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We shall use the following notation throughout this note. q is a fixed
prime power and r is a power of q, Fq ≤ Fr are the finite fields with q

and r elements and F q is their algebraic closure.
We shall estimate the size of several finite sets. Besides q, our es-

timates will depend on two positive parameters: N and ε. N will be
used to bound dimensions from above and ε > 0 will control the al-
lowed error in the exponents. N will be a constant, but we may choose
ε depending on q.

1. dimension and complexity

We shall use affine algebraic geometry: all occurring sets will be
subsets of some affine space F q

m
.

Definition 1. A subset S ⊆ F q
m

is Zariski closed, or simply closed,
if it can be defined as the common zero set of some m-variate polyno-
mials. This defines a topology on F q

m
, each subset of F q

m
inherits

this topology, called the Zariski topology. This is the only topology
that we use in this note, so we shall omit the adjective Zariski. The
complements of closed subsets are called open. For an arbitrary subset
X ⊆ F q

m
we shall denote by X the closure of X.

Definition 2. For arbitrary subsets X ⊆ Y ⊆ F q
m

we say that X is
relatively closed in Y if X is the intersection of a closed set and Y , or
equivalently, if X ∩ Y = X.

Definition 3. A subset of F q
m

is locally closed if it is relatively closed
in some open set, i.e. if it is the intersection of a closed and an open set.
A constructible set is the union of finitely many locally closed subsets.
The collection of constructible sets is closed for basic set-operations:
union, intersection, difference.

Definition 4. A constructible set X ⊆ F q
m

is called irreducible if
it has the following property. Whenever we write X as the union of
finitely many relatively closed subsets, one of them must be equal to
X.
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Definition 5. Let X ⊆ F q
m

be a constructible set. We shall consider
chains X0 ( X1 ( . . . Xn where the Xi are nonempty, irreducible,
relatively closed subsets of X. The largest possible length n of such a
chain is called the dimension of X, denoted by dim(X).

Definition 6. Let X ⊆ F q
m

be a constructible set. An affine subspace
is a translate of a linear subspace. We consider affine subspaces L ⊆
F q

m
such that dim(X) = dim(L) and X ∩ L is finite. The degree of

X, denoted by deg(X), is the largest possible number of intersection
points: maxL |X ∩ L|.

Note, that the dimension dim(X) is an internal property of X, but
the degree depends also on the way how X is sitting inside F q

m
(how

much it is curved). E.g. a nonconstant polynomial map f : F q → F q
m

sends a line into a curve (a one dimensional constructible set), the
degree of the image curve can be arbitrary (depending on the map). In
fact, the degree is just the maximum of the degrees of the coordinate
polynomials of f .

Definition 7. Let X ⊆ F q
m

be a constructible set. Then X can be
defined as a Boolean combination of Zariski closed subsets in many
different ways. In fact, there is a “simplest” Boolean combination. Let
X0 = X. By induction on i ≥ 0 we define Yi = Xi, the closure of Xi in
F q

m
, and Xi+1 = Yi \ Xi. Then dim(Yi+1) < dim Yi, hence Yi = ∅ for

i > m. So we get a canonical Boolean combination:

X =

(

(

(

(Y0 \ Y1) ∪ Y2

)

\ Y3

)

∪ Y4

)

\ Y5 . . .

It is not hard to see that the above decomposition can be rewritten as
the union of locally closed sets:

X =
(

Y0 \ Y1

)

∪
(

Y2 \ Y3

)

∪ . . .

We define the complexity

δ(X) = max
{

dim(X), deg(Y0), deg(Y1), deg(Y2), . . .
}

.

Remark 8. Let X be a constructible set. Then dim(X) = 0 iff X is
finite. A finite set X is automatically closed, X = Y0 and all other Yi

is empty, hence deg(X) = δ(X) = |X| in this case.

Definition 9. A constructible set X ⊆ F q
m

is built from closed sub-
sets via set-operations (union,intersection, difference), we use several
polynomials to describe the appearing closed sets. There are many
different ways to build the same X. We say that X is defined over Fr

if there is a way to build it using only polynomials whose coefficients
belong to Fr.
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Remark 10. Fortunately there is a very simple way to detect defin-
ability. Since Fr is a perfect field, X is defined over Fr iff all relative
automorphisms of the field extension F q : Fr carry X into itself. Sim-
ilarly, a morphism is defined over Fr iff it commutes with all of these
field automorphisms. An easy consequence: if the X of Definition 7 is
defined over Fr then so are all the Yi.

Definition 11. There is an important variation on the notion of irre-
ducibility. Suppose that a constructible set X ⊆ F q

m
is defined over

Fr. We say that X is Fr-irreducible if it has the following property:
Whenever we write X as the union of finitely many relatively closed
subsets which are defined over Fr, one of them must be equal to X.

Definition 12. Let X ⊆ F q
m

be a constructible set defined over Fr.
Then there is a unique decomposition into a finite union X =

⋃

i Xi

where Xi are relatively closed, Fr-irreducible subsets defined over Fr.
These Xi are called the Fr-irreducible components of X.

Definition 13. Let X ⊆ F q
m

and Y ⊆ F q
n

be constructible sets. A
function f : X → Y is called a morphism if its graph Γf ⊆ X × Y ⊆

F q
m+n

is constructible. We say that f is defined over Fr if its graph is
defined over Fr. We define an invariant, the complexity of f , denoted
by δ(f): it is simply the complexity of its graph.

Constructible sets form a category with the above notion of mor-
phism. Most of our constructible sets and morphism will be defined
over Fr, either by assumption, or as a consequence of their construc-
tion. As a matter of fact, none of our constructions (e.g. those in
Fact 16) leads out from the category of constructible sets defined over
Fr. Isomorphic constructible sets have equal dimensions. In contrast,
their complexities may not be be equal. The following are well-known:

Fact 14. Let X,Y ⊆ F q
m

be constructible sets defined over Fr.

(a) Any constructible subset of X has dimension at most dim(X).
(b) The Fr-irreducible components Xi ≤ X satisfy

dim(Xi) ≤ dim(X) = max
j

(

dim(Xj)
)

,

deg(Xi) ≤ deg(X) =
∑

j

deg(Xj) ,

δ(Xi) ≤ δ(X) ≤
∑

j

δ(Xj) .

It follows that there are at most δ(X) components and one of
them has the same dimension dim(Xi) = dim(X).



4 LÁSZLÓ PYBER AND ENDRE SZABÓ

(c) The sets X ∪Y , X ∩Y , X \Y and the direct product X ×Y are
also constructible, they are defined over Fr and their complexity
is bounded in terms of δ(X) and δ(Y ).

(d) Suppose that X is Fr-irreducible and Y ⊆ X. Then Y is dense
in X iff any of the following equivalent conditions hold:

dim(Y ) = dim(X) , dim(X \ Y ) < dim(X) .

Moreover, such a Y is also Fr-irreducible.
(e) A direct product of Fr-irreducible constructible sets is again Fr-

irreducible.

Remark 15. Let X be a constructible set defined over Fr and let X ′ ⊆
X an Fr-irreducible component. We apply to X the construction in
Definition 7 and obtain a sequence Yi of closed subsets. It is easy to
see that if we apply the same construction to X ′ then we get the sets
X ′ ∩ Yi. This implies the complexity estimates of Fact 14.(b).

Fact 16. Let X and Y ⊇ T be constructible sets and f : X → F q
n

a morphism, all be defined over Fr. We shall define several subsets of
X and F q

n
. All of them will be constructible of dimension at most

dim(X), defined over Fr, and their complexity will be bounded from
above, and the bounds depend only on δ(X), δ(T ) and δ(f).

(a) The image set f(X) ⊆ Y is constructible. If X is Fr-irreducible
then so is f(X).

(b) For each y ∈ f(X) whose coordinates belong to Fr, the fibre
f−1(y) ⊆ X is constructible with complexity δ

(

f−1(y)
)

≤ δ(f).
The subsets f−1(T ) and X \ f−1(T ) are also constructible. (The
condition y ∈ Fr

n is needed to make f−1(y) be defined over Fr.)
(c) The function y → dim

(

f−1(y)
)

(for y ∈ f(X)) is upper semi-
continuous in the Zariski topology of f(X). In particular, the
subsets of f(X) corresponding to any given fibre dimension are
constructible.

(d) For each y ∈ f(X) we have

dim(X) ≤ dim
(

f(X)
)

+ dim
(

f−1(y)
)

.

Suppose that X is Fr-irreducible. Then those y ∈ f(X) with
minimal dim

(

f−1(y)
)

form a dense, Fr-irreducible constructible
set Ymin ⊆ f(X) (see (c) above and Fact 14.(d)). In this case

dim(X) = dim
(

f(X)
)

+ min
y∈f(X)

dim
(

f−1(y)
)

.

and f−1(Ymin) ⊆ X is also dense and Fr-irreducible.
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Definition 17. For a constructible set X let X(Fq) denote the set of
those points on X whose coordinates belong to Fq.

Remark 18. We shall always use the field Fr to define our constructible
sets. In contrast, we shall use the field Fq for counting the number of
points in certain subsets of X(Fq) where X is some constructible set.

Remark 19. Note, that for dim(X) = 0 one can give an even easier
estimate:

∣

∣X(Fq)
∣

∣ ≤ |X| = δ(X) .

2. Concentration in general

Definition 20. Let α ⊆ Fq
m be a subset. For each constructible set

X ⊆ F q
m

of positive dimension we define the concentration of α in X
as follows:

µ(α,X)
def
=

logq |α ∩ X|

dim(X)

When X ∩ α = ∅, then we set µ(α,X) = −∞.

Corollary 21. Let X ⊆ F q
m

be an infinite constructible set. Then
for all finite subsets α ⊂ Fq

m the concentration µ(α,X) is nonnegative
unless X ∩ α = ∅, and it is bounded from above:

µ(α,X) ≤ logq |Fq
m| = m

Lemma 22. Let Z ⊆ F q
m

be a constructible set defined over Fr with
dim(Z) > 0 and let α ⊆ Fq

m be any subset. Then there is an Fr-
irreducible component Z ′ ⊆ Z such that δ(Z ′) ≤ δ(Z) and at least one
of the following holds:

(1)

{

dim(Z ′) = dim(Z) and

µ(α,Z ′) ≥ µ(α,Z) − logq δ(Z)2

or

(2)







0 < dim(Z ′) < dim(Z) and

µ(α,Z ′) ≥
(

1 + 1
dim(Z)

)

µ(α,Z) − logq δ(Z)2

We note that µ(α,Z ′) ≥ µ(α,Z) − logq δ(Z)2 in both cases.

Proof. The condition δ(Z ′) ≤ δ(Z) is automatic (see Fact 14.(b)). If the
right hand side of (1) is non-positive than we can simply take for Z ′ any
dim(Z)-dimensional Fr-irreducible component of Z (see Fact 14.(b)) So
we shall assume µ(α,Z) > logq δ(Z)2, which implies that

∣

∣α ∩ Z
∣

∣ > δ(Z)2 .
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We decompose Z into Fr-irreducible components. There are at most
δ(Z) components. Hence there is a component Z ′ ⊆ Z with

(3)
∣

∣α ∩ Z ′
∣

∣ ≥
|α ∩ Z|

δ(Z)
.

Since δ(Z ′) ≤ δ(Z) we obtain
∣

∣Z ′
∣

∣ ≥ |Z ′ ∩ α| > δ(Z)2/δ(Z) ≥ δ(Z ′) ,

hence dim(Z ′) > 0 (see Remark 19). We take logarithm of the inequal-
ity (3), divide the two sides by dim(Z ′) and rewrite it in terms of the
concentrations. We get an estimate even better than we promised:

µ(α,Z ′) ≥
dim(Z)

dim(Z ′)
µ(α,Z) −

logq δ(Z)

dim(Z ′)
≥

≥

(

1 +
dim(Z) − dim(Z ′)

dim(Z ′)

)

µ(α,Z) − logq δ(Z) .

Note that 0 < dim(Z ′) ≤ dim(Z) (see Fact 14.(a)), hence our last
inequality implies either (1) or (2). �

Lemma 23. For each d > 0 there is a bound B2 = B2(d) with the
following property. Let Z ⊆ X be constructible sets and f : X → F q

m

be a morphism with δ(Z) ≤ d, δ(f) ≤ d and dim
(

f(Z)
)

> 0. Suppose,
that X, Z and f are defined over Fr and Z is Fr-irreducible. Then for
all finite subsets α ⊆ X(Fq) and for all values ε ≥ 0 either

(4) µ
(

f(α), f(Z)
)

≥ µ(α,Z) − logq B2 − ε · dim(Z)

or there is a constructible subset S ⊂ Z defined over Fr such that
δ(S) ≤ B2, 0 < dim(S) < dim(Z) and

(5) µ(α, S) ≥ µ(α,Z) − logq B2 + ε .

Note, that the condition dim
(

f(Z)
)

> 0 implies that dim(Z) > 0,
hence the concentrations appearing in the lemma are defined.

Proof. If Z∩α = ∅ then (4) holds automatically since the left hand side
is −∞. So we shall assume Z∩α 6= ∅. This implies that f(α)∩f(Z) 6= ∅
hence the left hand side of (4) is nonnegative.

First we prove the lemma with some bound B′

2 in the special case
when all fibres of f have the same dimension, i.e.

(6) dim
(

f−1(t)
)

= dim(Z) − dim
(

f(Z)
)

for all t ∈ f(Z) (see Fact 16.(d)). In this case we get:
∣

∣α ∩ Z
∣

∣ =
∑

t∈f(Z)

∣

∣α ∩ f−1(t)
∣

∣ ≤
∣

∣f(α) ∩ f(Z)
∣

∣ · max
t∈f(Z)

∣

∣α ∩ f−1(t)
∣

∣
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We shall fix a value t ∈ f(Z) where
∣

∣α ∩ f−1(t)
∣

∣ is maximal, and de-
fine S = f−1(t). Since Z ∩ α 6= ∅, our t must lie in f(α), hence its
coordinates belong to Fq ≤ Fr. This ensures us that S is constructible
and defined over Fr (see Fact 16.(b)). The equation (6) implies that
dim(S) = dim(Z) − dim

(

f(Z)
)

< dim(Z). We distinguish two possi-
bilities. If dim(S) > 0, then we rewrite the previous inequality with
the new notation:

∣

∣α ∩ Z
∣

∣ ≤
∣

∣f(α) ∩ f(Z)
∣

∣ ·
∣

∣α ∩ S
∣

∣

We take logarithm of our inequality and rewrite it in terms of the
concentrations:

µ(α,Z) · dim(Z) ≤ µ
(

f(α), f(Z)
)

· dim(f(Z)) + µ
(

α, S
)

· dim(S)

We divide both sides by dim(Z) and we introduce extra ε-terms on the
right hand side which cancel each other:

µ(α,Z) ≤

≤
[

µ
(

f(α), f(Z)
)

+ε dim(S)
]dim(f(Z))

dim(Z)
+

[

µ
(

α, S
)

−ε dim(f(Z))
]dim(S)

dim(Z)

We recall (6), i.e. that dim(Z) = dim(f(Z)) + dim(S). Therefore we
see a weighted arithmetic mean on the right hand side. Either

µ(α,Z) ≤ µ
(

f(α), f(Z)
)

+ ε dim(S) ≤ µ
(

f(α), f(Z)
)

+ ε dim(Z)

or
µ(α,Z) ≤ µ

(

α, S
)

− ε dim(f(Z)) ≤ µ
(

α, S
)

− ε ,

hence either (4) or (5) holds even without the error term logq B2. The
special case of the lemma is proven for the case dim(S) > 0. On the
other hand, if dim(S) = 0 then all fibres of f are finite, and the number
of points in each fibre is at most δ(f) ≤ d (see Fact 16.(b)). Hence

µ
(

f(α), f(Z)
)

≥
logq

∣

∣f(α ∩ Z)
∣

∣

dim
(

f(Z)
) ≥

logq

(

∣

∣α ∩ Z
∣

∣

/

δ(f)
)

dim(Z)
≥

≥
logq

∣

∣α ∩ Z
∣

∣ − logq d

dim(Z)
≥ µ(α,Z) − logq d ,

hence (4) holds for any B2 ≥ d. The special case of the lemma is proven
with the bound B′

2 = max(2, d).
Next we prove the lemma in full generality with a slightly larger

bound B2 = B2(d,B′

2). If µ(α,Z) ≤ logq B2 then the inequality (4) is
automatic since the right hand side is nonpositive and the left hand side
is nonnegative. So we shall assume µ(α,Z) > logq B2 which implies

(7)
∣

∣α ∩ Z
∣

∣ > B2 .
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We define the following subset:

T =
{

t ∈ f(Z)
∣

∣

∣
dim

(

f−1(t)
)

= dim(Z) − dim
(

f(Z)
)

}

.

It follows from Fact 16.(b) and (c) that T and Z ′ = f−1(T ) are con-
structible sets defined over Fr and their complexity is bounded in terms
of d. Moreover, the irreducibility of Z implies that f(Z) is irreducible
(see Fact 16.(a)), and T ⊆ f(Z) and Z ′ ⊆ Z are both Fr-irreducible
dense subsets (see Fact 16.(d)). In particular, dim(Z) = dim(Z ′) and
dim

(

f(Z ′)
)

= dim(T ) = dim
(

f(Z)
)

≥ 1 (see Fact 14.(d)). First we

deal with the case |Z ′ ∩ α| ≥
∣

∣Z ∩ α
∣

∣/2. Then

µ(Z ′, α) =
logq

∣

∣α ∩ Z ′
∣

∣

dim(Z ′)
≥

logq

∣

∣α ∩ Z
∣

∣ − logq 2

dim(Z)
≥ µ(Z, α) − logq 2 .

We can apply the lemma to Z ′ (which we established at the beginning),
hence we get either

µ
(

f(α), f(Z)
)

≥ µ
(

f(α), f(Z ′)
)

≥ µ(α,Z ′) − logq B′

2 − ε · dim(Z ′) ≥

≥ µ(α,Z)−logq 2−logq B′

2−ε·dim(Z ′) = µ(α,Z)−logq(2B
′

2)−ε·dim(Z)

or there is an S ⊂ Z ′ defined over Fr such that δ(S) ≤ B′

2, 0 <
dim(S) < dim(Z ′) = dim(Z) and

µ(α, S) ≥ µ(α,Z ′) − logq B′

2 + ε ≥ µ(α,Z) − logq 2 − logq B′

2 + ε =

= µ(α,Z) − logq(2B
′

2) + ε .

hence the lemma holds in this case. In the remaining case we have
∣

∣Z ′ ∩ α
∣

∣ <
∣

∣Z ∩ α
∣

∣/2. Now we set S = Z \ Z ′. Then δ(S) is bounded
(see Fact 16.(b)), dim(S) < dim(Z) by the density (see Fact 14.(d)).
By the inequality (7) the set S has at least |S ∩α| ≥ |α∩Z|/2 ≥ B2/2
points. If we choose B2 > δ(S) then dim(S) > 0 (see Remark 19),
hence µ(α, S) is defined and we can write:

µ(α, S) =
logq |S ∩ α|

dim(S)
≥

logq |Z ∩ α| − logq 2

dim(S)
≥

≥
dim(Z)

dim(S)
µ(α,Z) −

logq 2

dim(S)
≥ µ(α,Z) − logq 2 +

µ(α,Z)

dim(S)
≥

≥ µ(α,Z) − logq 2 +
µ(α,Z)

dim(Z)
.

We compare now the last term to ε. If ε ≤ µ(α,Z)
dim(Z)

then we can replace

the last term with ε which proves the inequality (5) for any B2 ≥ 2 in

this case. On the other hand, for larger ε, i.e. when ε > µ(α,Z)
dim(Z)

, the
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inequality (4) holds, since its right hand side becomes negative. We
proved the lemma in all cases. �

3. Constructible sets in groups

Definition 24. G ≤ GL(N, F q) will denote a closed subgroup of the
general linear group defined over Fr. For simplicity, we shall say that
“G is a linear algebraic group over Fr”. We use this matrix realisation
of G to calculate complexities of constructible subsets. We shall use
the notation

repdim(G) = N2

As usual, 〈A〉, NG(A) and CG(A) will denote the generated subgroup,
the normaliser and the centraliser of a subset A ⊆ G. We shall often
use products of several elements and subsets in the usual sense. In
order to distinguish from this kind of product, the n-fold direct product
of a subset α ⊆ G is denoted by

∏nα ⊆ Gn. For each sequence
g = (g1, g2, . . . gn) ∈ Gn we define the morphism

τg : Gn+1 → G : τg(a0, a1, . . . an) = a0g1a1g2a2 . . . gnan

We denote by ∆(G) the largest of the complexities of the variety G and
of the maps τ(h) for all h ∈ G. Then the complexity of the more general
τg can be bounded from above in terms of ∆(G) and the length of the
sequence g. Closed subgroups of G can be very complicated. In con-
trast, cosets of normaliser or centraliser subgroups are defined by linear
equations, hence they are automatically closed and their complexity is
at most ∆(G). The subset G(Fq) is a finite subgroup.

Fact 25. Let G be a linear algebraic group and X ≤ G a constructible
subset. Then the generated subgroup 〈X〉 ≤ G is a closed subgroup. If
X is irreducible then 〈X〉 is connected. It follows from Corollary 21
that for all finite sets α ⊆ G(Fq) we have

µ(α,X) ≤ repdim(G) .

Lemma 26. Let G be a linear algebraic group and A,B ⊆ G nonempty
constructible sets. Suppose that dim(A) = dim(AgB) for some element
g ∈ G. Then there are connected closed subgroups K ≤ H ≤ G of
dimension dim(B) ≤ dim(K) ≤ dim(H) ≤ dim(A) such that

(8)
{

m ∈ G
∣

∣ dim(AmB) = dim(A)
}

⊆ g
{

n ∈ G
∣

∣ nKn−1 ≤ H
}

.

In particular, if dim(A) = dim(B) then K = H and on the right hand
side we see a coset of the normaliser NG(H).

Remark 27. In fact for dim(A) = dim(B), with a little extra work, one
can prove equality in (8), but we do not need this.
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Proof. Let A′ ⊆ A and B′ ⊆ B be irreducible components such that
dim(A′) = dim(A) and dim(B′) = dim(B). We shall define

H =
{

h ∈ G
∣

∣ A′gh = A′g
}

,

it is certainly a closed subgroup. Let us pick elements a ∈ A′g and
b ∈ B′. Then 1 ∈ a−1A′g and 1 ∈ B′b−1. On the one hand

H ⊆ a−1A′gH = a−1A′g

implies that dim(H) ≤ dim(A). On the other hand we may consider
the following constructible subsets:

A′g ⊆ (A′g) · (B′b−1) ⊆ A′gB′b−1 ⊆ (A′gB′) · b−1 .

The first one and the last one are is irreducible closed sets of dimension
dim(A) (see Fact 14.(e) and Fact 16. (a)), hence all of these sets are
equal. But then A′g = (A′g) · (B′b−1), therefore

B′b−1 ⊆ H

Let K denote the closed subgroup generated by B′b−1, it is connected
because B′ is irreducible, and the above formula shows that K ≤ H.
The dimension requirements are also satisfied:

dim(B) = dim(B′b−1) ≤ dim(K) ≤ dim(H) ≤ dim(A) .

Suppose now, that dim
(

A(gn)B
)

= dim(A) for certain ñ ∈ G. We can
repeat the whole argument for ñB′ and ñb in the role of B′ and b, then
ñBb−1ñ−1 ⊆ ñKñ−1 will play the role of B′b−1 ⊆ K but the definition
of H remains unaffected. Hence the closed subgroup ñKñ−1 is also in
H. Therefore

ñ ∈
{

n ∈ G
∣

∣ nKn−1 ≤ H
}

as we promised in (8). Finally, if dim(A) = dim(B) then we have two
connected closed subgroups K ≤ H of equal dimension, hence they are
equal. �

Corollary 28. Let G be a linear algebraic group over Fr and let 1 ∈
α ⊆ G(Fq) be a generating set. Suppose that G(Fq) does not nor-
malise any closed subgroup H < G with 0 < dim(H) < dim(G).
Then for each infinite constructible subset Y ⊂ G and for all integers
n ≥ 2dim(G)−dim(Y ) − 1 there is a sequence g = (g1, g2, . . . gn) ⊆

∏nα of
generators such that the product set

τg

(
∏n+1Y

)

= Y g1Y g2Y . . . gnY

has dimension dim(G).
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Proof. If A,B ⊆ G are constructible sets and b ∈ B then dim(AB) ≥
dim(Ab) = dim(A). Hence if a sequence g satisfies the lemma, then
so do those sequences which contain g as a subsequence. So we may

assume n = 2dim(G)−dim(Y ) − 1. We shall prove by downward induction
on dim(Y ). If dim(Y ) = dim(G) then n = 0 and τg is just the inclusion

Y →֒ G so there is nothing to prove. Let us assume that dim(Y ) <
dim(G) and the lemma holds for subsets of larger dimension.

Our first goal is to find an element g ∈ α such that dim(Y gY ) >
dim(Y ). Let us start with g = 1 ∈ α. If dim(Y gY ) > dim(Y ) then
we keep this g, otherwise we are going to replace it with a better one.
Let us apply Lemma 26 to A = B = Y , we get a closed subgroup
H. Since dim(Y ) = dim(H) < dim(G), our conditions imply that
G(Fq) 6⊆ NG(H). Therefore α 6⊆ NG(H) and there is an element g′ ∈ α
such that g′ /∈ 1 ·NG(H). We replace g with this g′, this way we achieve
that dim(Y gY ) > dim(Y ) in all cases.

Now we can apply the induction hypotheses to the set Y gY , hence
get a sequence (h1, h2, . . . hm) ⊆

∏mα with m = 2dim(G)−dim(Y )−1 − 1
such that the product set

(Y gY )h1(Y gY )h2 . . . hm(Y gY )

has dimension dim(G). This is a product of the required form, the
corollary is proved. �

Lemma 29. Let G be a linear algebraic group and Z ⊆ G × G a
nonempty constructible set. Suppose that τ(g)(Z) has dimension 0 for
some element g ∈ G, i.e. it is a finite set. Then there is a constructible
subset A ⊆ G such that dim(A) = dim(Z) and

(9)
{

c ∈ G
∣

∣

∣
dim

(

τ(c)

(

Z
)

)

= 0
}

= CG

(

A
)

g

Proof. Let Z =
⋃

i Zi be the decomposition of Z into irreducible compo-
nents. By assumption τ(g)(Zi) is finite and irreducible (see Fact 16.(a)),
hence it is a single point zi ∈ G. Let pr1 : G × G denote the projec-
tion on the first factor. We choose an element ai ∈ pr1(Zi), and set
Ai = a−1

i pr1(Zi), bi = a−1
i zi. This Ai is irreducible and by definition

1 ∈ Ai. Then each point of Zi has the form (aih, β) with some h ∈ Ai

and β ∈ G, and for all h ∈ Ai must exists at least one such point. But
then

zi = τ(g)(aih, β) = aihgβ

hence

β = g−1h−1a−1
i zi = g−1h−1bi
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is the only possible choice for β. Therefore

Zi =
{

(

aih, g−1hbi

)

∣

∣

∣
h ∈ Ai

}

and the map
Ai → Zi , h →

(

aih, g−1hbi

)

is a one-to-one morphism. In particular dim(Zi) = dim(Ai). Hence

τ(c)(Z) =
⋃

i

{

(aih)c(g−1h−1bi)
∣

∣

∣
h ∈ Ai

}

=

=
⋃

i

ai

{

h(cg−1)h−1)
∣

∣

∣
h ∈ Ai

}

bi

for all c ∈ G. This has dimension 0 iff the
{

h(cg−1)h−1
∣

∣h ∈ Ai

}

is

finite for all i. But Ai is irreducible, hence its image
{

h(cg−1)h−1
∣

∣h ∈

Ai

}

is also irreducible (see Fact 16.(a)), so it is finite iff it is a single
point, i.e. iff h(cg−1)h−1 is independent of h ∈ Ai. But 1 ∈ Ai, hence
this last condition is equivalent to h(cg−1)h−1 = cg−1 for all h ∈ Ai,
which simply means that cg−1 commutes with all h ∈ Ai for all i, i.e.
cg−1 ∈ CG(∪iAi). This proves the lemma for A = ∪iAi, since

dim(A) = max
i

(

dim(Ai)
)

= max
i

(

dim(Zi)
)

= dim(Z) .

�

Corollary 30. Let G be a linear algebraic group over Fr and let 1 ∈
α ⊆ G(Fq) be a generating set. Suppose that the centraliser of G(Fq) in
G is finite. Then for each infinite constructible subset Z ⊂ Gn+1 (with
n ≥ 0) there is a sequence g = (g1, g2, . . . gn) ∈

∏nα of generators such
that image set τg(Z) has positive dimension.

Proof. We shall prove the theorem by induction on n. For n = 0 the
statement is obvious. So let n ≥ 1 and we assume that the corollary
holds for smaller number of factors. We define several morphisms. For
all g ∈ G let

σg : Gn+1 → Gn , σg(a0, a1, . . . an) = (a0ga1, a2, a3, . . . an)

and let

π : Gn+1 → Gn−1 , π(a0, a1, . . . an) = (a2, a3, . . . an) ,

ρ : Gn → Gn−1 , ρ(a1, . . . an) = (a2, a3, . . . an) .

For n = 1 we use the convention that G0 a single point. Note, that these
morphisms manipulate only the first two coordinates. In particular

ρ
(

σg(x)
)

= π(x) for all x ∈ Gn+1 .
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Our goal is to find a generator g ∈ α such that

(10) dim
(

σg(Z)
)

> 0 .

Then we can use the induction hypotheses for σg(Z) ⊆ Gn, and this
proves the corollary for Z as well.

We distinguish two cases. Suppose first that for all z ∈ Gn−1 the sub-
set Z ∩ π−1(z) is finite (i.e. 0 dimensional). Then dim(Z) = dim π(Z)
is positive (see Fact 16.(d)). But

dim(Z) ≥ dim
(

σg(Z)
)

≥ dim
(

ρ
(

σg(Z)
))

= dim
(

π(Z)
)

hence all these dimensions are equal. Hence (10) is achieved, the corol-
lary holds in this case.

Suppose next that there is a point z ∈ Gn−1 such that Z ′ = Z∩π−1(z)
has positive dimension. For simplicity we shall identify the subset
π−1(z) = G2 × {z} ⊂ Gn+1 with G2 and also ρ−1(z) = G × {z} ⊂ Gn

with G. With these identification we have

σg(x) = τ(g)(x) for all x ∈ G2 and all g ∈ G .

Let us start with g = 1 ∈ α. If σ1(Z
′) = τ(1)(Z

′) has positive dimension
then we keep this g, otherwise we are going to replace it with a better
one. We apply Lemma 29 to our Z ′ and the “bad” g = 1, and get an
infinite subset A ≤ G. Then A does not centralise G(Fq), hence there is
a generator g′ ∈ α which does not commute with A, i.e. g′ /∈ CG(A) · 1.
We replace g by this g′, then τ(g)(Z

′) = σg(Z
′) has positive dimension

in this case as well. But then the larger set σg(Z) ⊇ σz(Z
′) has positive

dimension as well. In all cases we proved (10), hence the corollary is
true. �

Question 31. Let Z ⊆ G × G a constructible set, pr2(Z) ⊆ G denote
its projection on the second factor. Then

dim
(

τ(g)(Z)
)

≥ dim(Z) − dim
(

pr2(Z)
)

.

What can we say if it is an equality and Z is irreducible?

4. spreading large concentration in a group

Lemma 32. For all d > 0 and n > 0 there is a bound K2 = K2(n, d)
with the following property. Let G be a linear algebraic group over Fr

with ∆(G) ≤ d and 1 ∈ α ⊆ G(Fq) a generating set. Suppose that the
centraliser of G(Fq) in G is finite. Then for all constructible subset
Z ⊂ Gn+1 defined over Fr such that dim(Z) > 0 and δ(Z) ≤ d there
is a constructible subset Y ⊆ G defined over Fr with dim(Y ) > 0,
δ(Y ) ≤ K2 and

µ
(

α2n+1, Y
)

≥ µ
(
∏n+1α,Z

)

− logq K2 .
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Proof. We prove the lemma by induction on dim(Z) so we assume it
holds in dimensions smaller than dim(Z) with some bound K ′

2(n, d).
By Lemma 22 there is an Fr-irreducible component Z ′ ⊆ Z with large
concentration:

µ(
n+1
∏

α,Z ′) ≥ µ(
n+1
∏

α,Z) − logq δ(Z)2 .

We may simply replace Z with this component, so from now on Z is
Fr-irreducible. Corollary 30 gives us a sequence g = (g1, g2, . . . gn) ∈
∏n+1α such that τg(Z) has positive dimension. It is clear, that δ(τg)

has an upper bound depending only on ∆(G) ≤ d and n, let D =
D(d, n) denote larger of this bound and d.

We use Lemma 23. for the two constructible sets Z ⊆ X = Gn+1, the
morphism f = τg, the finite set

∏n+1α (denoted by α in Lemma 23.)

and ε = 0. We note, that f
(
∏n+1α

)

⊆ α2n+1. There are two possible
outcomes. In case of Lemma 23.(4) we have a constructible subset
T ⊆ G with dim(T ) > 0, δ(T ) ≤ B2(D) and

µ
(
∏n+1α,Z

)

− logq B2(D) ≤ µ
(

f
(
∏n+1α

)

, T
)

≤ µ
(

α2n+1, T
)

hence the lemma holds now with Y = T and any K2 ≥ B2(D). In case
of Lemma 23.(5) we have a constructible subset S ⊆ Z ⊆ Gn+1 with
0 < dim(S) < dim(Z), δ(S) ≤ B2(D) and

µ(
∏n+1α, S) ≥ µ(

∏n+1α,Z) − logq B2(D) .

We set K ′′

2 = K ′

2

(

n,B2(D)
)

and apply the induction hypothesis to this
S. This gives us a constructible set Y ⊆ G such that dim(Y ) > 0,
δ(Y ) ≤ K ′′

2 and

µ(α2n+1, Y ) ≥ µ(
∏n+1α, S) − logq K ′′

2 ≥

≥ µ(
∏n+1α,Z) − logq

(

B2(D)K ′′

2

)

,

the lemma holds again with the bound K2 = B2(D)K ′′

2 . �

Lemma 33. For all values d > 0, N > 0 and 0 < κ < 1 there are
constants K1 = K1(N, d, κ) > 0 and λ = λ(N, κ) > 1 with the following
property. Let G be a linear algebraic group over Fr with dim(G) ≤
log2 N , ∆(G) ≤ d and 1 ∈ α ⊆ G(Fq) be a generating set. Suppose
that G(Fq) does not normalise any closed subgroup H < G with 0 <
dim(H) < dim(G) and the centraliser of G(Fq) in G is finite. Then for
all constructible subsets Y ⊂ G defined over Fr such that dim(Y ) > 0,
δ(Y ) ≤ d and

(11) µ(α, Y ) ≥ logq K1
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there is a constructible set T ⊆ G defined over Fr such that δ(T ) ≤ K1

and at least one of the following holds:

(12) dim(T ) = dim(G) and µ
(

α2N−1, T
)

≥ κ · µ(α, Y )

or

(13) dim(G) > dim(T ) > 0 and µ
(

α2N−1, T
)

≥ λ · µ(α, Y ) .

Proof. By using Lemma 22, as in the proof of Lemma 32, we may
assume that Y is Fr-irreducible. We apply Corollary 28. for n = N −1
and the subset Y , this gives us a sequence g = (g1, g2, . . . gn) ∈

∏nα

of generators such that the image set τg(
∏NY ) ⊆ G has dimension

dim(G). Next we apply Lemma 23. to the subsets X = GN and

Z =
∏NY , the morphism f = τg, the finite set

∏Nα (denoted by α in

Lemma 23.) and we set

ε = (1 − κ) ·
µ(α, Y )

N dim(G)
.

Since Y is Fr-irreducible, Z is also Fr-irreducible (see Fact 16.(e)). In
this setup δ(Z) = δ(Y )N ≤ dN and δ(f) ≤ ∆(G)N−1 ≤ dN . Therefore
the prerequisites of the Lemma 23 are satisfied with the bound dN

(which is denoted there by d) hence the inequalities 23.(4) and 23.(5)
are valid with B2 = B2(d

N). We define

K1 = B
2N dim(G)/(1−κ)
2 ≥ B2

then the error term of 23.(4) and 23.(5) can be written, using (11), as

logq B2 =
1 − κ

2N dim(G)
· logq K1 ≤

1 − κ

2N dim(G)
· µ(α, Y ) = ε/2

Moreover, µ
(
∏Nα,Z

)

= µ(α, Y ) and f
(
∏Nα

)

⊆ α2N−1. In Lemma 23
there are two possible scenarios. I case of 23.(4) we define T = f(Z),
then dim

(

f(Z)
)

= dim(G) by the definition of f = τg and we have

µ
(

α2N−1, T
)

≥ µ
(

f
(
∏Nα

)

, f(Z)
)

≥

≥ µ
(
∏Nα,Z

)

−logq B2−ε·dim(Z) ≥ µ(α, Y )−ε/2−ε·
(

N dim(G)−N
)

≥

≥ µ(α, Y ) − ε · N dim(G) = κ · µ(α, Y )

which is nothing but the inequality (12). In case of 23.(5) we have a
subset S ⊆ GN with dim(S) > 0, δ(S) ≤ B2.

µ
(
∏Nα, S

)

≥ µ
(
∏Nα,Z

)

− logq B2 + ε ≥

≥ µ(α, Y ) + ε/2 =

(

1 +
1 − κ

2N dim(G)

)

· µ(α, Y ) .
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We combine this with (11):

µ
(
∏Nα, S

)

≥

(

1 +
1 − κ

4N dim(G)

)

· µ(α, Y ) +
1 − κ

4N dim(G)
logq K1 .

We apply Lemma 32. to Z = S, n = N − 1, and for the value denoted
by d in the lemma we set D = max(dN , B2). Then in the inequalities
we have to use K2 = K2(D). The Lemma 32. gives us a subset T ⊆ G
(denoted by Y in that lemma) with dim(T ) > 0, δ(T ) ≤ K2

µ(α2N−1, T ) ≥ µ
(
∏Nα, S

)

− logq K2 ≥

≥

(

1 +
1 − κ

4N dim(G)

)

· µ(α, Y ) +

[

1 − κ

4N dim(G)
logq K1 − logq K2

]

.

We collected the two error terms in the square bracket, we wish to make
it positive (which allows to omit it). If we choose sufficiently large K1

then the positive term will overcome the other one, hence (13) holds
with any

λ ≤

(

1 +
1 − κ

4N dim(G)

)

.

�

Theorem 34. For all values d > 0, n > 0 and 0 < κ < 1 there are
bounds M = M(n, κ) and K3 = K3(n, d, κ) > 0 with the following
property. Let G be a linear algebraic group over Fr with dim(G) ≤ n
and ∆(G) ≤ d. Suppose that G(Fq) does not normalise any closed
subgroup H < G with 0 < dim(H) < dim(G) and the centraliser of
G(Fq) in G is finite. If 1 ∈ α ⊆ G(Fq) is a generating set and X ⊂ G
is an infinite constructible subset defined over Fr such that

δ(X) ≤ d and µ(α,X) > logq K3

then
µ
(

αM , G
)

≥ κ · µ(α,X) .

Note, that the conditions imply that X ∩ α ⊆ G(Fq) is large, hence
q must also be large.

Proof of Theorem 34. With an induction on i ≥ 0 we shall define in-
tegers Mi, real numbers di > 0 and constructible subsets Ti ⊆ G such
that such that dim(Ti) > 0,

(14) δ(Ti) ≤ di and µ
(

αMi , Ti) ≥ λi · µ(α,X)

for some fixed λ > 1. Let I be the smallest integer such that λI >
dim(G), and let M = MI . We shall run the induction for at most I
steps. We start with M0 = 1, d0 = d and T0 = X. In the i-th step, for
i ≤ I, we shall use Lemma 33. with the values d = di−1, N = 2n and
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our κ. We always get the same λ = λ(N, κ) > 1, this is the λ we use
in (14). We define di = K1(di−1, κ), Mi = (2N − 1)Mi−1 = (2N − 1)i.
We apply this Lemma 33. to the generating set αMi−1 and to the
constructible set Y = Ti−1, we get a new constructible set T . On the
one hand, if this T satisfies (12) then we stop the induction. Now i ≤ I,
so M ≥ Mi and

µ
(

αM , G
)

≥ µ
(

αMi , T
)

≥ κ · µ
(

αMi−1 , Ti−1

)

≥

≥ κλi−1 · µ(α,X) ≥ κ · µ(α,X) .

This proves the Theorem in this case. On the other hand, if T satisfies
(13), then we define Ti+1 = T , which satisfies (14). If i < I then we go
on with the induction, if i = I the we stop, and use (14) for i = I to
prove the theorem:

µ
(

αM , G
)

≥
dim(TI)

dim(G)
· µ

(

αM , TI

)

≥

≥
1

dim(G)
· λI · µ

(

α,X
)

≥ µ
(

α,X
)

.

�

We can reformulate Theorem 34. using the number of generators
instead of the concentrations:

Corollary 35. For all values d > 0, n > 0 and 0 < κ < 1 the bounds
K3 = K3(n, d, κ) and M = M(n, κ) of Theorem 34. has the following
property. Let G be a linear algebraic group over Fr with dim(G) ≤ n
and ∆(G) ≤ d. Suppose that G(Fq) does not normalise any closed
subgroup H < G with 0 < dim(H) < dim(G) and the centraliser of
G(Fq) in G is finite. If 1 ∈ α ⊆ G(Fq) is a generating set and X ⊂ G
is an infinite constructible subset defined over Fr such that

δ(X) ≤ d and
∣

∣α ∩ X
∣

∣ > K
dim(X)
3

then
∣

∣αM
∣

∣ ≥
∣

∣α ∩ X
∣

∣

κ·dim(G)/ dim(X)
.

�


