method
for monotone functions) can be extended to a transfinite induction proof of Theorem
11.3. The advantage of the method we have followed is that it does not lean on the
axiom of choice and indicates an unexpected connection with lattice theory. Here I
would like to acknowledge Andras Biré for drawing my attention to the fixed-point
theorem of Knaster and Tarski.

In Section 12, we give applications of Theorem 11.3. Although usually we state
those consequences for infinite sets, in case of finite groundsets, the above algorithm
can be easily translated, indicating that the corresponding structure can be efficiently
constructed. The interested reader can find a detailed analysis of the proposal algo-
rithm of Gale and Shapley (a special case of the above monotone function-iterating
method) in the book of Knuth [63].

12 Stable antichains

Our first example of a comonotone set-function comes from partially ordered sets.

Observation 12.1. Let < be a partial order on X and F(A), the set of <-minimal
elements of A. Then F is a comonotone function on X.

Proof. F(A) is the set of nonminimal elements of A, hence F is a monotone function.
(|

Let <; and <» be fixed partial orders on X. A subset S of X is a stable antichain
if it is a common antichain of <; and <5 and bounds all other elements from below,
i.e. if

the elements of S are pairwise both <;- and <s-incomparable, and (12.1)
for each € X \ S there exists an s € S such that s <y z or s <, z. (12.2)

Note that if both comonotone functions F and G come from Observation 12.1 then
any stable antichain is an FG-kernel, but the converse not necessarily true. However,
stable antichains and FG-kernels are the same if both partial orders are partial well-
orderings.
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Theorem 12.2.

A If <1 and <o are partial orders on X, then there are subsets X1 and Xo of X
such that

X1 @] XQ =X and (123)
X1 N X5 is the set of <; -minima of X; for i € {1,2}. (12.4)

B Moreover, if <1 and <o are partial well-orders then there exist stable antichains
S* and S* such that if S is a stable antichain then there is no s € S, i € {1,2},
and s* € S* such that s <; s*.

Proof. Define F(A) as the set of <;-minima of A, and G(A) as the set of <-minima of
A. By Observation 12.1, set-functions F and G are comonotone. Applying Theorem
11.3 to F and G, we see that there are subsets X%, Xn and X", X" with
properties (12.3, 12.4), such that if subsets X3, X5 of X have properties (12.3, 12.4)
then X™" C X; C X% for i € {1,2}. This proves part A.

Define St := X% N X7 and S := X[¥" N X%, We prove part B for S1; the
statement for S? follows by interchanging the role of <; and <.

Property (12.1) of S* follows directly from property (12.4) of X*%® and X",
By partial well-orderedness, for any element = of X[** and y of XJ*"  there are
elements z' of F(X]"*®) and y’ of G(X&¥") such that ' <; = and y' <5 y. This
proves (12.2) for S'. Thus S! is a stable antichain, indeed.

For stable antichain S, define Xy := {x € X : 35 3 s <1 z} and X5 := (X\X;)US.
Clearly X; and X» have properties (12.3, 12.4), so X" C X; C X% for € {1,2}.
This implies the last part of Theorem 12.2 B. O

Stable antichains S' and S? in Theorem 12.2 are called the <;- and <s-optimal stable
antichains, respectively. If we apply Theorem 12.2 B to partial orders that both
consist of disjoint chains, then we obtain an infinite version of the stable marriage
theorem:

Theorem 12.3 (Gale-Shapley [42]). Let G = (U UV, E) be a bipartite (not nec-
essary simple) graph with colour-classes U and V and let for each x € UUV, <, be
a well-order on D(x). Then there exists a matching M C E of G such that

for each edge e of E\ M, there is an endnode = of e (12.5)
and edge epr of M such that epr <, e. '

Proof. Define <1 and <3 on E by e <1 f if e < f for some u € U, and e <2 f if
e <y f for some v € V. Apply Theorem 12.2 B. O

The above matching M with property (12.5) is often called a stable marriage scheme,
or shortly a stable matching. The first name refers to the model in which each man
and woman orders those partners with whom they possibly can get married. The
assignment in Theorem 12.3 corresponds to the stable situation where no man-woman
pair has the common interest to quit the scheme and marry each other. The <;- and
<9-optimal stable antichains coming from the proof of Theorem 12.3 are usually
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called the man- and woman-optimal stable marriage schemes, as those are the ones
where each person of the corresponding sex gets the best possible partner of all stable
marriage schemes.

Note that if we specialize fixed point algorithm (11.8) for the stable matching case
then we get exactly the proposal algorithm of Gale and Shapley.

As an application of the stable matching theorem of Gale and Shapley (Theorem
12.3), we deduce the Mendelsohn-Dulmage theorem (Theorem 10.3). Define linear
order <, on D(u) by e <, f for vertex u of U if e belongs to M and f to Mj.
Similarly, e <, f for vertex v of V if e, f € D(v) and e € My and f € M,. By
Theorem 12.3, there is a stable matching M of G. As no edge of M; can be a
blocking edge of M, each vertex of U covered by M; must be covered also by M.
Similarly, no edge of Ms blocks M, hence each vertex of V' covered by M, must be
covered by M. Thus M has the property required by Theorem 10.3.

Next we discuss a generalization of the stable matching theorem which also in-
cludes the so called college admission problem. Here the role of men are played by
colleges, women are the students, and limited polygamy is allowed for men. In the
classical example of this problem (see Roth [84] and Roth and Sotomayor [88]), med-
ical students may spend their professional practice at a hospital from a selection list.
Each hospital has a quota of residents that it can and would like to accept. The
stable situation is, when no resident would be happy to change his or her appoint-
ment to another hospital that would be glad to fire somebody to get this particular
person. This example emerged as a real life problem in the United States in the
late forties. The desire of the competing hospitals for the best students turned the
selection process into a mad rush, that was only eased after a centralized scheme
had been introduced. It seems that up till recently this centralized scheme (the then
called NIMP: National Intern Matching Program) was the only practical application
of the Gale-Shapley algorithm. More about the background and origin of the stable
matching research can be found in the book of Roth and Sotomayor [88]. In the
book of Gusfield and Irving [50], a similar situation is described that corresponds to
the original (non-polygamous) stable marriage problem. There, the role of greedy
hospitals is played by federal judges and the bewildered students are their law clerk
candidates.

In our model we will use a more general comonotone set-function than the one
in Observation 12.1. This comonotone set-function turns out to be useful in special
posets defined below. We say that partial order < on finite set X is of arborescence
type if t < u and ¢ < v implies that v and v are <-comparable. (In the finite case, it
means that the diagram of partial order < is an in-arborescence).

Theorem 12.4. For i € {1,2} let <; be a partial well-order of arborescence type on
X, and for subset A and element x of X define

Ti(z,A) = [{a € A:a <; z}.
If t1,ta : X — Ny are arbitrary functions, then there is a subset S of X such that

7i(s,S) < ti(s) for any s € S and i € {1,2} and (12.6)
for every element x € X \ S there is an ¢ € {1,2} with 7;,(x,S) > t;(s).  (12.7)
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Proof. For element z of X and ¢ € {1,2} define
He = {T C X :7y(x,T) = t;(z) and 7;(z', T) < t;(2') for =’ € T}.

Functions F := Fyr and G := Fy2 are comonotone by Lemma 11.2. Applying
Theorem 11.3 to this F and G, we get an FG-stable pair (X1, X3). Let S := X1 N Xo,.
Then (12.6) is true by definition. To see (12.7), define X := {z € X;\ S : 7;(, S) <
t;(z)}. We show that X} = 0. If not, then there is a minimal element = of X as <; is
a pwo. By definition, there is a subset T of X; such that T' <;  and |T'| = t;(z). Let
{m1,ma,... ,my} be the set of <;-maxima of T'\ S (as T is set, this is well-defined)
and let T' := {t € T : t A; m; for j € [k]}. By the arborescence property of <;:

k k
7i(@, ) > |T'| + ) 7mi(my,8) > |T'| + Y ti(my) > |T| = ti(a),

=1 =1
a contradiction. O

It is worthwhile to make an observation about the algorithmic aspects of Theorem
12.4. The algorithm explained after Theorem 11.3 works without modification. How-
ever, since H? is not explicitly defined, it is not that clear from the definition how to
compute Fyi(A) efficiently. Justified by the above proof, a way of doing this is as
follows: index elements of X along a linear extension of <; i.e. X = {z1,Z2,...25}
such that if z; <; zx then j < k. Define F2,(A) := 0 and for 1 < j < n let

_ FiH(A) if z; ¢ A or
Fii(A) = ' if 73(zj, Fi: ' (A) > ti(z;) (12.8)
FiN(A) U {z;} else.

By this iterative definition we obtain Fyi(A4) = FJ};(A). Note that there is a con-
spicuous similarity between (12.8) and the greedy algorithm (3.12).

To illustrate Theorem 12.4, we prove a generalization of the college admission
(sometimes called the many-to-one stable matching) problem. It concerns the 'many-
to-many’ problem, which in a sense is the stable counterpart of the so called ’b-
matching’ problem. Usually, the college admission problem is reduced to the stable
matching problem by a node duplication construction, i.e. each vertex of the bipartite
graph on the college side is responsible for one unit in the quota of some college. This
construction does not work for the stable b-matching problem because an edge between
a particular student and college can yield disjoint edges after node duplication. The
proposal algorithm might select two disjoint copies of the same edge as different ones,
assigning a student to a college with multiplicity more than one. Note that it is
mentioned in [50] that a modified proposal algorithm also works for this case but the
proof is left to the reader there. Our way of deducing the stable b-matching theorem
from Theorem 12.4 is very much similar to the way of reducing the stable matching
theorem to Theorem 12.2.

Theorem 12.5. Let G = (UUV, E) a bipartite (not necessary simple) graph between
disjoint vertez-sets U and V and let D(z) be well-ordered by <, for every vertex x of
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G. Then for every b: U UV — N there is a subset M of E such that

dy(z) < b(v) forallz e UUV and (12.9)
for each edge e of E\ M there is a endnode x of e such that

dy(z) = b(x) and f <, e for each f € M N D(x). (12.10)

Proof. Define <1,~<2 as in the proof of Theorem 12.3, and for edge e = wv (with
uw €U and v € V) let t1(e) := b(u) and t2(e) := b(v). Apply Theorem 12.4. O

A matching M as above with properties (12.9,12.10) is called a stable b-matching.

13 Paths and stability

There is a generalization of Theorem 12.2 B that can be formulated by dropping
the acyclic requirement for orders. This is in fact a theorem of Sands et al. [90] on
monochromatic paths. Here we pose a bit weaker condition on the directed graphs
involved than in [90].

Theorem 13.1 (Sands et al. [90]). Let Ay and Ay be arc-sets on vertex-set V,
such that there is no i € {1,2} and vertices v; of V (for j € N) such that

there is a simple A;-path from v; to vj41 and

13.1
there is no simple A;-path from vy to vj. ( )
Then there is a subset K of V such that
for each element v € V' there is a simple path in Ay or in Ay (13.2)
from v to K, and '
there is neither a simple Ay-, nor a simple As-path (13.3)

between different elements of K.

Proof. Let < be a well-ordering on V, i.e. < is a linear order and every subset of V'
has a <-minimal element. The existence of such a well-order follows from the axiom
of choice; this is actually the only place in our treatment where we use this axiom.
For ¢ € {1,2} define <; such that u <; v if and only if

there is a simple A;-path from v to u,
and

u < v or there is no simple A;-path from u to v.

Relation <; is transitive because if  <; y <; z and there is a zz-path of A;, then z,y
and z are in the same strong A;-component, so ¢ < y < z must hold.

If x <; y X;  then = and y are in the same strong component. Thus z <y < z,
that is x = y. It means that <; is antisymmetric. As <; is trivially reflexive, it is a
partial order, indeed.
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Next we check that <; is pwo, i.e. any subset U of V' has a <;-minimal element,
for ¢ € {1,2}. From (13.1), there is an element u of U with the property that if there
is a simple A;-path from u to some u' then there is a simple A;-path from u' to w.
Consider U’ := {z € U : there is a simple 4;-path from u to z}. By definition, orders
< and <; are the same on U’, so the <-minimal element of U’ is a <;-minimal element
of U as well.

Theorem 13.1 directly follows from the application of Theorem 12.2 B to partial
well-orders <; and <5 as any stable antichain K of <; and <2 has the kernel property
described in (13.2, 13.3). O

Remark. If in Theorem 13.1 we assume that A; and As are acyclic then we arrive
back to Theorem 12.2 B. Theorem 13.1 can also be considered as a generalization
of the variant of the stable marriage theorem where no strict preference orders are
required for men and women but indifference is allowed.

In what follows, we prove the so called ’linking theorem’ of Pym [77, 78] as a special
case of Theorem 12.2. Although, formally we prove an extension of Pym’s result by
showing the extra property (13.4), the proof that we give is essentially Pym’s [78].
Our aim here is only to indicate that this result can also be viewed in the comonotone
framework.

Theorem 13.2 (Pym [77, 78]). Let D = (V, A) be a directed graph and X,Y sub-
sets of V.. Let moreover P and Q be families of vertex-disjoint simple XY -paths.
Then there exists a family R of vertex-disjoint simple XY -paths, such that

any path of R consists of a (possibly empty) initial segment of a path (13.4)
of P and of a (possibly empty) end segment of a path of Q, moreover '
In(P)CIn(R) CIn(PUQ) (13.5)

End(Q) C End(R) C End(P U Q).

Proof. To prove Theorem 13.2, it suffices to find a set S of switching vertices. Knowing
S, we can construct vertex-disjoint path family R the following way. Define vertex-
disjoint path-family P’ as the set of paths of P disjoint from S together with the
set of initial segments of paths of P ending in S. Similarly, we define Q' as the set
of paths of Q disjoint from S and the end segment of Q-paths starting from S. To
obtain R, we merge paths in P’ U @' that start and end in the same vertex of S.

To make this construction work, subset S of V" must have the following properties:

1. any path p of P U Q contains at most one vertex from S, and

2. if v is a common vertex of path p of P and of path ¢ of Q then either v € S or
there is a vertex s of S before v on p or after v on q.

Define <, on V(P)NV(Q) such that u <p v if there is a uv-subpath of some path
of P. Define <g also on V(P)NV(Q) by u <g v if there is a vu-subpath of some path
of Q. Observe that properties 1. and 2. above are nothing else but the description of
a stable antichain of <p and <g. As both relations are partial well-orders, Theorem
13.2 follows from Theorem 12.2 B. O
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Note that in the above proof we did not use Theorem 12.2 in full generality. For finite
vertex-set V', what we actually need is the Gale-Shapley theorem for multigraphs.
In that framework paths of P correspond to men, paths in Q are women, and each
common vertex of a P-path and Q-path yields a possible marriage. Each man would
like to switch to a woman-path from his path as soon as possible and each woman
would like to receive a man-path as late possible. (So everybody strives to minimize
the part of his/her path that is used in R.) A stable marriage scheme in this model
is exactly a set of switching vertices for some family R as in Theorem 13.2.

Brualdi and Pym proved a modified version of the linking theorem of Pym (The-
orem 13.2 without (13.4)) where they require condition (13.6) but allow generalized
paths [9]:

Theorem 13.3 (Brualdi-Pym [9]). In digraph D = (V, A), let P and Q be families
of vertex-disjoint general paths. There exist a family R of vertex-disjoint general paths
of D such that

In(P) CIn(R) CIn(PU Q) End(Q) C End(R) C End(P U Q)
VIP)NV(Q)CV(R)CV(PUQ)  AP)NA(Q) CAR)CAPUQ). (13.6)

Note that although this theorem sounds similar to Theorem 13.2, it seems to be
substantially different. To be able to prove condition (13.6), we must drop condition
(13.4), as even if P and Q consists of finite simple paths, it might be necessary to use
both circular and infinite paths in R (see [9]). For a simple proof of Theorem 13.3,
based on node-splitting, see Ingleton and Piff [55].

The following corollary is also observed by others (see e.g. [12]) and provides
an interesting application of Theorem 13.2 on families of edge-disjoint (rather than
vertex-disjoint) paths. In [12], by Conforti et al., this is deduced directly from the
stable matching theorem on bipartite multigraphs, using the framework we described
after the proof of Theorem 13.2.

Corollary 13.4. Let G = (V, E) be an undirected graph and x,y, z be different ver-
tices of V.. Let P be a set of k edge-disjoint xy-paths and Q be a set of k edge-disjoint
yz-paths. Then there exist a set R of k edge-disjoint xz-paths such that each path of
R is the union of a (possibly empty) initial segment of a path of P and of a (possibly
empty) end segment of a path of Q.

To prove the above result, we apply Theorem 13.2 on the line-graphs of paths of
P and Q. (A line-graph of a path is a path again.) There still remain some small
details to take care of. This is done in the following.

Proof. Let vertex-disjoint path-families P’, Q' be the collection of the line-graphs of
the paths in P and in Q, respectively. By applying Theorem 13.2 on P’ and Q' we
get a vertex-disjoint path collection R'. Family R’ is the set of line-graphs of a set of
edge-disjoint walks (not paths, in general). Clearly, |R* N P| = |R* N Q|, so we can
pair those paths and merge them via y. By this operation, R* becomes a collection of
edge-disjoint xz-walks. To obtain R as described in the corollary, we have to shortcut
the possible circles on each element of R*. When no more shortcut is possible, we get
edge-disjoint zz-paths switching exactly once, as stated. O
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Using Corollary 13.4 in [12], Conforti et al. describe a Gomory-Hu based maxflow-
representing structure. For each edge uv of a Gomory-Hu tree of a graph G, they store
a list of Ag(u,v) edge disjoint uv paths. They also do it for some other |V (G)| pairs
uv of vertices of G. Then, by applying the stable marriage algorithm O(a(n)) times
as in Corollary 13.4, they construct a collection of A\g(x,y) edge-disjoint xy-paths of
G for any two vertices x and y of G (where a(n) is the inverse Ackerman-function of
n that is regarded almost as good as a constant function).

14 Graph-kernels

The motivation for the name FG-kernel (suggested by Andras Sebd) is that Theorem
13.1 can also be formulated as: any digraph which is the union of two transitive
arc-sets, has a kernel. An arc-set is called transitive if ab,bc € A implies ac € A.
Recall, that a kernel is an independent subset K of vertex set V such that for any
vertex v outside K there is a node k of K with vk € A. In this context (as we have
seen in Chapter I), the stable marriage theorem can be reformulated as: any normal
orientation of the line-graph of a bipartite graph has a kernel [69], where we defined
a normal orientation as one in which every spanned clique has a kernel.

As mentioned before, several kernel-problems in Graph Theory have been moti-
vated by Conjecture 9.5 of Berge and Duchet which states that graph G is perfect if
and only if any normal orientation of G has a kernel. Before the theorem of Boros
and Gurvich [8] (the ’only if’ part of Conjecture 9.5) was known, several special cases
of the Berge-Duchet conjecture have been confirmed. Using theorems from Section
13, we can also obtain some results of this kind. A digraph is called kernel-perfect if
any of its spanned subgraphs has a kernel.

Theorem 14.1. Any orientation of a bipartite graph is kernel-perfect.

Proof. Any subgraph of a bipartite graph is bipartite, hence it is sufficient to prove
that any orientation of a bipartite graph has a kernel. Let G = (U UV, A) be an
orientation of a bipartite graph with colour-classes U and V and let 4, := D} (U)
and A := Dg(U). Clearly, A = A; U Ay, and neither A, nor A contains a directed
path of length 2. This means that the subset K of U UV we get from Theorem 13.1
is a kernel of G. O

A generalization of this is the following result of Richardson.

Theorem 14.2 (Richardson [82]). Any finite digraph G with no odd directed cycle
is kernel-perfect.

Proof. As no spanned subgraph of G has an odd directed cycle, it is enough to show
that G has a kernel. Define an auxiliary graph on the strong components of G such
that there is an arc from strong component C to strong component C' if there is a
dipath of G from C to C'. This auxiliary graph must be acyclic by the definition of
strong component, and hence there is a strong ’sink’ component C, that has outdegree
0 in the auxiliary graph. As C is strongly connected and has no odd dicycle, it
is bipartite. Hence the subgraph spanned by C has a kernel Ky. By induction,
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G — (CUD~(C)) has a kernel K,. It is easy to see that K := Ko U K, is a kernel
of G. 0

Champetier [10] proved that any normal orientation D of a comparability graph has
a kernel if any directed 3-cycle of D has at most one arc uv such that vu ¢ A(D). We
prove a weaker result and remark that the theorem of Champetier can also be proved
with the help of the generalized Gale-Shapley algorithm.

Theorem 14.3 (see Champetier [10]). If D is a normal orientation of a compa-
rability graph such that uvv € A(D) implies vu & A(D), then D is kernel-perfect.

Proof. Each spanned subgraph of D is a normal one-way orientation of a compara-
bility graph, hence it is sufficient to prove that D has a kernel.

By definition, there is a a partial order < on V(D) such that there is an arc between
u and v in A(D) if and only if 4 and v are <-comparable. Define A; := {uv : u < v}
and Ay := {uv : v < u}. We claim that, for ¢ € {1,2}, A; is transitive, that is,
uv,vw € A; implies uw € A;. By symmetry, we only need to prove this for A;. The
condition means that v < v < w, i.e. there is an arc between v and w. If this arc
is wu, then by lack of bioriented edges, uvw spans a clique without a kernel. Hence
uw € Aj, that is A; and As correspond to partial orders <; and <5. By Theorem
12.2 B, there is a stable antichain K of <; and <s. Hence K is a kernel of D. O

15 The stable roommates problem

Another kernel-type problem is the so-called stable roommates problem. In this
problem we are given an undirected graph G = (V, E) and a linear order <, of D(v)
for each vertex v of V. We may think that edges represent the possible roommates
in a student hostel with only double rooms and <, is the preference order of person
v on his possible roommates. The task is to find a matching M such that for any
edge e € E'\ M there is an edge m of M with m <, e for some vertex v of V. That
is, we are looking for a stable scheme, where there are no two persons who would be
roommates with each other rather than with their actual partners. If a matching has
the above property, it is called a stable matching.

Observe that a nonbipartite stable matching, the solution of a stable roommates
problem can also be seen as a kernel of an appropriate orientation of the line-graph
L(G) of G. Because not all cliques of L(G) come from stars, the orientation we face
here is not necessarily normal. Moreover, if G contains an odd cycle of length at
least 5 then L(G) is not perfect. So the Berge-Duchet conjecture does not seem to be
relevant for this problem.

The stable roommates problem has been solved by Irving (see [56]) who described a
two-stage algorithm to find a stable matching, if it exists. If the algorithm terminates
without outputting a stable scheme then a stable matching does not exists. The first
phase of the algorithm is similar to the proposal algorithm of Gale and Shapley, while
in the second phase a new operation is used that reduces the problem but neither
kills all stable matchings of the model, nor introduces a new one to the model.

By another approach, Feder [30] and Subramanian [96] solved the following net-
work stability problem, an extension of the nonbipartite stable matching problem. A
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network is a directed graph G = (V, A), where each vertex v of V' is a logical gate on
inputs corresponding to D~ (v) with outputs corresponding to D*(v). The problem
is to find a stable configuration of the network, that is an assignment of logical values
to the arcs such that for each gate v, the values assigned to D (v) are the output
values of the gate on the input that is given by the assigned values on D~ (v). An
illustration of a network stability problem is the following puzzle.

Puzzle 15.1. Find decimal numbers ag, a1, ... ,a9 such that the following sentence
becomes true:

In this sentence there are ag digit 0s, a1 digit 1s, as digit 2s, as digit 3s, ay digit 4s,
as digit 5s, ag digit 6s, a7 digit 7s, ag digit 8s, and ag digit 9s.

Here, the underlying network has ten vertices (vo,v1,...v9) and from each vertex
there are sufficiently many arcs (this case two suffices) to each other vertex and itself.
The gate at vertex v; works as follows. If it has j inputs with value 1 associated, then
the output will be 1 on arcs that correspond to digits of j + 1, and 0 elsewhere. (The
multiple edges we need if the decimal form of j+ 1 uses more digits of the same kind.)

Feder showed that if all gates in V' are adjacency-preserving (that is, at most one
output value can change if one input is modified), then there is an efficient algorithm
to decide the existence of a stable configuration, and if the answer is positive then the
algorithm finds one. Note that this algorithm can be viewed as a method to find a
fixed point of a certain map f : 2F — 2F if such a point exists. We come back to this
reformulation in Section 19. Feder also showed how to transform a stable matching
problem into a stability problem of a network with only adjacency-preserving gates.

Subramanian [96] formulated the stable matching problem in terms of *X-networks’
built up from "X-gates’. A main property of an X-gate and of an X-network is that
they are scatter-free. That is, no matter how we fix some set of inputs, the number
of outputs that do not only depend on the fixed inputs is at most the number of
non-fixed inputs’. Subramanian observed that stable configurations of a monotone
scatter-free network have a natural lattice structure. (A network is monotone if the
NOT gate can not be simulated by it.) Interestingly, in [96], Subramanian also cites
the fixed point theorem of Tarski [97] (our Theorem 10.1), but does not see that
the lattice structure of stable network-configurations would follow from the lattice
structure of fixed points of a monotone function:

Tarski’s theorem [28]® says that the set of fixed points of any monotone function
from a complete lattice to itself forms a complete lattice. This theorem, together
with Lemma, 2.1°, is sufficient to prove that the stable configurations (on a given
input assignment) of any monotone scatter-free network form a lattice. However,
this approach does not seem to yield the sublattice property. Nevertheless, and

Tt is easy to see that any scatter-free gate is adjacency-preserving, but the converse is not true.
Consider a gate with n inputs and 2"~! outputs corresponding to odd subsets of the n inputs. For
a given valuation of the n inputs, let all outputs of the gate be 0 except for the one (if any) that
corresponds to the subset of the inputs with value 1. This gate is adjacency-preserving, but not
scatter-free if 2" ~1 > n.

8See [97] and Theorem 10.1.

9This lemma states that a network built up from scatter-free gates is scatter-free.
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even though our proof is specific to the comparator, Theorem 6.4'° does not
extend to any monotone scatter-free network. An easy application of the ideas
in [5]*! yields the desired proof.

We return to this question in Section 19, where with the help of the notion of increasing
functions, we deduce the above sublattice property.

We end our discussion of the stable roommates problem by showing that any
stable roommates problem can be reduced to a stable roommates problem on a 3-
colourable graph. (In the terminology of Knuth [63], there are men, women and dogs
with preferences on the others, and everybody is looking for a best partner, pet or
owner with the restriction that married couples can not have a dog. In this model,
we allow that a person prefers to have a specific dog rather than marrying a certain
other person.)

Theorem 15.2. For any graph G = (V, E) and linear orders <, on Dg(v) (v € V),
we can construct in polynomial time a 3-colourable graph H on |V| + 2|E| vertices
with 4|E| edges and linear orders <, on Dy (v) (v € V(H)) such that there is a stable
matching in G if and only if there is one in H.

Proof. For any edge e = uv of E introduce two new vertices u, and v,. Let V(H) :=
VU{ve:v € Ve € Dg(v)} and E(H) := {vve : € € Dg(v)} U {euw, = ueve : € €
D¢ (u) N Dg(v)}. Define linear order <, for v € V by vv, <, vvy if e <, f, and for
the new vertices by ey, <u, Ute <y, €yu- (SO we subdivide each edge of G by two
new vertices, and duplicate the edge between them. The preference order of the old
vertices does not change and each parallel edge will be the best choice of one new
vertex and the worse for the other.)

For a stable matching M of G, let L' := {vv, : e € Dg(v) N M} U {ey, € E(H) :
3 f € M such that f <, e}. Construct L from L' by deleting one copy of each pair
of parallel edges of L'. Tt is easy to check that L is a stable matching of H.

On the other hand, let L be a stable matching of H. By stability, if uu, € L for
some edge e = uv then vv, € L. Hence M :={e € E : vv, € L for somev € V}isa
stable matching of G.

Clearly, V is an independent set in H and H — V is a graph such that any two
edge of it is either parallel or disjoint. Hence H — V' is 2-colourable and x(H) < 3. O

16 Stable matchings in Game Theory

When we talk about the stable matching problem, we cannot ignore its link to Game
Theory. The stable matching model is an easy but powerful way to describe certain
two-sided market economies. (For a well-written account on this connection, the
reader (really) should consult the book of Roth and Sotomayor [88].) To illustrate
this link to Game Theory and Mathematical Economics, earlier we have cited both the
observation of Roth [84] on the problem emerged about the residentship of American

10A theorem, stating that the stable configurations of a comparator network (that is a network,
built up from so-called comparator-gates) have the lattice property with bitwise AND and OR as
lattice operations. This theorem generalizes the lattice property for bipartite stable matchings.
H1Gee [30].
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medical students and the report of Gusfield and Irving [50] on the cruel fight of federal
judges for the best clerk-candidates.

Andréas Lukéacs has pointed out a problem of similar nature to me. In Hungary,
before entering a state university, candidates have to pass a more or less centralized
entrance exam. According to these exams, universities assign a certain number of
points to each candidate. After the university knows the points of all of its candi-
dates, it has to declare a threshold. Knowing this thresholds, each candidate can
choose any university that does not have a higher threshold than his/her number of
points. When a university declares a threshold, it has two conflicting aims. On one
hand, the ministry finances universities according to the number of their students. So
universities would like to have as many students as possible, i.e. the threshold should
be low. On the other hand, it can not be too low, because each university has a quota
on students that they cannot exceed; and after all, the idea of an entrance exam is
to have top candidates rather than second line ones. Some years ago, there emerged
the idea of a centralized scheme to solve this problem, but this initiative has failed.
After the ministry of education investigated the problem in details, they backed down
because of the ’enormous computing capacity’ the solution would demand. My guess
is that they did not know too much about the Gale-Shapley algorithm.

Besides labour market situations, auction markets can also be viewed in the stable
matching model. One issue about stable matching models is, what kind of rules
will provide a ’fair’ stable matching. (For example, the NIMP (nowadays NRMP:
National Resident Matching Program) finds the hospital-optimal stable matching.)
In an “English auction” (also called an open outcry, ascending bid auction), items
are sold on the second highest price that some bidder is ready to pay. This results in
a bidder-optimal stable matching between items and bidders. (We assume that each
bidder has an estimate of each item, in such a way that he/she affords all items on
his/her estimated price). In case of the auction model, the auctioneer-optimal stable
matching would be the one in which each item is sold on the highest price that some
bidder is ready to pay for it.

In the marriage model, it is a trivial observation that in case of a rule that con-
structs a men-optimal stable matching, each individual man has the interest to behave
straightforwardly. However, in the above auction model, even in case of a bidder-
optimal rule, bidders can form coalitions (rings) to try to keep prices low, and to
divide the prey amongst themselves. On the other hand, auctioneers can operate
with imaginary bids to push the price higher!2. This real world practice relates to the
fact that a stable matching is not necessarily strongly Pareto-optimal for the coalition
of men, that is, there might be a matching in which no man receives a worse partner
than the one in the men-optimal scheme but some men get strictly better wives. The
book of Roth and Sotomayor [88] provides further details on the above market models.

16.1 Stable matchings in Cooperative Game Theory

In what follows, we describe stable matchings as solutions of an n-person game. As-
sume we have n players in a game, each of them has a selection of possible strategies

12 According to Roth and Sotomayor ([88], p. 8), Rembrandt was bidding on his own paintings at
an auction.
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to choose from. The outcome v of the game is completely determined by the strategies
the n players select. Each player p has a ranking r, : V' — R on the set V' of possible
outcomes according to his/her preference. We say that outcome v is dominated by
coalition C' of players, if there exists a set of v-dominating strategies for players of
C. A certain choice of strategies for players in C is a set of v-dominating strategies
if no matter what strategies the other players select, each player in C is going to
profit from the outcome. That is, for any outcome u for the above set of strategies
of C-players, r,(u) < rp(v) holds for any player p in C. We define the domination
graph D = (V, A) in such a way that A is the set of arcs vu where v is an outcome
dominated by some coalition C' and u is a possible outcome when players of C' play a
v-dominating strategy.

In terms of the above domination graph, we can define different solution concepts
that result in an equilibrium situation on the market. The core of an n-person game is
the set of undominated outcomes. These are those vertices of the domination graph
that have outdegree 0. Clearly, once each player plays strategies that lead to an
outcome v in the core, then no subset C of players has the interest to form a coalition
and change strategies, because they cannot choose a v-dominating strategy. Le., if
coalition C' plays other strategies then the remaining players can choose strategies in
such a way that some player of C will not profit from the joint action. In spite of its
clear advantages, the core of an n-person game can be empty.

The solution concept of von Neumann and Morgenstern is a more sophisticated
one and it might be applicable for games with an empty core. We say that subset K
of outcomes is a von Neumann-Morgenstern solution of the n-person game, if K is a
kernel of the domination graph. That is, no outcome in K is dominated by another
outcome in K and any outcome not in K is dominated by some outcome in K. To
get an intuition about the idea behind this concept, von Neumann and Morgenstern
propose to consider solution K as a “standard of behaviour” for the players. That is,
if players accept that the outcome ’should be’ in K then as soon as they have chosen
strategies leading to some outcome £ in K, no coalition C' has the interest to depart
from their strategies. This is because if each player of some coalition C' profits from
choosing other strategies, then the new outcome k- must be outside K. So coalition
C must face the ’danger’ that some other coalition C' (not necessarily disjoint from
C) can play strategies such that each member of C' will prefer the outcome &' (that
might be in K) to k¢ and some player in C' \ C' will be upset with &' to kc.

Clearly, if a game has a nonempty core C then any von Neumann-Morgenstern
solution K contains C' . If core C has the extra property that it dominates any
outcome of V' \ C, then K = C is the unique von Neumann-Morgenstern solution.
There are games that have a von Neumann-Morgenstern solution in spite of having
an empty core. (We shall see that some stable matching-related games are like that.)
Also, there are games that have no von Neumann-Morgenstern solution, but for several
interesting classes of games (even with an empty core) such a solution does exist.

From the definitions of core and von Neumann-Morgenstern solution, it might not
be transparent that there is an essential difference between the two notions. Namely,
as we have seen above, a core has a certain local stability property, that is, once
an outcome is in the core, there is a good reason to think that it will stay there.
However, starting from an outcome not in the core, it might be possible that players
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form again and again new coalitions to improve their profit, without ever reaching
a core outcome, because the underlying walk on the domination graph never finds
it. In case of a von-Neumann-Morgenstern solution, once a ’standard of behaviour’
is accepted, and the outcome is not a solution, then players tend to form coalitions
that move the outcome closer and closer to the solution. As soon as the outcome is
a solution, it will stay there. So a von Neumann-Morgenstern solution has a global
stability nature.

In case of a game in the simplest stable marriage model, the strategy of a person
can only be to try to marry some specific person of the opposite sex. If this other
person also chooses the strategy to marry this first one, then the edge between them
will be in the outcome. (The proposal algorithm of Gale and Shapley can be regarded
as an agreement protocol to select strategies leading to an equilibrium situation.) The
possible outcomes are matchings of the underlying graph, and a person prefers one
matching to another, if he/she has a more preferred partner in it. (This also means
that each person prefers to have a partner rather than none at all.) Clearly, any
nonstable matching in the marriage model is dominated by a 2-person coalition along
the blocking edge. On the other hand, if a matching is dominated by some coalition,
then this coalition must contain a man and a woman who chose to marry one another,
and hence there is an edge blocking the matching. Thus stable matchings form the
core of the above n-person marriage game. The content of the stable marriage theorem
of Gale and Shapley is that the n-person marriage game has a nonempty core.

The previous construction of an n-person game can also be done for the stable
roommates model. The same proof shows that the core of the game is the set of
stable matchings. Unlike the bipartite stable matching problem, there are instances
of the stable roommates problem that possess no stable matching, that is the core
of the game may be empty. Such an example is the K3 graph in Figure 16.1. The
game described by this graph and preferences has neither a core nor a von Neumann-
Morgenstern solution.

a’1 372 253 1°f
Figure 16.1: Examples of stable matching games.

The only stable matching (that is, the core of the game) in the second example
of Figure 16.1 is {ac,bd}. Matching {ab, cd} is blocked only by edge be, hence it is
not dominated by any stable matching. In fact, {{ac, bd}, {ad, bc}} is the unique von
Neumann-Morgenstern solution of this game. This example shows that in the stable
marriage game, the von Neumann-Morgenstern solution might be a proper superset
of the core. The following observation is not very difficult to prove.

Claim 16.1. Let graph G = (V, E) and linear orders <, for each vertex v of V be
given. If there is a stable matching M in this model (that is, the core of the related
game is non-empty), and set M of matchings of G is a von Neumann-Morgenstern
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solution of the related game, then M € M, V(M) =V (M), and M is ezxactly the set
of stable matchings of the subgraph (V, E(M)) of G. O

The third example on Figure 16.1 comes from the idea of the second example, and
shows a weak point of the von Neumann-Morgenstern solution concept. Here stable
matchings are {ac, bd, eg, fh}, {ac,bd, ef, gh} and {ab, cd, eg, fh}. If we delete edge be
then all perfect matchings become stable, in particular matching {ab, cd,ef, gh}. It is
easy to see that the set of perfect matchings is a von Neumann-Morgenstern solution
of the related n-person game.

Assume now that matching {ab, cd, ef, gh} is the outcome of the game. If, in this
situation, players b and e agree on changing strategies to marry one another (and hence
to deviate from the “standard of behaviour”, as no von Neumann-Morgenstern solu-
tion matches them), then they become better off, as the outcome will be {cd, be, gh}.
By definition, some players now can profit if they try to push the outcome back to the
“standard of behaviour”. In this case, players a,c and f, h can agree on marrying one
another. This results in matching {ac, be, fh}. Now the deviant players b and e can
form a coalition with d and g and they collectively profit if they move the outcome to
{ac, bd, eg, fh}. This outcome is in the von Neumann-Morgenstern solution again, but
both impertinent players b and e prefer the new situation to the one in the beginning.
This shows that the stability that the “standard of behaviour” provides is based on
the assumption that even if some players see that they can push the outcome to one
that they all prefer, they respect the “standard” and do not attempt “dirty tricks”.

The first graph on Figure 16.2 is an example of a game with an empty core, and a
von Neumann-Morgenstern solution M := {{vyvs, v3v4}, {vavs,v1v4}}. Clearly, none
of the two matchings in M dominates the other. We prove that any inclusionwise
maximal matching M of G not in M is blocked by some edge of vyvs, vovs, v3v4 and
v4v1. If M covers neither a nor b, then M is a subset of some matching of M. Else
M covers both a and b. So let bv; € M. Edge v;_1v; (¢ — 1 is modulo 4) blocks M,
proving that M is indeed a von Neumann-Morgenstern solution.

Obviously, any element of the core belongs to any von Neumann-Morgenstern
solution. However, no matching in the above M is stable in G, justifying that the
core of the related game is empty.

Figure 16.2: Examples of stable matching games on the octahedron graph with a core
and without a von Neumann solution and vice versa.
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The second graph on Figure 16.2 is an example of a game with a nonempty core
that has no von Neumann-Morgenstern solution. It is easy to check that the core
consists of stable matchings {{vive,v3va,v506}, {vavs,vavs,v6v1}}. Any matching
that consists of edges of the above stable matchings either belongs to the core or it
is is dominated by some stable matching in the core. If an inclusionwise maximal
matching M uses two diagonals of cycle v vov3v4v5v6 that do not intersect on Figure
16.2 then M is not perfect and is dominated by one of the stable matchings. Hence,
the inclusionwise maximal nonstable matchings that are not dominated by any stable
one are matchings M; := {v;vVit1, Vit2Vita, Vit3vits} for i € [6], where addition is
modulo 6. So if a von Neumann-Morgenstern solution exists, it is the union of the set
of stable matchings and a kernel of the domination graph on matchings M; (i € [6]).
It is easy to check that M; dominates exactly M;;2 and M;;3, so the domination
graph on the M;’s does not have a kernel.

It is an interesting question whether for any stable marriage game (that is, for
the bipartite stable matching game) there always exist a von Neumann-Morgenstern
solution. My guess is not, but I could not construct an example showing this.

16.2 Generalizations of the stable marriage theorem

The stable matching theorem of Gale and Shapley has been generalized by several
authors. For a fuller story than what we are going to present, the reader should consult
especially Chapter 6 of the book of Roth and Sotomayor [88]. Here, we review those
results that have a close connection to our topic.

Continuing on a paper of Crawford and Knoer [14], Kelso and Crawford [59]
extended the hospital (or many-to-one) model to a model where workers are to be
assigned to firms. Firms would like to have certain specific jobs to be done, and this
is why they have a more sophisticated preference function on the workers than the
plain ranking. Each firm f has choice function C} that selects from any subset W' of
workers a subset C¢(W') of W' that firm f would hire if on the labour-market only
workers in W’ would be available. Each worker has an ordinary preference ranking
on the firms.

An assignment of workers to firms is called stable if it is not blocked by a worker-
firm pair. Worker-firm pair (w, f) blocks an assignment if w prefers f to his/her
assignment and in the meanwhile firm f would take worker w if (s)he would be
available (that is w € Cy(W; U {w}), where Wy is the set of workers assigned to firm
f).

Not surprisingly, in the above model there might be no stable assignment. How-
ever, if the choice functions of the firms have the so-called substitutability property,
then a stable assignment always exists. We say that the preferences of firm f have
the property of substitutability, if w € Cy(W) implies w € Cp(W \ {w'}) for any set
W of workers and different workers w,w’ of W. This means that if a firm would like
to employ some worker, then it still would like to hire him/her if some other worker
leaves the labour-market.

Theorem 16.2 (Crawford-Kelso [14]). If firms have substitutable preferences in
the worker-firm assignment model, then there is a stable assignment.
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The proof of Crawford and Kelso is via the accordingly modified Gale-Shapley
algorithm. They observe that firm-proposing results in the firm-optimal assignment,
and the worker-proposal based method leads to the worker-optimal situation.

Proof. Recalling the equivalent definition of comonotone functions by (11.2, 11.3),
we notice that choice functions with the property of substitutability are comonotone
functions over the set of workers. We can define a joint choice function for all the firms
on the edges of the assignment graph in a natural way. Namely, let G be the complete
bipartite graph between firms and workers. The joint choice function of firms maps
subset E of E(G) into Cipms(E) = {fw: fis a firm and w € Cy({w' : fu' € E})}.
This joint choice function (being the union of comonotone functions on disjoint stars)
is comonotone, and Theorem 16.2 follows directly from Theorem 11.3. O

Kelso and Crawford extended their result by involving salaries in the model. In our
comonotone language, this is not much different from the original model: introduce
parallel edges between the firm and the worker, each representing a certain salary,
and define the preference functions accordingly. Kelso and Crawford need the “gross
substitutes assumption” to formulate the comonotone rule in this situation, but in
any case, the result is a special case of Theorem 11.3 again. (It does not cause any
difficulty in the comonotone model that infinite graphs are involved, as the fixed point
theorem works also for this case. However, as the partial order is not pwo here, in
the proof we also should use the Dedekind property of (R, <).) We omit the details.

After this observation about comonotonicity and substitutability, one can foresee
the many-to-many version of the stable assignment theorem, which indeed is a result of
Roth [85, 86]. In [86], Roth studies three models: the one-to-one, the many-to-one and
the many-to-many with substitutable preferences. He shows that for all three models
there is a firm-optimal, worker-pessimal’ and a worker-optimal, ’firm-pessimal’ stable
assignment. The name ’polarization of interests’ refers to this property. Roth also
observes the ’opposition of common interests’ of workers and firms, which means that
if all workers prefer some stable outcome at least as much as some other, then for the
firms the opposite holds. In our language this means that if (4, B) and (4', B') are
FG-stable pairs and A C A’ then B D B'.

Further on, Roth introduces the notion of the consensus property, by which he
means the following. If each agent on one side of the market chooses his/her favourite
assignment from a set of stable assignments, then this way another stable assignment
is constructed. This is a generalization of the lattice property for the marriage model,
an observation attributed to John Conway: if each men chooses the better partner
from two stable marriage schemes, then this yields a stable scheme in which each
woman receives the worse partner from the two schemes.

Roth observed that the consensus property cannot be generalized to workers in
the many-to-one model and reached the false conclusion that it holds for the firms
there. His claim is that if each firm f chooses its workers from those workers that are
assigned to f in at least one of two stable schemes, then a stable scheme is constructed
again. Our next example shows a counterexample of this kind of firm-consensus.

Example 16.3. There are one firm f and three workers a,b and ¢. The firm would
like to hire the maximum number of workers for at most 9 units of salary. Worker a
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can be hired for 1 or 2 units, worker b for 3 or 4, and worker ¢ for 5. Both the 1+4+0
and the 2 4+ 3 + 0 are stable schemes. From these two assignments, the choice of the
firm would be 1+ 3 4 0, but this is blocked by worker ¢, as in this situation, f and ¢
would like to contract with each other.

In [86], Roth wrote the following.

It remains an open question whether the set of stable outcomes might neverthe-
less always be a lattice, with some suitably defined meet and join.

Blair [6] gave a positive answer to this question by showing that stable assignments
in the above models still have a lattice structure. He wrote

In the monogamous case, the lattice is obtained by defining one stable match-
ing as > another if every man is at least as happy in the first as in the second.
A partial ordering on multi-partner matchings could be obtained by replacing
“man” by “firm” ... we show that this ordering is not a lattice.

Instead, we will define f > g only if each firm wishes to keep its partners in f,
even if all the partners in g were also made available, and would not wish to add
any new partners. We will show that this more restrictive partial ordering is a
lattice. Since it clearly specializes to the standard definition in the monogamous
case, it seems to be the appropriate generalization. ...

That is, instead of lattice operations (that correspond to the choice of the agents on
one side of the market from two stable assignments), Blair defined the lattice through
its partial order (i.e. a stable assignment a is not less than stable assignment b if all
agents on (say) the firm-side of the market would choose a if they would have had all
choices given in g or b). Clearly, this result has to do with the fact that fixed points of
a monotone function constitute a lattice subset which is not necessarily a sublattice.
However, neither Blair, nor the above authors observed that these stable assignment
results have to do with the fixed point theorem of Knaster and Tarski.

We come back to the lattice property of stable assignments in Section 19. In his
paper [86], Roth has some very good insight:

Alternatively, it may be necessary to explore quite different kinds of structural
properties of the set of stable outcomes. For example, the bipartite nature
of the matching problem makes it possible to speculate that the set of stable
outcomes might possess some matroid properties that would allow the existence
of optimal stable outcomes to be explained in terms of the kind of optimization
results associated with matroids.

We fulfill this prophecy in the next sections.

17 Matroid-kernels

There is a matroid generalization of the Mendelsohn-Dulmage theorem (Theorem
10.3) by Kundu and Lawler [65].

Theorem 17.1 (Kundu-Lawler [65]). Let My = (E,Z;) and My = (E,Z) be
two matroids on the same groundset, and let Iy,Io € T; NIy be two common in-
dependent sets. Then there is a common independent set I € T; N Iy such that
span q, (I1) C span, (I) and span,, (I2) C span, (1).



17. MATROID-KERNELS 85

While in case of matchings, the Mendelsohn-Dulmage theorem was more or less
natural to prove in the comonotone framework, here it is not that clear how the fixed
point theorem of Tarski can be applied. However, if we approach matroids from the
greedy property, then a comonotone function emerges immediately. For this reason,
we review some properties of the greedy algorithm (3.12) for the deletion minors of a
matroid.

Fact 17.2. Let M = (E,C) be a matroid on groundset E and let ¢ : E — Ry be a
cost function on E = {ey,ea,... ,ep} such that c(e;) < c(ejy1) for 1 <i < n. Then
for any subset E' of E, set K,(E") is a minimum cost subset of E' that spans E',
where Ko(E') =0 and for 0 <i<n

K;_1(E" ife; ¢ E' or
if there is a subset C of K;(E")
such that {e;}UC €C

K 1(E"YU{e;} else.

Ki(E') = (17.1)

Moreover, K, (E') = Fy(E'") where Fy is a comonotone function defined as in Propo-
sition 11.2 with H., := {C C {e; : 1 < j < i} : {e;}UC € C}. Finally, if c is injective
then the minimum cost spanning set is unique. O

For matroids My = (E,C;) and My = (E,C2) and cost functions ¢1,¢ : E — R,
we say that (Ey, Es) is an My May-stable pair of E if Ey UE; = E and Ey N Ey is
a minimum ¢;-cost spanning set of E; in M; for i € {1,2}. We call subset K of E
an M Ms-kernel if it is a common independent set of My and Ms and if for every
e € E\ K there is an i € {1,2} and a subset C, of K such that {e} U C. € C;
and ¢;(¢) < ¢;(e) for every ¢ € C,. Set K is called a dual My Mas-kernel if it spans
both M; and M, and for every element k of K there exists an ¢ € {1,2} and a
subset C; of E \ K such that C; U {k} is a cocircuit of M; with ¢;(k) < ¢;(c) for all
c € C. Observe that if M = My and ¢; = c3 then both an M;Ms-kernel and a
dual M{Ms-kernel is a minimum cost basis of M, so it can be constructed with the
above greedy algorithm as K,,(E). In this sense, we can regard matroid kernels and
dual kernels as generalizations of minimum cost spanning sets.

Theorem 17.3. Let My = (E,Cy) and My = (E,Cs) be matroids and ¢1,¢c2 : E —
Ry be cost functions on their common groundset. Then there is an MiMa-stable
pair (Ey, Es) of E and an My Ma-kernel K.

Proof. For A C E let F(A) be the minimum ¢;-cost M;-spanning set K, (A) of
A, constructed according to (17.1), and G(A) be the similarly constructed minimum
ca-cost Ma-spanning set of A. From Fact 17.2, F and G are comonotone. So by
Theorem 11.3 we have subsets E; and Es of E such that (E;, Es) is an FG-stable
pair. Define K := E; N E;. By the mincost spanning property, for each i € {1,2}
and for each e € E; \ K, there exists a subset C. of K such that {e} UC. € C; and
ci(e) > ¢i(z) if z € C.. As minimum cost spanning sets are independent, K is indeed
an M Ms-kernel. O

Next we prove the Kundu-Lawler theorem (Theorem 17.1). By Theorem 17.3, there is
a Mj May-kernel I corresponding to some M; Ms-stable pair (A, B) for cost-functions
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c1:= xP\2 and ¢, := xF\'. As I is independent in M, the 0-cost elements of M,

cannot span any element of I; N(B\ A). Thus I; C A C span,, (1), and by symmetry
I, C B Cspany,, (). Theorem 17.1 follows.

As another application of Theorem 17.3, we prove the existence of a dual M; M-
kernel for two matroids on the same groundset.

Theorem 17.4. Let My = (E,C1) and My = (E,Cs) be matroids and ¢1,¢c2 : E —
R} be cost functions on their common groundset. Then there is a dual M1 Maz-kernel
K.

Proof. Let K* be a M} M3-kernel with respect to cost functions M —¢; and M — co,
where we choose constant function M > 0 such that M —c¢; > 0 for ¢ € {1,2}. Define
K := E\ K*. As K* is independent in both M} and M3, K spans both M; and
M. The kernel property of K* implies the dual kernel property of K. 1

Next we deduce the stable matching theorem (Theorem 12.3) as a special case of
Theorem 17.3, by applying it to partition matroids defined by the stars in one colour
class of the bipartite graph. The stable b-matching theorem (Theorem 12.5) can be
proved similarly by applying Theorem 17.3 to the direct sum of uniform matroids.

The uniform matroid of rank k on n element is Uy, = ([n], B(Un,k)), where the
set of bases B(U, ) := ([21) is the set of k-element subsets of the groundset. Matroid
M is a direct sum of matroids My, Ms,... , My if M is the union of matroids
My, My ..., My, and these matroids have pairwise disjoint groundsets.

To prove the stable marriage theorem (Theorem 12.3) of Gale and Shapley for
bipartite graph B with colour-classes X and Y, consider partition matroids M; and
M that are the direct sums of uniform matroids of rank 1 on the stars of vertices in
X and in Y, respectively. Define cost functions ¢; and cs on E(B) such that for edge
e=zy (r € X,y €Y), ci(e) is the height of e in linearly ordered set (D(x), <) and
¢a2(e) is the height of e in linearly ordered set (D(y), <y). If we apply Theorem 17.3
to these matroids and weights, we arrive back to Theorem 12.3. If we keep the above
weights ¢; and ¢z, but in the direct sum in the definition of M; we use a uniform
matroid of rank b(v) (instead of rank 1) on star D(v) of vertex v of V(B), then we
obtain the stable b-matching theorem (Theorem 12.5).

18 Fractional kernels and Scarf’s lemma

In this section we elaborate on the connection between Scarf’s lemma (Lemma 18.6,
see also [91]), the Boros-Gurvich theorem (Theorem 18.7, see also [8]) and special
comonotone fractional kernels. The new results of this section are outcomes of a joint
work with Ron Aharoni.

We approach Scarf’s lemma from simplicial complices. An (abstract) simplicial
complex is a family C of subsets of a finite groundset X with the property that
S' C S € C implies S’ € C. By a topological simplicial complex we mean a simplicial
complex C in which the inclusionwise maximal members have the same cardinality &
and any member of C of size k—1 is contained in an even number of maximal members
of C. A dual (topological) simplicial complex is the family C* of complements of a
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(topological) simplicial complex C on groundset X, that isC* = {Y ¢ X : X\Y € C}.
A most natural example of a topological simplicial complex is the family of vertex
sets of simplices of a triangulation of a smooth manifold. Here the ’even’ number in
the definition is always 2. It is also not very difficult to see that for subset X of R™
and for vector z € R* family {Y C X : z € conv(Y)} is a dual topological simplicial
complex. Here too, the ’even’ number in the definition is always 2.

The following observation (communicated by Ron Aharoni) turns out to be ex-
tremely useful.

Lemma 18.1. If C' is a topological simplicial complex and C* is a dual topological
simplicial complex on the same groundset X then the number of common members of
C' and C* that are inclusionwise mazimal in C' and inclusionwise minimal in C* is
even.

Proof. By definition, the inclusionwise maximal members of C’ and the inclusionwise
minimal members of C* have the same size k and [, respectively. If k # [, then the
lemma is trivial as 0 is an even number. So we may assume that k = [.

Fix an element x of groundset X and consider families

A::{Ye(Jk():mGYeC*} and B::{Ye(ij)::cgéYeC’}.

Define bipartite graph G with colour classes A and B by AB € E(G) for A € A4 and
B e Bif A\ B = {z}. By the definition of topological simplicial complices, the degree
of vertex Y of G is odd if and only if Y is a common element of C’ and C*. As the
degree sum of the vertices is twice the number of edges, the number of odd degree
vertices of G is even. O

We remark that if topological simplical complices C and C’' in Lemma 18.1 have
the extra property that the ’even’ number in the definition of topological simplical
complex is always 2 then graph G in the above proof has maximum degree 2, that
is G is a union of disjoint paths. This means that common maximal members of C’
and C* are the end vertices of the nontrivial paths building up G. That is, if we can
compute E(G) efficiently (i.e. we can efficiently find the maximal members of C' that
contain an almost maximal one, and the minimal members of C* that are contained
in an almost minimal one), then starting from a common member Y, of ¢’ and C* we
can find another one, simply by following the path of G starting at Y until it ends.
This algorithmic method is the basis of Scarf’s proof for Lemma 18.6 (see [91]).

As a short detour we recall some connections between the above Lemma 18.1,
the well-known Sperner’s lemma and Brouwer’s topological fixed point theorem. De-
fine A, := {z € R}™" : 17z = 1} the unit n-dimensional simplex in the (n + 1)-
dimensional space. We assume that the notion of triangulation is well-known by the
reader.

Lemma 18.2 (Sperner). Consider a triangulation of A, and colour each vertex
v of the triangulation with a coordinate in supp v. Then there is a simplex in the
triangulation that receives all the n colours on its vertices.
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A strengthening of this result is that the number of such simplices is odd. Or,
equivalently, the following is true.

Lemma 18.3. If we colour the vertices of a triangulation of the n-dimensional sphere
with n colours then the number of simplices that have all n colours assigned to its
vertices i even.

A generalization of the above lemma is the following.

Lemma 18.4 (Shapley). If we assign to each vertex of a triangulation of the n-
dimensional sphere a vector in R™ in such a way that no m — 1 of the assigned
vectors lie in the same hyperplane, then the number of simplices whose assigned vectors
contain 0 in their convex hull is even.

To reduce Lemma 18.3 to Lemma 18.4, let m = n — 1 and instead of colour-
ing, assign the n — 1 unit vectors together with —1 € R*~! to the vertices of the
triangulation. This proves Lemma 18.3.

On the other hand, Lemma 18.4 is a straightforward application of Lemma 18.1
to the topological simplicial complex C' defined by the vertex sets of simplices of the
triangulation, and the dual topological simplicial complex C* is given by the vertex
sets of simplices that have assigned vectors containing 0 in their convex hull. Observe
that in the above argument, we did not use that the triangulation was of the sphere;
in fact, Lemma 18.4 also holds for any triangulation of any smooth manifold.

It is also worthwhile to mention that Sperner’s lemma is equivalent with the fol-
lowing topological fixed point theorem of Brouwer.

Theorem 18.5 (Brouwer). Any continuous map from the unit ball to itself has a
fized point.

To deduce Brouwer from Sperner, it is enough to prove that any continuous map
¢ : A, — A, has a fixed point. Let ¢ be such a map. We can choose a colour from
[n] for each vector x of A, such that if colour i is assigned to vector x then x; > ¢(x);
(where x; denotes the ith coordinate of x). Further, we may assume that all vectors
receive a colour that correspond to a coordinate in its support. By Lemma 18.2,
any triangulation of A, has a simplex with all n colours assigned to its vertices. By
further triangulating such a simplex we can construct an infinite chain of simplices
intersecting in a unique point. By continuity, this must be a fixed point of ¢.

For the other direction, define map ¢ : A, — A,, the following way. For a vertex v
of the triangulation with colour 7 let ¢(v) be the (¢4 1)st (mod n) unit vector. Extend
¢ linearly on each simplex of the triangulation. This extension is a continuous map.
By Theorem 18.5, there is a fixed point x of @, so the simplex containing x must be
one with all n colours assigned to its vertices.

After this detour we return to our main topic and prove Scarf’s lemma and some
corollaries on fractional kernels.

Lemma 18.6 (Scarf [91]). Let n < m be positive integers, b € R} and matrices
B = (b;;),C = (cy,5) be of size n x m with the following property. The first n columns
of B form an n x n identity matriz (i.e. b;; = 6;; fori,j € [n]) and c;; > cix > ¢ij
for any i € [n], i #j € [n] and k € [m] \ [n].
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Then there is a subset J of [m] such that the columns of B indezed by J span a
cone containing vector b (we say that J spans b in B) and the columns of C indexed
by J forms a dominating set, that is, for any column i € [m] there is a row k € [n] of
C such that ci; > cg,j for any j € J.

We sketch the proof of the above lemma; the interested reader can consult the
paper of Aharoni and Holzman [1] for further details.

Proof. By a general position argument, one can perturb B and b, so that non — 1
elements of [m] span the perturbed b in the perturbed B so that if some n elements
span the perturbed b in the perturbed B then it also does it in the original setting.
Also, we may assume that all entries in the same row of C are different.

If, in this situation, a set K of size n + 1 spans b in B then there are exactly two
n-tuples in K that span b in B. This means that the family of subsets of [m] that can
be extended to a set of size n that span b in B is a dual topological simplical complex
C* on [m].

One can check that for any dominating set of columns of C' of size n — 1 there are
exactly two ways to extend that set by one extra column to get a dominating set of
columns or to get the first » columns. In other words, the family of subsets of [m]
that define a dominating sets of columns of C together with [n] forms a topological
simplicial complex C’ on [m].

As [n] is a common element of C' and C*, by Lemma 18.1, there is an odd number
of subsets J of [m] of size n that defines a dominating set of columns in C' and
determines a set of columns of B that span a cone that contains b. In particular,
there is at least one such J. O

Based on Lemma 18.6, Aharoni and Holzman gave a simple proof for the following
direction of Conjecture 9.5 of Berge and Duchet.

Theorem 18.7 (Boros-Gurvich [8]). If G is a perfect graph then any normal ori-
entation D of G has a kernel.

To prove Theorem 18.7, Aharoni and Holzman showed the following result.

Theorem 18.8 (Aharoni-Holzman [1]). If G is a graph then any normal orien-
tation D of G has a strong fractional kernel.

A strong fractional kernel of digraph D is a nonnegative vector x on V(D) with the
following property. Vector x is fractionally independent, that is ) . ) z(c) <1 for
any clique C of the underlying undirected graph and z is also fractiona%ly dominating,
i.e. for any vertex v of D there is a clique C of D containing v such that vc € A(D)
for any other vertex c of C' than v and }_ ¢y oy z(c) = 1.

Proof. Introduce for each inclusionwise maximal clique K of G a new vertex vg, and
define digraph D’ by adding these new vertices to D together with arcs vgwv, for
v € V(K). Clearly, D' is normal. Let B be the adjacency matrix of the underlying
undirected graph of D' after deleting the rows corresponding to V(G). Let, moreover
b be the all-one vector of the same size as the columns of B have.
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To define matrix C' = (ck,y), fix for each inclusionwise maximal clique K of G a
linear order <k on V(K) U {vk} such that z <x y implies yzr € A(D'). Because of
the normality of D', this is possible. For inclusionwise maximal clique K and vertex
v of D', let ¢k, be the height of v in <k if v is in the groundset of <x (i.e. v € K
or v = vk ), otherwise let cx , = 0.

By Lemma 18.6 of Scarf, there is a nonnegative vector z on the vertices of D' such
that Bz = 1 (that is, z(vk) +>_,c x (v) = 1 for any inclusionwise maximal clique of
@), and for any vertex v of G there is an inclusionwise maximal clique K of G such that
z(v)+> {z(u) :u € K,u <k v} =1, thatis, z(v)+>_{z(u) :u € K,vu € A(D)} = 1.
In other words, the restriction of z to V(G) is a strong fractional kernel of D'. O

To prove Theorem 18.7 from Theorem 18.8, we only have to recall the well-known
linear description of the independent set polytope of perfect graphs.

Theorem 18.9 (Chvatal [11]). If G is a perfect graph then

conv{x’ : I CV(G) is independent} =
{z € RV (@ 2> 0,2(K) <1 for any clique K of G}. O

For the proof of Theorem 18.7, it is enough to observe that the strong fractional
kernel x provided by Theorem 18.8 is a convex combination of characteristic vectors of
independent vertex-sets of (G, and by the fractional dominance of z, each independent
set in this convex combination must be a kernel of D.

In what follows, by using different constructions, we deduce fractional versions of
kernel-type theorems we proved so far. Let G be a finite graph, such that for each
vertex v of V(G), a linear order <, is fixed on the edges incident with v. A strong
fractional stable matching of G is a nonnegative vector x on the edges of G such that
x is a fractional matching (that is, 3 ¢ p(,) @(e) < 1 for any vertex v of G), and x is
fractionally dominating, that is for any edge e of G, there is a vertex v adjacent to e

with z(e) + -, 2(f) = 1.

Theorem 18.10. If G is a graph with linear orders <, on D(v) for all vertices v of
V(Q), then there is a strong fractional stable matching of G.

Proof. Let I, be aloop on vertex v of G, and construct graph G’ by adding these loops
to G for all vertices of G. Extend linear order <, so that [, is the greatest element
in the order. Let B be the V(G') x E(G') incidence matrix of G’, and let vector b be
the all-one vector of dimension |V(G)|. Define V(G) x E(G') matrix C = (cy,) by
¢v,e = 0 if v is not incident to e, otherwise ¢, . is the height of e in <,. According to
Lemma 18.6, there is a nonnegative vector z on the edges of G, such that z is both
a fractional (perfect) matching and z is fractionally dominating in G'. By the choice
of the extension of <, to G', the restriction of z to E(G) is a strong fractional stable
matching of G. O

To continue the exercise with Scarf’s lemma, for partial orders <i,~<s,..., <k on
groundset V we define vector x in RX a strong fractional stable antichain if z is a
fractional antichain (i.e. ) .. z(c) <1 for any chain C of any of the partial orders
=<;) and z is a fractional lower bound for any element of V', that is for each element
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v of V there is a chain v »; v; >; vy >; ... >=; v; of some partial order <; with
l
z(v) + 5o o(vi) = 1.

Theorem 18.11. If <1, <o,... , <k are partial orders on groundset V then there is
a strong fractional stable antichain.

Proof. Let C = {C1,Cs,... ,Cy} be the set of inclusionwise maximal chains of partial
orders <1, <2,..., =<k with multiplicity, that is if chain C is maximal in more than
one partial order, then C is listed so many times. Let B’ be the V x C incidence
matrix of of those chains in C. Let B := [I,, B'] be obtained by adding an n x n
identity matrix I,, in front of B'.

For v € V and chain C; € C let ¢y,¢; be 0 if v € Cj, otherwise the <;-height of
v in Cy, if C; is listed in C with because of <;. Let V x C matrix C' := (c,,¢) (for
v € V,C €(), and let C :=[I,,,C'] be obtained by adding an n x n identity matrix
I, in front of C'.

Applying Lemma 18.6 to the above matrices B,C and vector b = 1,, we get a
nonnegative vector z € R°YY . The restriction of z on RV is a strong fractional stable
antichain, by definition. O

In what follows we consider a similar model in which we define matroid-kernels.
So for matroids M1, Ma,... , My on the same groundset E and for cost functions
c1,C2,...,¢c, : E — Ry we call a vector z € Rf a strong fractional kernel for
My, Ma, ..., My if x is fractionally independent (that is, ) . p x(e) < ri(E') for
any subset E' of E and for the rank-function r; of any of the matroids M;), and each
element of E is fractionally optimally spanned in some of the matroids, i.e., for any
element e of E, there is a subset E' of E and a matroid M;, such that ¢;(e) > ¢;(e’)
for any e’ € E', and ), x(e) = ri(E').

Theorem 18.12. If M1, Ma,... , My, are matroids on the same groundset E and
cost functions c1,ca,... ,cx : E — Ry are given then there is a strong fractional

kernel for M1, Ma,... , M.

Proof. We may assume that ¢;(e) < 1 for any i € [k] and e € E.

We applying Scarf’s lemma again, but now with vector b different from 1. The
rows of matrix B’ are indexed by (E',i) pairs, where E' C E and 1 < ¢ < k. The
columns of B’ correspond to E, and the entry at position (E’,i),e is 1if e € E’,
otherwise it is 0. Let B := [I, B'], by adding an identity matrix of appropriate size in
front of B'. Define vector b of the same size as the columns of B by b(gr ;) := ri(E').

Matrix C' has the same size as B’, and its entry at position (E',7),e is ¢;(e) if
e € E', otherwise it is 0. Just like in case of the above B, we append an identity
matrix of appropriate size as the first columns to C' to get matrix C.

The reader is so experienced already in applying Scarf’s lemma, that (s)he can
check without any further argument that the restriction to R¥ of vector z provided
by Lemma 18.6 for matrices B, C' and vector b, is indeed a strong fractional matroid-
kernel, as claimed. O

We have seen that by some polyhedral argument the existence of a strong fractional
graph-kernel implies the existence of an integral kernel. We can do the same in our



92 CHAPTER III. KERNELS AND STABLE STRUCTURES

setting, that is we show an alternative proof for the existence of stable matchings and
matroid-kernels using the above fractional results.

So if graph G in Theorem 18.10 is bipartite, then by Theorem 5.12 fractional
stable matching z given by Theorem 18.10 is a convex combination of matchings:
z = Y AxMi. Because z is fractionally dominating, all vectors x™: must also be
fractionally dominating, that is, all those M;’s are stable matchings. In case of the
more general matroid-kernel model, if ¥ = 2 in Theorem 18.12, then by Theorem
5.14 fractional matroid-kernel = given by Theorem 18.12 is a convex combination of
common independent sets: x = Y A\;x*i. From the optimal spanning property of z
we see that all vectors ¢ must have the same property, in other words all those K;’s
must be matroid-kernels.

Figure 18.1: The diagram of two partial orders for a counterexample.

In contrast to the above argument, there is no similar proof for the existence of
a stable antichain using Theorem 18.11. Namely, it can happen that in case of two
partial orders <; and < on the same groundset, a strong fractional stable antichain
is not a convex combination of stable antichains. Figure 18.1 shows the diagram of
two partial orders on four elements. As any two elements of the common groundset
are comparable in one of the partial orders, a stable antichain contains exactly one
element. However, it is easy to check that the all—% vector is a strong fractional
antichain of weight 3.

19 The kernel lattice

In what follows, we focus on two well-studied aspects of the stable matching problem:
first, we show a generalization of the so called ’lattice structure’ of stable matchings,
and then, in Section 20, we deduce from it a linear description of certain kernel poly-
hedra. By this, we characterize among others the matroid-generalization of the stable
matching polytope described by Vande Vate [99] and Rothblum [89] (see Theorem
9.10).

To handle the lattice property, we go back to our general model, where we worked
with set-functions. For a finite groundset X, we call a function f : 2% — 2% strongly
monotone if f is monotone and |f| has the subcardinal property (3.10) of rank func-
tions of matroids. Recall, that |f| is subcardinal if

[f(Au{z})] < [f(A)] +1 (19.1)

for any subset A and element x of X. Property (19.1) implies
IF(B)\ f(A)] < [B\ 4| (19.2)
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for any A C B C X. Function f is increasing if
A C B C X implies [f(4)| < |f(B)] . (19.3)

Note that if comonotone function F = K, is coming from Fact 17.2 then |F(4)| =
rank(A), hence F is increasing. Comonotone functions coming from arborescence type
partial orders in Observation 12.1 are also increasing, just like the ones in Theorem
12.4. We shall exhibit a link between the sublattice structure of fixed points, strongly
monotone functions and increasing comonotone functions.

First we give a sufficient condition for a monotone function on subsetlattices so
that the lattice subset of its fixed points is a sublattice. (Thus for subsetlattices lattice
subsets are sublattices. A second jawbreaker, after symmetric semimetrics, as so far
we did not use common and comonotone after one another.)

Theorem 19.1. If f : 2X — 2%X s a strongly monotone function for a finite set X,
then the fized points form a nonempty sublattice of (2%,N,U).

Proof. Assume that f(A) = A and f(B) = B. By monotonicity, AN B = f(A)N
f(B) 2 f(ANnB) and AUB = f(A) U f(B) C f(AU B). By property (19.2),
A\(ANB) > |£(4)\ F(ANB)| > [A\ AN B| and |(AUB)\ 4] > | (AU B)\ (4)| >
[(AUB)\ AJ, hence there must be equality throughout. In particular, f(ANB) = ANB
and f(AUB)=AUB. O

Knowing this theorem, we can fulfill our promise and return to the remark of Sub-
ramanian in [96] about the lattice structure of stable configurations of monotone
scatter-free networks (cf. page 76). Recall that a network is monotone, if the NOT
gate cannot be simulated with it. It means that by setting some input from 0 to 1,
the only thing that can happen is that some outputs change from 0 to 1. With the
help of a network N, we can define a setfunction on the set of arcs A of N. Namely,
fn(A") = A" means that A” is the set of arcs with output 1 of the gates of N if the
set of arcs with 1-inputs is A’. A monotone network N determines a monotone set-
function fn. As we have seen, scatter-freeness of N implies the adjacency-preserving
property, which in turn yields strong monotonicity of fy. By Theorem 19.1, the
fixed points of a strongly monotone function form a sublattice, and this means for the
network that the stable configurations have the lattice-property for the arcwise AND
and OR operations.

The following link between strongly monotone and increasing comonotone func-
tions is crucial for the lattice property of FG-kernels.

Lemma 19.2. If function F : 2X — 2% is increasing and comonotone then F is
strongly monotone.

Proof. We have seen in (11.1) that function F is monotone. If A C B then

[F(B\F(A)] = |FB)| - [F(A)| =B\ F(B)| - |[A\ F(4)| =
|B| = |F(B)| = [A] + [F(A)| < [B] = [A] = |B\ A|.

Choice B = AU {z} implies property (19.1) of F. O
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Based on Lemma 19.2, we give a sufficient condition for the stable pairs to form a
sublattice in Theorem 11.3. Recall that on 2% x 2X we have defined a lattice order
= by (11.5) and lattice operations A and V by (11.6).

Theorem 19.3. If X is a finite groundset, F,G : 2X — 2% are increasing comono-
tone functions then FG-stable pairs form a nonempty, complete sublattice of (2% x
2X A, V).

Proof. We use the construction in the proof of Theorem 11.3. There we saw that
FG-stable pairs are exactly the fixed points of f(4,B) := (X \ G(B), X \ F(A)),
defined in (11.7). Tt means that (A4, B) is FG-stable if and only if B = X \ F(A) and
A= f'(A) := X\ G(X \ F(A)). Hence it is enough to prove that the fixed points of
f' form a nonempty sublattice of (2%,N,U).

If AC B C X, then F(A) C F(B) by monotonicity of F. Hence X\G(X\F(A)) C
X\ G(X \ F(B)), by monotonicity of G. So f' is monotone.

From the subcardinal property (19.2) of F and G

FB\SA] = [X\GENFB)N[X\GX\FA) =
GO\ FAN\GX \F(B))| <
< X\ FANX\FB)| =

= [FB)\FA)|<[B\ AL

Choosing B = A U {z}, we see that f’ is strongly monotone, and that its fixed
points form a nonempty, complete sublattice of (2%,N,U). That is, FG-stable pairs
determine a nonempty, complete sublattice of (2% x 2%, <). O

By Theorem 19.3, we can define a partial order on FG-kernels. Namely, we say that
K, 2rg Ko if there are FG-stable pairs (Ay,B;) <X (As, Bs) corresponding to FG-
kernels K; and K». From (11.3), it is easy to check that <z¢ is indeed a partial
order. Using this notion, Theorem 19.3 is equivalent with saying that if F and G
are increasing comonotone functions, then <r¢ defines a lattice Lrg on FG-kernels.
The lattice operations of Lxg are given by Ky Vzg Ko := (A1 U A2) N (By N By) and
KiApg Ko := (A1 NA2)N(B1UBy). Observe, that K is an FG-kernel if and only if it
is a GF-kernel, and note that <g }-=<;-1g. It also means that for FG-kernels K, Ko
we have Ky Vrg Ko = K; Agr K5. In what follows, we might omit the subscript in
the lattice operations or in the partial order when it does not cause ambiguity and
clearly comes from FG-stability.

Corollary 19.4. Let F and G be increasing comonotone functions. If K1, Ka,... , K,
are FG-kernels then |K;| = |K;| and ;e Ki = F(Ujep Ki) and Njgpy Ki =

Proof. Assume that FG-stable pairs (4;, B;) and (A;, B;) correspond to FG-kernels
K; and K}, respectively. From the increasing property (19.3) of F and G, we get that
|Ki| = [F(Ai)| < [F(Ai U Aj)| = |K; Vv Kj| = F(B; N Bj)| < |G(B;)| = |K;|. Hence
|Ki| = |Ki v Kj| = |Kj].

Let A := U;e[n Ai and K := |J
(11.3) of F yields \/

icn) K- Clearly, Vie[n] K; C K C A. Property

iep) Ki = F(A)N K C F(K). On the other hand, the increasing
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property of F implies that |F(K)| < |F(4)| = |Vgpy Kil- Thus F(U
Vz’e[n} K;. Similarly it follows that Q(Uie[n} K;) = /\ie[n] K;.

i€[n] K;) =
O
From now on, we use k to denote the common size of FG-kernels for increasing

comonotone functions F and G. Theorem 19.3 implies the following observation on
matroids:

Corollary 19.5. If M1, Ma are matroids on the same groundset, c1, co are injective
cost functions, and Ky, K> are MiMa-kernels, then spany,, (K1) = span, (Kz) for
ie{l,2}.

Proof. Choose M1.Mj-stable pairs (Ay, By) and (A, Bs) such that K; = A; N B; for
i € {1,2}. By Theorem 19.3, K| V Ko = (4; U A2) N (B1 N By) is both a minimal
c1-cost independent set spanning A; U A; and a minimal cp-cost independent set
spanning By N By. Clearly, spany, (K1) C spany, (K1 V K2) D span,,, (K2) and
span q, (K1) D spany, (K1 V Ka) C spany,, (K32). From |K| = |K; V K| = |K»|
there must be equality everywhere. O

Corollary 19.5 explains the phenomenon which is known as the rural hospital
syndrome in the problem of assigning medical students to hospitals. The name comes
from the experience that ’rural hospitals’ (the ones that are less favorable amongst
students) often cannot fill their quota, and if it is so, then no matter which stable
configuration is used, they receive the very same residents. The explanation of this
fact is, that as we remarked earlier, Theorem 12.5 is a special case of Theorem 17.3
when both M; and M are direct sums of uniform matroids: in M the partition is
defined by the U-stars, in M it consists of the V-stars and the rank of a part is the
corresponding b-value. So, if for stable b-matching M we have b(u) > dar(u), then in
the star of u only the edges of M are spanned by M, hence D(u) " M = D(u) N M’
for any stable b-matching M'. Note also that as a special case, we also see that in the
original marriage model no matter which stable marriage scheme is chosen, always
the same persons get married.

20 Kernel polyhedra

Another corollary of Theorem 19.3 has to do with the so called stable matching
polytope. Usually, from an FG-kernel K it is straightforward to construct an FG-
stable pair (A, B) with K = AN B. This is why our primal interest will be the
FG-kernel polytope

Pire = conv{x” :K € Kzg}, where (20.1)
Krg = {K CX:Kisan FG-kernel}.

We will find a linear description of polytope Pk, from the one of its dominant
polyhedron P;Efg. We shall also examine the FG-kernel cone,

Cicrg i= cone{x¥ : K € Krg} = {Z Aix®i o\ > 0,K; € Krg}

el
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When we want to optimize the FG-kernel then it is handy to have a linear description
of Pk ;. The result of Vande Vate [99] and its extension by Rothblum [89] exhibits
this in case of the stable matching model (see Theorem 9.10). Our aim here is to
extend this result to a description of Pk, in case of increasing comonotone functions
F and G. The following uncrossing lemma shows in particular that {x¥* : K € Kxg}
is a Hilbert basis of Cx,. For a vector z € RX, supp z := {e € X : z(e) # 0} denotes
the support of .

Lemma 20.1. If F, G are increasing comonotone functions and K, L are FG-kernels
then X + " = YKVE £ yKAL,

Proof. If FG-stable pairs (Kr, Kg), (L, Lg) correspond to K and L, then by Theo-
rem 19.3, (Kx ULz, KgNLg) and (KxNLx,KgULg) are also FG-stable pairs that

correspond to K V L and K A L, respectively. From Kr U Kg = X = Ly U Lg, it is
easy to CheCk that XKy:ﬂKg +XL_7:ﬂLg — X(K]:UL].—)O(KgﬂLg) +X(K_7:ﬁL_7:)ﬂ(KgULg)‘ D

Lemma 20.2. If F, G are increasing comonotone functions and x € Ci ., then there
is a decomposition T =31 i \jx%i such that A\; > 0 and

K, <FgG K> <FG .- =Fg K, . (20.2)

Proof. The above Lemma 20.1 allows us to transform a positive decomposition z =

22:1 A x¥i into another one. Namely, we can execute an uncrossing step along < rg-
uncomparable kernels K and K7. That is, we decrease the A*-coefficients of x5

and XK; by € and simultaneously we increase also by e the coefficients of XKI'* VES and
of Y%K where € := min{A;, Aj}. We have described in Section 6.2 (see Theorem

6.1) how it is possible to transform a decomposition into another one by uncrossing
steps such that the decomposition becomes cross-free, that is no uncrossing step can
be made any more. But in that situation, any two FG-kernel in the decomposition
are <rg-comparable, that is <r¢g induces a linear order on them. O

For increasing comonotone functions F and G, using Corollary 19.4 and Lemma 20.2,
we can test membership in Ci,,. That is, we can efficiently decompose a vector
z € Cx -, as a positive combination of FG-kernels. Namely, let z € Cx,, with

T = Z XX

1<i<m

a decomposition provided by Lemma 20.2. Define

Tj = Z x5
1<i<y
From Corollary 19.4 and Lemma 20.2,

K;= v K; =F( U K;) = F(supp z;).
i€[4] i€[4]
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Clearly, A; = min{z;(e) : e € K;}, and
Tj—1 =T; — /\jXKj. (203)

So from knowing x;, we can calculate K;, A\; and z;_;. As x,, = x, we can find the
decomposition by iterating 20.3 until we arrive to 29 = 0.

Observe that for any nonnegative x, iteration 20.3 terminates with some decom-
position of z because |supp ;41| < [supp z;|. If in this decomposition there are only
JFG-kernels, then we have a proof that x € Cx,,. So if nonnegative vector z is outside
Cx g, then there is an iteration j of 20.3 such that Kj; is not an FG-kernel. If this
happens, we have a proof that = & Cx .

Hence, to obtain a linear description of Pi,, = Cx,; N {2 € RX : 17z = k}
(where k is the size of FG-kernels), it is enough to find a set of valid linear constraints
for Cx,, with the property that least one of them is violated whenever 20.3 fails to
find a proper positive combination. The problem with this approach is, that though
from iteration 20.3 we always see when a vector is not in Cx ., it is not immediate
to find a ”linear” reason for the failure at a certain iteration j. Thus instead, we
shall concentrate on finding a linear description of P,TCFQ, and in turn we are going to
describe Px -, and Crc g -

For set-functions F, G : 2% — 2%, we define the blocker of FG-kernels by

Brg:={BCX:BNK#{ forany K € Krg}
and the dominant of the blocker polytope by
PL.., = 1{x": B € Brg}'.
Theorem 20.3. For increasing comonotone functions F and G, ’Pgm s described
by
{teR¥ :2>0 and (K) > 1 for K € Krg}. (20.4)

Proof. Let P denote the polyhedron determined by (20.4). We shall prove that (20.4)
is TDI description of P. Let c € Zf , and consider the linear programming problem
min ¢’z subject to (20.4). The dual of this problem is

max{y"1:y >0,y e R*79, Y y(E)x* <c}, (20.5)
KeKrg

As all FG-kernels have size k, for z := 3 gy y(K)x® (20.5) can be reformulated
as

1
max{Esz 1c>2€CKkg} (20.6)

Let z be an optimum of (20.6). From Lemma 20.2, there are FG-kernels Ky <xg
Ky <rg ... <rg K, and positive coefficients A; such that z = Zie{m} AixXi. We
may assume that z and j are chosen so that A; € N for any ¢ > j and j is as small as
possible. If j = 0, then

[ MK =K;
y(K) = { 0 else
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is an integer optimum of (20.5).

If 5 > 0 then
2= Z Aix X+ Ao — e+ (O + xS+ Z Aix"
i€lj—2] ie[m]\[4]

is another optimum of (20.6) if ¢ < A;_; and there is no integer between A; and
Aj +e. (This is because c is integer.) If we choose the maximal possible €, we get an
optimum z with integer coefficients A;-, )\} 415--- » contradicting the choice of z and j.

Hence for any integer c, there is an integer optimum y of (20.5). So by Lemma
5.5, P is an integer polyhedron. But all integer vertices of P are of the form y? for
some B € Brg, so P[T;Fg =conv{PNZX} =P. O

Applying Theorem 5.8 to blocking type polyhedron P;Fg, we get the linear de-
scription of ’P,Tc” and the other kernel-related polyhedra.

Corollary 20.4. Let F,G : 2% — 2% increasing comonotone set-functions and let k
be the size of FG-kernels. Then

P,chg ={zecRX:2>0, 2(B)>1 for B€ Bsrg}, (20.7)
Pire =1z €RY :2>0, 172 <k, 2(B)>1 for B € Brg}, (20.8)
Cxro={z€R* :2>0, k-2(B) > 1"z for B € Brg} . (20.9)

Proof. By Theorem 5.8, (20.7) is an immediate consequence of Theorem 20.3. As all
FG-kernels have the same size k, (20.8) follows.

Clearly, the right hand side of (20.9) describes a cone C' that contains Ci . Let
& > 0 be a vector outside Ci g, and A = 7—. Then 1"(A\-z) =k and A -z ¢ P;Efg,
hence there is a transversal B of Bzg such that A-z(B) < 1, that is 2(B) < 1 = 1" z.
Thus z ¢ C, proving (20.9). O

Knowing these linear descriptions, the next natural question is whether we can effi-
ciently optimize over these polyhedra. By the ellipsoid method, it is enough to solve
the separation problem efficiently. As a first step towards this goal, we show how to
optimize max{17z' : ' < x and z’' € Cx,,} for any nonnegative vector z, based on
Lemma 20.2.

For increasing comonotone set-functions F,G : 2% — 2% and for vector z € RY
let us define

K) := \/{K :K Csupp z, K € Kxg},
K} = /\{K : K Csupp z, K € Kxg},

where we define (for the moment) \/ § = A @ = §. By Theorem 19.3, K and K/ are
the <rg-maximal and the <zg-minimal FG-kernels in supp z. Let moreover

Ay :=min{z(e) : e € K/},

A2 := min{z(e) : e € K,'}. (20.10)
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Next we define 2V and z” recursively. If K = () then 2V := 0, and if K2 = () then
x” := 0. Else let

g¥ = A+ (@ - A )Y,

2= D 4 (- AR (20.11)
= A A .

The recursion is proper, as we use the definition only for vectors that have a strictly
smaller support than the currently defined has. This recursive definition also provides
us with a decompositions to a positive combination of characteristic vectors of FG-
kernels:

m l
¥ = Z AY x K and " = Z )\;-\XKJ/‘\ , (20.12)
i=1 j=1

where
K=K/ =Ky »...»K) and K, =K' < K§) <... < K[".

Note that if z is in Cx,, then z = 2V = 2, and the above decomposition of =V is
exactly the one that we have constructed right after Lemma 20.2 on page 96.
One consequence of the next lemma is that ¥ maximizes {17z’ : 2’ < z and €

C’Cfg }

Lemma 20.5. Let F,G : 2% — 2% increasing comonotone set-functions and let k be
the size of FG-kernels. For any nonnegative vector x of RX there exists a transversal
B, € Brg such that ©(B,) = 1 - 17zV.

Proof. We proceed by induction on supp . If K = () then B, := X \ supp z
suffices. Let z be such that K # @ and assume that the lemma is true for '
whenever supp z' C supp .

Let Y be the set of elements that determine the coefficient AY, in (20.12) according
to (20.10). If Y N K{* = 0, then from K <X K we get that FG-kernel K| is still
a subset of the support of x — zV, which is a contradiction. So let e € Y N K{* and
x' :=x — z(e)x®. As supp z' C supp z, by induction we have a set B, € Brg. We
claim that B, := B, suffices.

By (11.3) and (20.2) there is an s < I such that e € N2, K\ Uj_; K.

A\
Consider the vector Z :=  — Y5_; A/x"7 . By definition, Ky = K}, 3 e € K{* =
\%
K. This means that all FG-kernel in supp Z contains e, hence #'* = Z;:l AY Ky,
Asz(e) =20 A =417 (Z?:SJA )\}-’KJ\-’), we get that

1 1
ElTxV <x(B,) < z(e)+a'(By)==x(e)+ 1T =

k
1 Ui 1 £
= E-IT > )\JVK]\-’—FE-ITZA}/KJ\/:
j=s+1 j=1
1 T - vV Vv ]' T, .V
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The use of the transversal B, in Lemma 20.5 is that for a nonnegative vector = to
decide membership in the particular polyhedron, we only have to check (20.7-20.9)
for B,. This is because if z ¢ P,TCN, then z(B,) = $17z¥ < 1, as 2V ¢ ’P,chg. If
172V = 2(B,) > 1 for some z with 172 < k, then = 2V and 172 = k, hence
T € Piy,- Finally, x € Cx,, if and only if z = 2V, that is, z(B,) = 172V = £17z.

So we can solve the separation (and hence the optimization) problem over P;Efg,
Px g and Cx 4, if we can efficiently compute transversal B, for a nonnegative vector
2. The proof of Lemma, 20.5 provides us with a method to construct B,, as soon as
we can compute 2V and 2. But to construct these vectors according to (20.11), we
only have to know how to find K and K2'. In what follows we show how to do this.

Let us define monotone function f : 2% — 2% by f(4) = X\G(X\F(A)). Clearly,
KY = F(A), if Ais an inclusionwise maximal fixed set of f such that F(A) C supp z;
and K = 0, if such fixed set A does not exist. Our aim is to construct this set A or
to decide that it does not exist. As we saw after Theorem 10.1, by the iteration of f
starting on X, we can construct the inclusionwise maximal fixed set Ag of f. Ap has
to contain A, if A exists. Assume that for some 7 € N, we have constructed a set A;
in such a way that A C A; if A exists. Clearly, A = f(A4) C f(A;) and by property
(11.3) of F, we have AN F(A4;) C F(A) C supp z. Hence

AC A =T[40 f(A)]\ [F(A;) \ supp z].

By this definition, we get a decreasing chain 49 D Ay D ... D A; D ... which by
finiteness stabilizes at some A; = A;;1. It means on one hand that

A; C f(4)) = [4 \ FA)IUGX \ F(4;)) (20.13)

and on the other hand that F(A;) C supp z, as F(A4;) C A; by property (11.2) of F.
From the increasing property of F and G we see that if fixed element A exists then

|F(A)] > |F(A)] = [G(X \ F(4))] > |G(X \ F(4))]-
From here
[F(A7)] = [4;] = |F (A7) + [G(X \ F(4;))] < |41

By (20.13), this means that K = A; = f(A;). Otherwise, if fixed element A does not
exists, then A; # f(4;), and K = 0 follows. So we proved the following theorem.

Theorem 20.6. Let X be a finite groundset and F,G : 2%X — 2% be increasing
comonotone functions described by a value-giving oracle. For any functionc: X — Z
there is an algorithm that constructs an FG-kernel of minimum c-weight and a vector
in Ck ., with negative c-weight (if it exists) in time polynomial in |X|, the size of ¢
and the running time of the oracle.

Proof. We have seen that there is a polynomial-time separation algorithm over polyhe-
dra Px g, ’P,TCFQ and Ci . So by the ellipsoid method (see 5.3), there are polynomial-
time optimization algorithms for the above polyhedra. O
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Finally, to contrast Theorem 20.4, we prove that it is NP-complete to decide whether
a particular element of the groundset can belong to some stable antichain or not.
It means that unless P=NP, it is necessary to have some extra assumption (like the
increasing property) on the comonotone functions to hope for a good characterization
of the corresponding FG-kernel polytope, Px ;. We will use Observation 12.1, the
only example of non-increasing comonotone function we have seen so far.

Theorem 20.7. If undirected graph G = (V, E) and k € N are given then it is possible
to construct partial orders < and <' and an element s of their common ground-set
X in time polynomial in |V |, such that s belongs to a stable antichain of < and <’ if
and only if G contains an independent set of size k.

Proof. We may assume k < |V|, otherwise the theorem is trivial. Otherwise let
X :={s}U{aj,a;:1<j<k}U{vj,v;:veV,1<5 <k}
Partial orders < and <’ are determined by

! ! !
a; < s, uj < vy, wp < Yy, vj < a;

! ! ! ! ! ! ! !
a; < s, U; < vy, w; < vy, v; < aj

for 1 <j<k,1<I<k,j#lL u,v,w €V, u#vandvw € E or v =w.
If G has an independent set I = {i',i*,...,i*} C V of size k, then S := {s} U
{i;, zJ; : 1 < j <k} is astable antichain of < and <'. On the other hand, if s belongs

to a stable antichain S then neither a;, nor a;- can belong to S. Thus for every j there

must exist elements i/ and e’ of V such that z;, ej; € S. By stability i/ = e/ # ' and
it ¢ E for j # 1, in other words I := {i',i?,... ,i¥} is an independent set of G of
size k. 0

As the decision problem whether there exists an independent set of size k in a graph
is NP-complete, it is also NP-complete to solve the kernel-problem in Theorem 20.7.
We give another reason why it is NP-complete to optimize kernels. For an undirected
graph G = (V,E), function f : 2P — 2P defined by f(E') = {e = uv € E' :
D(u)UD(v) C E'} for E' C E is monotone. Consider comonotone function F, defined
by F(E') := E'\ f(E'). It is easy to see that FF-stable pairs are (E(U),E(V \ U))
where E(U) := J,cy D(v) (for U C V), and FF-kernels are exactly the edge-sets of
the form D(U), for some U C V. If it would be possible to separate over the kernel
polytope Prx, then (by the ellipsoid method) it would be possible to find a maximum
cut of G in polynomial time. But this latter problem is NP-complete.

21 Lattice polyhedra

In this section, we point out a connection between results in Section 20 to the theory
of lattice polyhedra. We shall see that Corollary 20.4 is a straightforward consequence
of this theory and the theory of blocking polyhedra. Also, we are going to describe
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antiblocking type polytope 'P}C” for increasing comonotone functions F and G. In
fact, our proof for Theorem 20.3 is simply the specialization to the comonotone setting
of the proof of the Hoffman-Schwartz theorem (Theorem 21.1), a basic result in the
theory of lattice polyhedra. I hope that our application of that theory to kernel
polyhedra helps to recognize the importance of lattice polyhedra in Combinatorial
Optimization and Game Theory.

To state the Hoffman-Schwartz theorem, a basic result on lattice polyhedra, we
need to formulate some assumptions. Fix a groundset X and a family £ of subsets of
X. A partial order < on L is called consistent if AN C C B holds for any members
A,B,C of £ with A < B < C. Quadruple (£, <,A,V) is a (consistent) quasilattice if
< is a (consistent) partial order on £ and A and V are binary operations such that
ANB=BANA <A, A< AV B = BV A holds for any members A, B of L and A < B
implies A = AA B and B = AV B. (So if < is a lattice order with lattice operations
A,V then (£,<,A,V) is a quasilattice.) Family £ is an upper clutter if there is a
consistent quasilattice (£, <, A, V) such that (AA B)U(AV B) C AUB holds for any
members A, B of £. Family £ is a lower clutter if there is a consistent quasilattice
(L, <, A,V) such that AUB C (AAB)U(AVB) and ANB C (AAB)N(AV B) holds for
any members A, B of L. (Note that for a quasilattice (£, <, A, V) the consistency of <
implies (AAB)N(AV B) C ANB for any A, B € L. Hence it is redundant to require
this for upper clutters, and for lower clutters we have (AAB)N(AVB) = ANB. This
means that £ is an upper clutter if x4 4+ x? > x4"B 4+ x4VB holds for any members
A,B of £, and £ is a lower clutter if the opposite inequality is true.)

Theorem 21.1 (Hoffman-Schwartz [53]). Let (£, <,A,V) be a consistent quasi-
lattice on groundset X and d : X — NU {oo} be and arbitrary function. If L is a
lower clutter for this quasilattice and r : X — N is submodular then system

{reRX :0<z<d, z(A) <r(A) for any A € L}

is TDIL.
If L is an upper clutter for the above quasilattice and r : X — N is supermodular
then system

{reRY :0<z<d, z(A) >r(A) for any A€ L}
is TDI. 0

(Here, r : X — N is submodular if r(A) + r(B) > r(A A B) + r(A V B) holds for
any A, B € L; r is supermodular if the reverse inequality is true.)
Next we observe that Theorem 21.1 is relevant in our setting.

Observation 21.2. If F,G : 2X — 2% are increasing comonotone functions then
family Kxrg of FG-kernels is an upper and lower clutter.

Proof. If A < B < C then there are FG-stable pairs (Ax, Ag), (Bx, Bg) and (Cx,Cg)
with F(Ar) = A = G(Ag), F(Br) = B = G(Bg), F(Cx) = C = G(Cg) and
Ay C BF C Cg. By (11.2) and (11.3), ANC = F(Ar) N F(Cr) C ArNF(CFr) C
Br N F(Cg) C F(BF) = B, hence lattice order < g is consistent. By Lemma 20.1,
Krg is a lower and upper clutter. O
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For comonotone functions F and G on the same groundset X, define the antiblocker
of FG kernels by

Arg :={AC X :|AN K| <1 for any memeber K of X}
and the submissive of the kernel-antiblocker polytope by
'Pj‘fg ={x*:Ae Arg}.

Applying the Hoffman-Schwartz theorem on K xg, we get the following generalization
of Theorem 20.3.

Theorem 21.3. If FG are increasing comonotone functions on groundset X then
'ngg = {reR¥:2>0andz(K)>1 forany K € Krg} and (21.1)
’ijg = {reR¥:2>0andz(K) <1 for any K € K»g}. (21.2)

Proof. Obviously, the polyhedra on the left hand side of (21.1,21.2) are the integer
hulls of the polyhedra described by right hand sides.

By Observation 21.2, Krg is an upper and lower clutter. Let d(v) := oo and
r(K) :=1for all v € X and K € Kzg. Clearly, r is sub- and supermodular. By
Theorem 21.1, linear systems in (21.1,21.2) are TDI, hence the polyhedra on the right
hand sides are integer. O

Using the theory of antiblocking polyhedra, we can describe the submissive of the
kernel polytope.

Theorem 21.4. If FG are increasing comonotone functions on groundset X then
'P,‘éfg ={zcRY :2>0and z(A) <1 for any A € Kzg}. (21.3)

Proof. By (21.2) and (5.6), P} = A(Px., ). Using Theorem 5.8 we get that Px.__ =
A(ijg ), and Theorem 21.4 follows from (5.6). O

22 Open questions

The first interesting problem is to find similar characterizations to (20.7-20.9) and
(21.3) for the corresponding matroid-kernel polyhedra. The difficulty here is that
when we proved the existence of a matroid-kernel, we used a greedy algorithm after
fixing an order of the elements of the matroid by increasing costs. However, this linear
extension is not unique, and if we pick different ones, then the M; Ms-kernels we find
can be completely different. One extreme case, when all elements have different
costs, that is when the cost function is injective. Then the linear description of the
corresponding kernel polyhedra is given by (20.7-20.9). The other extreme is the case
of constant cost function. Then P, is the convex hull of the inclusionwise maximal
common independent sets. In this case the antiblocking polytope P,tfg has been
characterized by Edmonds (see Theorem 5.14). Thus it would be interesting to find
a good characterization for the antiblocking polytope of matroid kernels.
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Another possible direction of further research would be a generalization of Theo-
rem 9.10 to the kernel polytope Px ., for increasing comonotone functions. We have
indeed given a linear description for an extended class of comonotone kernel polytopes
in Theorem 20.4, but this theorem is not a generalization of the former one. Namely,
we talk about the blocker of a certain family, whereas in the description of Vande
Vate and Rothblum the constraints are given concretely. In [52], Hoffman provides a
certain characterization of the blocker of upper clutters and the antiblocker of lower
clutters. Still, I see no direct application of this result that generalizes Theorem 9.10.

According to the suggestion of Andréds Frank, another interesting application of
matroid-kernels would be to find a similar theorem to Galvin’s about list-colourings
of matroids.

Conjecture 22.1. Let My = (E,Zy) and My = (E,Z,) be matroids on the same
groundset. Assume that E can be covered by k common independent sets of My and
My and k < Zie[m] X for sets C1,Ca,...,Cn. Then there exist C; D I; € Ty NI
such that E = ;e Li-

If Conjecture 22.1 is true, then apart from Galvin’s theorem, it would extend the
following result of Seymour.

Theorem 22.2 (Seymour [95]). Let M = (E,Z) be a matroid and assume that
there are k independent sets I, I, ... , I € T such that E = Uie[k] L. Ifk-xF <
Zie[m] x%i for subsets L1, La, ... , L, of E, then there are subsets J; of L; fori € [m)]
such that J; € T and E = Uie[m] J;.

In Section 18, we indicated a connection between Brouwer’s topological fixed point
theorem and some fractional kernel results. The main topic of this chapter was the
relation of Tarski’s fixed point theorem to integral kernel results. I think that the re-
lation of these theorems is not yet fully understood. So without formulating a specific
question, I ask whether there are more interconnections between these approaches.
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Samenvatting

Dit proefschrift bestaat - behoudens inleidende paragrafen - uit twee delen. Het eerste
deel, Hoofdstuk II, behandelt zogenaamde kruisende structuren. De motivatie hier-
voor komt voornamelijk uit de Besliskunde, maar de behaalde resultaten hebben ook
consequenties voor onder andere de Speltheorie en de theorie van eindige metrische
ruimten. Het tweede deel, Hoofdstuk III, behandelt de relatie tussen onderwerpen
uit uiteenlopende gebieden als Besliskunde, Speltheorie, Grafentheorie, Wiskundige
Economie en Topologie.

In de eerste paragraaf van Hoofdstuk II beschouwen we een zogenaamd ontkruisings-
spel. Twee deelverzamelingen van een verzameling X kruisen (in X ) als zij niet-lege
doorsnede hebben, niet in elkaar bevat zijn en samen X niet overdekken. In het ont-
kruisingsspel spelen de ontkruiser en de spelbreker met een collectie verzamelingen.
In elke stap van het spel neemt de ontkruiser twee kruisende verzamelingen uit de
collectie en vervangt ze door hun doorsnede en vereniging. Vervolgens stopt de spel-
breker een van de twee door de ontkruiser verwijderde verzamelingen in de collectie
terug. De ontkruiser wint als het systeem geen kruisende verzamelingen meer bevat;
de spelbreker wint als de collectie in een eerdere toestand terugkomt. Hurkens, Lovész,
Schrijver en Tardos [54] hebben een strategie voor de ontkruiser ontwikkeld om dit
spel in polynomiale tijd te winnen. In dit proefschrift generaliseren we deze strategie
naar een soortgelijk ontkruisingsspel op een collectie van paren verzamelingen. Deze
gegeneraliseerde strategie levert een polynomiaal algoritme om aan te tonen dat een
zekere verbetering in de samenhang van een gericht netwerk zo goedkoop mogelijk is.

Het tweede resultaat in Hoofdstuk II is het bewijs van een vermoeden van Andrés
Frank over symmetrische ordeningen. Dit resultaat, een minmax relatie, generaliseert
de stelling van Dilworth [18] met betrekking tot de opdeling van een partiéle ordening
in zo min mogelijk lineaire ordeningen. Ons bewijs van dit vermoeden gebruikt de
Tutte-Berge formule voor maximale koppelingen in algemene grafen. Het is in dit
verband interessant op te merken dat de stelling van Dilworth afgeleid kan worden
uit de stelling van Kénig over maximale koppelingen in bipartiete grafen. De door
ons bewezen minmax relatie heeft gevolgen voor het inbedden van eindige metrische
ruimten in een /;-ruimte met minimale dimensie.

Het derde resultaat van Hoofdstuk II is dat elke collectie deelverzamelingen van
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{1,...,n} zonder paarsgewijs kruisende drietallen hooguit 107 leden heeft. Pevzner
[76] geeft een lang en moeilijk leesbaar argument voor ongeveer dezelfde bewering;
ons bewijs is kort en eenvoudig. De motivatie voor het onderzoek naar collecties
verzamelingen zonder paarsgewijs kruisende drietallen is de Locking Stelling van
Karzanov en Lomonosov [57, 58] over stromen met meerdere goederen. Een bekend
vermoeden van Karzanov en Lomonosov zegt dat een collectie deelverzamelingen van
{1,...,n} zonder paarsgewijs kruisende k-tallen hooguit O(kn) leden heeft.

Uitgangspunt van Hoofdstuk III is de Stabiele-huwelijksstelling van Gale and Shap-
ley. Als in een dorp een man en vrouw elkaar verkiezen boven hun eventuele eigen
huwelijkspartner, dan is de collectie huwelijken binnen dat dorp instabiel. Ontbreekt
zo’n paar potentiéle echtbrekers dan heet de collectie huwelijken stabiel. Gale en Shap-
ley [42] hebben bewezen dat uitgaande van gegeven vaste prioriteiten van elke man en
vrouw binnen een populatie een stabiele collectie huwelijken bestaat. Zij geven ook een
onderhandelingsprocedure van aanzoeken en afwijzingen die tot een stabiele collectie
huwelijken leidt. Deze stabiele-huwelijksproblematiek laat zich natuurlijk makkelijk
vertalen naar andere toewijzingen, zoals studenten aan universiteiten en medewerkers
aan bedrijven. Wat niet zo voor de hand ligt is dat, zoals in dit proefschrift blijkt,
de wiskundige ideéen verder reiken, naar onderwerpen waarbij de analogie niet zo
duidelijk is. Voorbeelden zijn “graafkernen” (van belang in de theorie van de perfecte
grafen), “matroidenkernen” en collecties disjuncte paden.

Een van de belangrijkste bouwstenen van de in Hoofdstuk III ontwikkelde unifi-
cerende theorie is de observatie dat de Stabiele-huwelijksstelling en veel andere be-
staande resultaten, binnen verschillende vakgebieden, afgeleid kunnen worden uit de
bekende dekpuntstelling van Tarski. Deze observatie leidt niet alleen tot eenvoudige
bewijzen van reeds bekende resultaten maar ook tot nieuwe generalisaties in de con-
text van matroiden en ordeningen. Door matroidenkernpolytopen met stelsels lineaire
ongelijkheden te beschrijven, laten we zien dat het mogelijk is om met behulp van
de ellipsoidenmethode over matroidenkernen te optimaliseren. Het bewijs van deze
lineaire beschrijvingen is een nieuwe interessante toepassing van Hoffman’s theorie
van roosterpolyeders.

Ook de topologische dekpuntstelling van Brouwer heeft interessante gevolgen voor
matroidenkernen. We bewijzen dat in situaties algemener dan behandeld met be-
hulp van Tarski’s dekpuntstelling fractionele kernen bestaan. Een voorbeeld is het
probleem van stabiele koppeling van kamergenoten. Omdat in dat probleem de onder-
liggende graaf niet bipartiet hoeft te zijn, is het mogelijk dat er geen stabiel schema
is. Maar een zeker stabiel fractioneel schema bestaat altijd. De lineare beschrijving
van het bipartiete-koppelingspolytoop impliceert dat als de graaf bipartiet is, elk sta-
biel fractioneel schema een convexe combinatie van (geheeltallige) stabiele schema’s
is. Dit levert een interessant nieuw bewijs voor de stelling van Gale en Shapley.

Een gelijksoortige situatie doet zich voor bij matroidenkernen: uit de dekpunt-
stelling van Brouwer volgt het bestaan van een fractionele kern voor elke collectie
matroiden. Gecombineerd met Edmonds’ beschrijving van het matroidenintersectie-
polytoop, volgt daaruit de existentie van een (geheeltallige) kern voor elke collectie
van twee matroiden.

We besluiten Hoofdstuk III met enkele interessante open vragen.









