GENERATING SIMPLE GROUPS

LASZLO PYBER AND ENDRE SZABO

work in progress, December 14, 2009

We shall use the following notation throughout this note. ¢ is a fixed
prime power and r is a power of ¢, F, <, are the finite fields with ¢
and r elements and F, is their algebraic closure.

We shall estimate the size of several finite sets. Besides ¢, our es-
timates will depend on two positive parameters: N and €. N will be
used to bound dimensions from above and ¢ > 0 will control the al-
lowed error in the exponents. N will be a constant, but we may choose
¢ depending on q.

1. DIMENSION AND COMPLEXITY

We shall use affine algebraic geometry: all occurring sets will be
subsets of some affine space Iqu.

Definition 1. A subset S C qu is Zariski closed, or simply closed,
if it can be defined as the common zero set of some m-variate polyno-
mials. This defines a topology on qu, each subset of qu inherits
this topology, called the Zariski topology. This is the only topology
that we use in this note, so we shall omit the adjective Zariski. The
complements of closed subsets are called open. For an arbitrary subset
X C ?qm we shall denote by X the closure of X.

Definition 2. For arbitrary subsets X C Y C qu we say that X is
relatively closed in Y if X is the intersection of a closed set and Y, or
equivalently, if X NY = X.

Definition 3. A subset of qu is locally closed if it is relatively closed
in some open set, i.e. if it is the intersection of a closed and an open set.
A constructible set is the union of finitely many locally closed subsets.
The collection of constructible sets is closed for basic set-operations:
union, intersection, difference.

Definition 4. A constructible set X C ﬁqm is called irreducible if
it has the following property. Whenever we write X as the union of

finitely many relatively closed subsets, one of them must be equal to

X.
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Definition 5. Let X C qu be a constructible set. We shall consider
chains Xg € X; C ... X, where the X; are nonempty, irreducible,
relatively closed subsets of X. The largest possible length n of such a
chain is called the dimension of X, denoted by dim(X).

Definition 6. Let X C qu be a constructible set. An affine subspace
is a translate of a linear subspace. We consider affine subspaces L C
T,” such that dim(X) = dim(L) and X N L is finite. The degree of
X, denoted by deg(X), is the largest possible number of intersection
points: maxy, |X N L.

Note, that the dimension dim(X) is an internal property of X, but
the degree depends also on the way how X is sitting inside qu (how
much it is curved). E.g. a nonconstant polynomial map f : Fq — qu
sends a line into a curve (a one dimensional constructible set), the
degree of the image curve can be arbitrary (depending on the map). In
fact, the degree is just the maximum of the degrees of the coordinate

polynomials of f.

Definition 7. Let X C qu be a constructible set. Then X can be
defined as a Boolean combination of Zariski closed subsets in many
different ways. In fact, there is a “simplest” Boolean combination. Let
X()m: X. By induction on ¢ > 0 we define Y; = X, the closure of X; in

F, ,and X;;; =Y;\ X;. Then dim(Y;41) < dimYj;, hence Y; = 0 for
7 > m. So we get a canonical Boolean combination:

X = ((((%\m)un)\%)un)\%...

It is not hard to see that the above decomposition can be rewritten as
the union of locally closed sets:

X = (¥ \ Y1) U(%\ ¥) U...
We define the complexity
6(X) = max { dim(X), deg(Yp), deg (Y1), deg(Y2), ... } .

Remark 8. Let X be a constructible set. Then dim(X) = 0 iff X is
finite. A finite set X is automatically closed, X = Y; and all other Y;
is empty, hence deg(X) = §(X) = | X| in this case.

Definition 9. A constructible set X C qu is built from closed sub-
sets via set-operations (union,intersection, difference), we use several
polynomials to describe the appearing closed sets. There are many
different ways to build the same X. We say that X is defined over F,
if there is a way to build it using only polynomials whose coefficients
belong to F,.
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Remark 10. Fortunately there is a very simple way to detect defin-
ability. Since FF, is a perfect field, X is defined over F, iff all relative
automorphisms of the field extension Fq : F, carry X into itself. Sim-
ilarly, a morphism is defined over FF,. iff it commutes with all of these
field automorphisms. An easy consequence: if the X of Definition 7 is
defined over F, then so are all the Y.

Definition 11. There is an important variation on the notion of irre-
ducibility. Suppose that a constructible set X C qu is defined over
F.. We say that X is [F.-irreducible if it has the following property:
Whenever we write X as the union of finitely many relatively closed
subsets which are defined over FF,, one of them must be equal to X.

Definition 12. Let X C qu be a constructible set defined over F,.
Then there is a unique decomposition into a finite union X = (J, X;
where X; are relatively closed, FF,-irreducible subsets defined over F,.
These X; are called the F,.-irreducible components of X.

Definition 13. Let X C qu and Y C Fqn be constructible sets. A
function f : X — Y is called a morphism if its graph I'y € X x Y C

qu+n is constructible. We say that f is defined over IF,. if its graph is
defined over [F,. We define an invariant, the complezity of f, denoted
by 6(f): it is simply the complexity of its graph.

Constructible sets form a category with the above notion of mor-
phism. Most of our constructible sets and morphism will be defined
over IF,., either by assumption, or as a consequence of their construc-
tion. As a matter of fact, none of our constructions (e.g. those in
Fact 16) leads out from the category of constructible sets defined over
[F,.. Isomorphic constructible sets have equal dimensions. In contrast,
their complexities may not be be equal. The following are well-known:

Fact 14. Let X,Y C qu be constructible sets defined over FF,.

(a) Any constructible subset of X has dimension at most dim(X).
(b) The F.-irreducible components X; < X satisfy

dim(X;) < dim(X) = max (dim(X;)) ,
deg(X;) < deg(X) =} deg(X;) ,

5(X0) < (%) < 3 0(X;) |
J
It follows that there are at most 0(X) components and one of
them has the same dimension dim(X;) = dim(X).
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(c) The sets XUY, XNY, X \Y and the direct product X xY are
also constructible, they are defined over I, and their complexity
is bounded in terms of 5(X) and §(Y).

(d) Suppose that X is F.-irreducible and Y C X. Then'Y is dense
in X iff any of the following equivalent conditions hold:

dim(Y) = dim(X), dim(X \Y) < dim(X) .

Moreover, such a'Y is also IF,.-irreducible.
(e) A direct product of F,.-irreducible constructible sets is again F,-
irreducible.

Remark 15. Let X be a constructible set defined over F, and let X’ C
X an F,-irreducible component. We apply to X the construction in
Definition 7 and obtain a sequence Y; of closed subsets. It is easy to
see that if we apply the same construction to X’ then we get the sets
X' NY;. This implies the complexity estimates of Fact 14.(b).

Fact 16. Let X and Y O T be constructible sets and f : X — Fqn
a morphism, all be defined over F,.. We shall define several subsets of
X and Fqn. All of them will be constructible of dimension at most
dim(X), defined over F., and their complexity will be bounded from
above, and the bounds depend only on 0(X), §(T) and §(f).

(a) The image set f(X) CY is constructible. If X is F.-irreducible
then so is f(X).

(b) For each y € f(X) whose coordinates belong to F,, the fibre
fHy) C X is constructible with complezity 6(f~*(y)) < 6(f).
The subsets f~1(T) and X \ f~Y(T) are also constructible. (The
condition y € F," is needed to make f~(y) be defined over F,.)

(¢) The function y — dim (f_l(y)) (for y € f(X)) is upper semi-
continuous in the Zariski topology of f(X). In particular, the
subsets of f(X) corresponding to any given fibre dimension are

constructible.
(d) For each y € f(X) we have

dim(X) < dim (f(X)) 4+ dim (f~'(y)) .

Suppose that X is F.-irreducible. Then those y € f(X) with
minimal dim (f‘l(y)) form a dense, F,.-irreducible constructible
set Yinin € f(X) (see (¢) above and Fact 14.(d)). In this case

dim(X) = dim (f(X)) + yg}i(r)l{ | dim (' (y)) -

and f~'(Ymm) C X is also dense and F,.-irreducible.
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Definition 17. For a constructible set X let X (FF,) denote the set of
those points on X whose coordinates belong to IF,.

Remark 18. We shall always use the field [F,. to define our constructible
sets. In contrast, we shall use the field F, for counting the number of
points in certain subsets of X (IF,) where X is some constructible set.

Remark 19. Note, that for dim(X) = 0 one can give an even easier
estimate:

| X (Fy)| < 1X]=0(X) .

2. CONCENTRATION IN GENERAL

Definition 20. Let o C F,™ be a subset. For each constructible set
X C qu of positive dimension we define the concentration of o in X

as follows:
def log, [ar N X]|

X
When X Na = 0, then we set p(a, X) = —cc.

Corollary 21. Let X C qu be an infinite constructible set. Then
for all finite subsets « C F,™ the concentration p(a, X) is nonnegative
unless X Nao =0, and it 1s bounded from above:

(o, X) < log, [F,"| = m
Lemma 22. Let Z C qu be a constructible set defined over F, with
dim(Z) > 0 and let « C F,™ be any subset. Then there is an F,-

irreducible component Z' C Z such that §(Z'") < 6(Z) and at least one
of the following holds:

dim(Z’) = dim(Z) and
) Vs 2 o) o 2

0 <dim(Z') < dim(Z) and
ple 2) > (1+ gk ) i, Z) — log, 0(2)?
We note that p(a, Z') > p(a, Z) —log, d(Z)? in both cases.

Proof. The condition 6(Z’) < §(Z) is automatic (see Fact 14.(b)). If the
right hand side of (1) is non-positive than we can simply take for Z’ any
dim(Z)-dimensional F,-irreducible component of Z (see Fact 14.(b)) So
we shall assume ji(, Z) > log, 0(Z)?, which implies that

lanZz|>d6(2)”.

(2)
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We decompose Z into FF,-irreducible components. There are at most
d(Z) components. Hence there is a component Z’ C Z with
lan Z|

(3) lanZ'| > 52)

Since §(Z') < 6(Z) we obtain
\Z'| > 1Z'nal > 0(2)2)6(Z) > 6(Z')
hence dim(Z’) > 0 (see Remark 19). We take logarithm of the inequal-
ity (3), divide the two sides by dim(Z’) and rewrite it in terms of the
concentrations. We get an estimate even better than we promised:
dim(2) log, 0(Z)
7N > =24 27
dim(Z) — dim(Z")
> (1 Z) —log, 0(2) .
> ( i (Z) pla, Z) —log, 6(2)
Note that 0 < dim(Z’') < dim(Z) (see Fact 14.(a)), hence our last
inequality implies either (1) or (2). O

Lemma 23. For each d > 0 there is a bound By = Bs(d) with the
following property. Let Z C X be constructible sets and f : X — qu
be a morphism with 6(Z) < d, §(f) < d and dim (f(Z)) > 0. Suppose,
that X, Z and f are defined over F, and Z is F,.-irreducible. Then for
all finite subsets o« C X (F,) and for all values € > 0 either

(4) u(f(), £(2)) = pla, Z) — og, By — < - dim(2)

or there is a constructible subset S C Z defined over F, such that
d(S) < By, 0 < dim(S) < dim(Z) and

(5) p(e, 8) > p(a, Z) —log, By + ¢ .

Note, that the condition dim (f(Z)) > 0 implies that dim(Z) > 0,
hence the concentrations appearing in the lemma are defined.

Proof. If ZNa = () then (4) holds automatically since the left hand side
is —0o0. So we shall assume ZNa # (). This implies that f(a)Nf(Z) # 0
hence the left hand side of (4) is nonnegative.

First we prove the lemma with some bound B) in the special case
when all fibres of f have the same dimension, i.e.

(6) dim (f7'(t)) = dim(Z) — dim (f(Z))
for all t € f(Z) (see Fact 16.(d)). In this case we get:

@nz]= 3 lanf 0] < ()N f(2)] max|an f7 ()]

tef(2)
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We shall fix a value ¢ € f(Z) where | N f~!(t)| is maximal, and de-
fine S = f7(t). Since ZNa # 0, our ¢t must lie in f(«), hence its
coordinates belong to F, < IF,. This ensures us that S is constructible
and defined over F, (see Fact 16.(b)). The equation (6) implies that
dim(S) = dim(Z) — dim (f(2)) < dim(Z). We distinguish two possi-
bilities. If dim(S) > 0, then we rewrite the previous inequality with
the new notation:

lanZz| < |fla)nf(Z)] |ansS]|

We take logarithm of our inequality and rewrite it in terms of the
concentrations:

ula, Z) - dim(Z) < p(f(0). £(2)) - dim(£(2)) + u(a, ) - dim(S)
We divide both sides by dim(Z) and we introduce extra e-terms on the
right hand side which cancel each other:
(e, Z) <
di Z dim(S
< [u(st@).£(2)) e dim()] 24 i, 8) e dim1(20)] oo

We recall (6), i.e. that dim(Z) = dim(f(Z)) + dim(S). Therefore we
see a weighted arithmetic mean on the right hand side. Either

wla, 2) < u(f(@), £(2)) + = dim(S) < pu(f(a), F(2)) + e dim(2)
or
wla,2) < p(a,S) —edim(f(2)) < p(a,S) —¢,
hence either (4) or (5) holds even without the error term log, By. The
special case of the lemma is proven for the case dim(S) > 0. On the

other hand, if dim(S) = 0 then all fibres of f are finite, and the number
of points in each fibre is at most §(f) < d (see Fact 16.(b)). Hence

log, |f(an Z)| - log, (|aﬂZ|/§(f)> -

u(f(0), (2)) =

dim (f(2)) ~ dim(Z) -
log, ‘a N Z| — log, d
> _

hence (4) holds for any By > d. The special case of the lemma is proven
with the bound B} = max(2,d).

Next we prove the lemma in full generality with a slightly larger
bound By = By(d, By). If u(a, Z) < log, By then the inequality (4) is
automatic since the right hand side is nonpositive and the left hand side
is nonnegative. So we shall assume p(a, Z) > log, B, which implies

(7) lanZ| > B,.
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We define the following subset:
T = {t e f(2) ’ dim (f71(t)) = dim(Z) — dim (f(Z))} .

It follows from Fact 16.(b) and (c¢) that T and Z’ = f~!(T) are con-
structible sets defined over IF,. and their complexity is bounded in terms
of d. Moreover, the irreducibility of Z implies that f(Z) is irreducible
(see Fact 16.(a)), and T' C f(Z) and Z' C Z are both F,-irreducible
dense subsets (see Fact 16.(d)). In particular, dim(Z) = dim(Z’) and
dim (f(2)) = dim(T) = dim (f(Z)) > 1 (see Fact 14.(d)). First we
deal with the case |2’ Na| > |Z Na|/2. Then

w(Z' o) = log, ‘aﬂ Z" S log, ‘a N Z} —log, 2
’ dim(Z") — dim(Z)

We can apply the lemma to Z’ (which we established at the beginning),
hence we get either

u(f(0), £(2)) > u(f(a), F(Z)) > (e, Z') — log, By — ¢ - dim(Z') >
> (e, Z)—log, 2—log, By—e-dim(Z’) = pu(a, Z)—log,(2B;)—e-dim(Z)
or there is an S C Z' defined over F, such that 6(5) < B, 0 <
dim(S) < dim(Z’) = dim(Z) and

p(e, S) > p(a, Z') —log, By + € > p(a, Z) —log, 2 — log, By + ¢ =

= (o, Z) —log,(2B3) + ¢ .

hence the lemma holds in this case. In the remaining case we have
|Z'Nnal < |ZNna|/2. Now we set S = Z\ Z'. Then §(S) is bounded
(see Fact 16.(b)), dim(S) < dim(Z) by the density (see Fact 14.(d)).
By the inequality (7) the set S has at least |[SNa| > |aNZ|/2 > By/2
points. If we choose By > §(S) then dim(S) > 0 (see Remark 19),
hence p(a, S) is defined and we can write:

log, |[SNal _ log, |ZNa|—log,2
gy — 25a S 25 q
a8 = —qnEy 2 dim(S) =

dim(2) log, 2 u(e, 2)
Z Gm() "% " Gy dim(S) =

> u(Z,a) —log, 2 .

> p(a, Z) —log, 2 +

(e, Z)
dim(Z)

wle,Z)
dim(Z)

the last term with ¢ which proves the inequality (5) for any By > 2 in

this case. On the other hand, for larger ¢, i.e. when ¢ > gi(]sé)), the

> u(a, Z) —log, 2 +

We compare now the last term to e. If ¢ < then we can replace
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inequality (4) holds, since its right hand side becomes negative. We
proved the lemma in all cases. [l

3. CONSTRUCTIBLE SETS IN GROUPS

Definition 24. G < GL(N, F,) will denote a closed subgroup of the
general linear group defined over F,. For simplicity, we shall say that
“G is a linear algebraic group over F,”. We use this matrix realisation
of GG to calculate complexities of constructible subsets. We shall use
the notation
repdim(G) = N?

As usual, (A), Ng(A) and Cg(A) will denote the generated subgroup,
the normaliser and the centraliser of a subset A C . We shall often
use products of several elements and subsets in the usual sense. In
order to distinguish from this kind of product, the n-fold direct product
of a subset @« C @G is denoted by [["a € G™. For each sequence
9= (91,92, ---9n) € G" we define the morphism

. (n+1 . _
T G — G : Ty(0, a1, - - . Gp) = A0G1A19203 - - - Gnln

We denote by A(G) the largest of the complexities of the variety G and
of the maps 7, for all h € G. Then the complexity of the more general
7, can be bounded from above in terms of A(G) and the length of the
sequence g. Closed subgroups of G can be very complicated. In con-
trast, cosets of normaliser or centraliser subgroups are defined by linear
equations, hence they are automatically closed and their complexity is
at most A(G). The subset G(F,) is a finite subgroup.

Fact 25. Let G be a linear algebraic group and X < G a constructible
subset. Then the generated subgroup (X) < G is a closed subgroup. If
X s drreducible then (X) is connected. It follows from Corollary 21
that for all finite sets « C G(F,) we have

p(a, X) <repdim(G) .
Lemma 26. Let G be a linear algebraic group and A, B C G nonempty
constructible sets. Suppose that dim(A) = dim(AgB) for some element

g € G. Then there are connected closed subgroups K < H < G of
dimension dim(B) < dim(K) < dim(H) < dim(A) such that

(8) {me G| dim(AmB) =dim(A)} Cg{ne G |nKn' <H} .
In particular, if dim(A) = dim(B) then K = H and on the right hand

side we see a coset of the normaliser Ng(H).

Remark 27. In fact for dim(A) = dim(B), with a little extra work, one
can prove equality in (8), but we do not need this.
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Proof. Let A’ C A and B’ C B be irreducible components such that
dim(A’") = dim(A) and dim(B’) = dim(B). We shall define

H={heG|Agh=Ag},

it is certainly a closed subgroup. Let us pick elements a € A’g and
be B'. Then1€a'Agand 1 € B’'b~!. On the one hand

HCa'AgH=a1Ayg

implies that dim(H) < dim(A). On the other hand we may consider
the following constructible subsets:

AgC (Ag)-(Bv ) CAgBb ' C(AgB)-b .
The first one and the last one are is irreducible closed sets of dimension

dim(A) (see Fact 14.(e) and Fact 16. (a)), hence all of these sets are
equal. But then A'g = (A'g) - (B'b1), therefore

Bbv'CH

Let K denote the closed subgroup generated by B’b~!, it is connected
because B’ is irreducible, and the above formula shows that K < H.
The dimension requirements are also satisfied:

dim(B) = dim(B'b™") < dim(K) < dim(H) < dim(A) .

Suppose now, that dim (A(gn)B) = dim(A) for certain n € G. We can
repeat the whole argument for 7B’ and nb in the role of B’ and b, then
nBb~ it C nKn~! will play the role of B'b~' C K but the definition
of H remains unaffected. Hence the closed subgroup nKn ! is also in
H. Therefore

ﬁE{nEG|nKn_1§H}
as we promised in (8). Finally, if dim(A) = dim(B) then we have two

connected closed subgroups K < H of equal dimension, hence they are
equal. 0

Corollary 28. Let G be a linear algebraic group over F, and let 1 €
a C G(F,) be a generating set. Suppose that G(F,) does not nor-
malise any closed subgroup H < G with 0 < dim(H) < dim(G).
Then for each infinite constructible subset Y C G and for all integers
n > 24m(G)=dm(Y) _ 1 there is a sequence g = (g1, o, ... gn) C [[" of
generators such that the product set B

Tg (Hnﬂy) =YqYgY.. . q0)Y

has dimension dim(G).
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Proof. If A, B C G are constructible sets and b € B then dim(AB) >
dim(Ab) = dim(A). Hence if a sequence ¢ satisfies the lemma, then
so do those sequences which contain g as ‘a subsequence. So we may
assume n = 24m(@=dm(¥) _ 1 We shall prove by downward induction
on dim(Y). If dim(Y) = dim(G) then n = 0 and 7, is just the inclusion
Y < G so there is nothing to prove. Let us assume that dim(Y) <
dim(G) and the lemma holds for subsets of larger dimension.

Our first goal is to find an element g € « such that dim(YgY) >
dim(Y'). Let us start with g = 1 € a. If dim(Yg¢Y) > dim(Y’) then
we keep this g, otherwise we are going to replace it with a better one.
Let us apply Lemma 26 to A = B = Y, we get a closed subgroup
H. Since dim(Y) = dim(H) < dim(G), our conditions imply that
G(F,) € Ng(H). Therefore o« € N (H) and there is an element ¢’ € «
such that ¢’ ¢ 1-Ng(H). We replace g with this ¢’, this way we achieve
that dim(YgY) > dim(Y") in all cases.

Now we can apply the induction hypotheses to the set Y gY, hence
get a sequence (hi,hy,...hy) C [["a with m = 24m(@)-dm()=1 _ 1
such that the product set

(YgY)hi(YgY)hs ... hp(YgY)

has dimension dim(G). This is a product of the required form, the
corollary is proved. U

Lemma 29. Let G be a linear algebraic group and Z C G x G a
nonempty constructible set. Suppose that 74(Z) has dimension 0 for

some element g € G, i.e. it is a finite set. Then there is a constructible
subset A C G such that dim(A) = dim(Z) and

(9) {cec]| dim(r4(2)) =0} =Ca(4)g

Proof. Let Z = J, Z; be the decomposition of Z into irreducible compo-
nents. By assumption 7(4)(Z;) is finite and irreducible (see Fact 16.(a)),
hence it is a single point z; € G. Let pr; : G x G denote the projec-
tion on the first factor. We choose an element a; € pry(Z;), and set
A; = a; ' pry(Z;), bi = a;'z. This A; is irreducible and by definition
1 € A;. Then each point of Z; has the form (a;h, ) with some h € A;
and 3 € G, and for all h € A; must exists at least one such point. But
then

zZi = T(g)<aih7 6) = a‘zhgﬁ
hence
B=gh e s = g,
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is the only possible choice for 3. Therefore
Zi = {(aih,g_lhbi) ‘ h € Az}

and the map
Ai — Zz y h — ((J,ih,gilhbo

is a one-to-one morphism. In particular dim(Z;) = dim(4;). Hence

70(2)=J {(aih)C(g‘lh‘lbi) ‘ he AZ} =

_ Uai{h(cgl)hl) ‘ he Ai}bi

for all ¢ € G. This has dimension 0 iff the {h(cg™")h™!|h € A;} is
finite for all 4. But A; is irreducible, hence its image {h(cg™")h~"|h €
A;} is also irreducible (see Fact 16.(a)), so it is finite iff it is a single
point, i.e. iff h(cg™')h~! is independent of h € A;. But 1 € A;, hence
this last condition is equivalent to h(cg ' )h™! = cg™! for all h € A,
which simply means that cg~! commutes with all h € A; for all 7, i.e.
cg~' € Cq(U;A;). This proves the lemma for A = U; A;, since

dim(A) = max (dim(4;)) = max (dim(%;)) = dim(Z2) .
O

Corollary 30. Let G be a linear algebraic group over F,. and let 1 €
a C G(F,) be a generating set. Suppose that the centraliser of G(F,) in
G is finite. Then for each infinite constructible subset Z C G™ (with
n > 0) there is a sequence g = (g1, 92, . .. gn) € [["a of generators such
that image set 7,(Z) has positive dimension.

Proof. We shall prove the theorem by induction on n. For n = 0 the
statement is obvious. So let n > 1 and we assume that the corollary
holds for smaller number of factors. We define several morphisms. For
all g € G let

0" Gt G, og(ag, ay,...a,) = (apgar, as,as, ... ay,)
and let
7. GV gt m(ag,ai,...a,) = (ag,as,...ay,) ,
p:G"— G play,...a,) = (ag,as,...ay,) .

For n = 1 we use the convention that G° a single point. Note, that these
morphisms manipulate only the first two coordinates. In particular

p(og(z)) =m(z)  forallz e G,
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Our goal is to find a generator g € a such that
(10) dim (04(Z)) > 0.

Then we can use the induction hypotheses for o,(Z) C G™, and this
proves the corollary for Z as well.

We distinguish two cases. Suppose first that for all z € G"~! the sub-
set Z N7 1(2) is finite (i.e. 0 dimensional). Then dim(Z) = dim 7 (Z)
is positive (see Fact 16.(d)). But

dim(Z) > dim (0,(2)) > dim (p(04(2))) = dim (7(Z))

hence all these dimensions are equal. Hence (10) is achieved, the corol-
lary holds in this case.
Suppose next that there is a point z € G" ! such that Z' = ZNr~1(2)
has positive dimension. For simplicity we shall identify the subset
-1 _ 2 n+1 : 2 -1 _ n
7 1(z) = G* x {z} € G"" with G* and also p~'(2) =G x {2z} C G
with GG. With these identification we have

og(x) = 1) () forallz € G* and all g € G .

Let us start with g = 1 € a. If 01(Z") = 7(1)(Z’) has positive dimension
then we keep this g, otherwise we are going to replace it with a better
one. We apply Lemma 29 to our Z’ and the “bad” g = 1, and get an
infinite subset A < G. Then A does not centralise G(F,), hence there is
a generator ¢’ € o which does not commute with A, i.e. ¢’ ¢ Co(A) - 1.
We replace g by this ¢', then 7(4(Z") = 04(Z') has positive dimension
in this case as well. But then the larger set 0,(Z) D 0,(Z’) has positive
dimension as well. In all cases we proved (10), hence the corollary is
true. U

Question 31. Let Z C G x G a constructible set, pro(Z) C G denote
its projection on the second factor. Then
dim (7(4)(Z)) > dim(Z) — dim ( pry(2)) .

What can we say if it is an equality and Z is irreducible?

4. SPREADING LARGE CONCENTRATION IN A GROUP

Lemma 32. For all d > 0 and n > 0 there is a bound Ky = Ky(n,d)
with the following property. Let G be a linear algebraic group over T,
with A(G) < d and 1 € o C G(F,) a generating set. Suppose that the
centraliser of G(F,) in G is finite. Then for all constructible subset
Z C G"! defined over F, such that dim(Z) > 0 and §(Z) < d there
is a constructible subset Y C G defined over F, with dim(Y) > 0,
(YY) < Ky and

p(e® 1Y) > M(Hnﬂa, Z) —log, K> .
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Proof. We prove the lemma by induction on dim(Z) so we assume it
holds in dimensions smaller than dim(Z) with some bound K} (n,d).
By Lemma 22 there is an [F,-irreducible component Z’ C Z with large
concentration:

n+1 n+1

p[le2) 2z ] ] @ 2) —1og,8(2)

We may simply replace Z with this component, so from now on 7 is
F,-irreducible. Corollary 30 gives us a sequence g = (g1,92,...9n) €
[1""" @ such that 7,(Z) has positive dimension. It is clear, that §(r,)
has an upper bound depending only on A(G) < d and n, let D =
D(d,n) denote larger of this bound and d.

We use Lemma 23. for the two constructible sets Z C X = G"*!, the
morphism f = 7,, the finite set [["*'a (denoted by a in Lemma 23.)

and ¢ = 0. We note, that f(HnHoz) C o?"*1. There are two possible
outcomes. In case of Lemma 23.(4) we have a constructible subset

T C G with dim(T") > 0, 6(T") < By(D) and

w(IT""a, 2) —log, Bo(D) < u(f(IT" @), T) < p(a®*,7)

hence the lemma holds now with Y = T and any Ky > By(D). In case
of Lemma 23.(5) we have a constructible subset S C Z C G"™! with
0 < dim(5) < dim(Z), §(S) < Bs(D) and

M(HnJrlO" S) > U(HnJrla? Z) o logq BQ(D) :

We set K = K} (n, BQ(D)) and apply the induction hypothesis to this
S. This gives us a constructible set Y C G such that dim(Y) > 0,
(V) < K and

(V) > u(IT"a, 5) — log, K >

> w([1" o, Z) —log, (Bx(D)K3) |
the lemma holds again with the bound Ky = By(D)KY. O

Lemma 33. For all values d > 0, N > 0 and 0 < k < 1 there are
constants K1 = K1(N,d, k) > 0 and A = A\(N, k) > 1 with the following
property. Let G be a linear algebraic group over F, with dim(G) <
log, N, A(G) < d and 1 € a C G(F,) be a generating set. Suppose
that G(IF,) does not normalise any closed subgroup H < G with 0 <
dim(H) < dim(G) and the centraliser of G(F,) in G is finite. Then for
all constructible subsets Y C G defined over IF, such that dim(Y") > 0,
(YY) <d and

(11) (e, Y) = log, Ky
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there is a constructible set T C G defined over F, such that 6(T) < K,
and at least one of the following holds:

(12) dim(7) = dim(G) and p(o® " T) > k- p(a,Y)

or

(13) dim(G) > dim(T) >0 and p(e® 1, T) > X p(e,Y) .

Proof. By using Lemma 22, as in the proof of Lemma 32, we may
assume that Y is F,-irreducible. We apply Corollary 28. forn = N —1
and the subset Y, this gives us a sequence g = (g1, 92,...9n) € [T
of generators such that the image set Tg(HNY) C G has dimension
dim(G). Next we apply Lemma 23. to the subsets X = GV and
Z =TI"Y, the morphism f = 7,, the finite set [["a (denoted by a in
Lemma 23.) and we set -

- (e Y)

N dim(G)

Since Y is F,-irreducible, Z is also F,-irreducible (see Fact 16.(e)). In
this setup §(Z) = (V)N < d¥ and §(f) < A(G)N! < dV. Therefore
the prerequisites of the Lemma 23 are satisfied with the bound d"

(which is denoted there by d) hence the inequalities 23.(4) and 23.(5)
are valid with By = By(d"). We define

K, = B22Ndim(G)/(1—ff) > B,

e=(1—-k)

then the error term of 23.(4) and 23.(5) can be written, using (11), as
11—k 1—k

= oo Ky < ——

ON dim(G) %= ON dim(G)

Moreover, ,u(HNa, Z) = (e, Y) and f(HNa) C a?¥~1 In Lemma 23
there are two possible scenarios. I case of 23.(4) we define T' = f(Z),
then dim (f(Z)) = dim(G) by the definition of f = 7, and we have
p(@®NT) = u(f ([T ), £(2)) =
> ,u(HNa, Z)—log, By—e-dim(Z) > p(a,Y)—e/2—e-(N dim(G)—N) >
> p(a,Y) —e- Ndim(G) = k- u(a,Y)

which is nothing but the inequality (12). In case of 23.(5) we have a
subset S C GV with dim(S) > 0, 6(S) < Bs.

,u(HNa,S) > M(HNa, Z) —log, By +¢ >

log, By = ula,Y) =¢/2

11—k

Z,LL(O(,Y)—F&T/Q: (1+W> ',u(Oé,Y) .
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We combine this with (11):

N K 1—x
S)>14+——— - Y)+ ——F——log, K; .
p(Il e, 8) = ( TN dim(G)) e Y) N Gy 08 B
We apply Lemma 32. to Z =S, n = N — 1, and for the value denoted
by d in the lemma we set D = max(d”, By). Then in the inequalities
we have to use Ky = K5(D). The Lemma 32. gives us a subset T'C G
(denoted by Y in that lemma) with dim(7") > 0, §(T") < K,

p(e® 1 T) > p(ITV e, S) —log, Ky >

11—k 11—k
>(1+—" ) p@y)+ |-l log K, — log, K.
—< +4Ndim(G)) e HLNdim(G) OBg 11 7 108g 122

We collected the two error terms in the square bracket, we wish to make
it positive (which allows to omit it). If we choose sufficiently large K;
then the positive term will overcome the other one, hence (13) holds

with any
11—k
A< |14+ —— .
_( +4Ndim(G))
U

Theorem 34. For all values d > 0, n > 0 and 0 < k < 1 there are
bounds M = M(n,r) and K3 = Ks(n,d,x) > 0 with the following
property. Let G be a linear algebraic group over F, with dim(G) < n
and A(G) < d. Suppose that G(F,) does not normalise any closed
subgroup H < G with 0 < dim(H) < dim(G) and the centraliser of
G(F,) in G is finite. If 1 € o C G(F,) is a generating set and X C G
1s an infinite constructible subset defined over ¥, such that

0(X)<d and p(a,X)>log, K3
then
u(aM,G) > k- (o, X) .

Note, that the conditions imply that X Na C G(F,) is large, hence
g must also be large.

Proof of Theorem 34. With an induction on ¢ > 0 we shall define in-
tegers M;, real numbers d; > 0 and constructible subsets T; C G such
that such that dim(7;) > 0,

(14) 0(T;) <d;  and  p(a™,T) >N p(a, X)

for some fixed A > 1. Let I be the smallest integer such that A/ >
dim(G), and let M = M;. We shall run the induction for at most
steps. We start with My =1, dy = d and Ty = X. In the i-th step, for
1 < I, we shall use Lemma 33. with the values d = d;_{, N = 2" and
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our k. We always get the same A = A(N, k) > 1, this is the A we use
in (14) We define dl = Kl(di_l,lﬁl)7 Mz = <2N - 1>Mz’—1 = (2N — ].)7'
We apply this Lemma 33. to the generating set o™i-1 and to the
constructible set Y = T;_;, we get a new constructible set 7. On the
one hand, if this 7" satisfies (12) then we stop the induction. Now i < I,
so M > M, and

p(@,G) > p(a™,T) > k- p(a™=1,Timy) >
> K;)\i_l ’ M(O-/)X) > K- [L(OZ,X) :
This proves the Theorem in this case. On the other hand, if T" satisfies
(13), then we define T;1 = T', which satisfies (14). If i < I then we go

on with the induction, if ¢ = I the we stop, and use (14) for i = I to
prove the theorem:

M dim (77 M
p(a™, G) > d1m<(G)) p(a™,Ty) >
> diml(G) A u(oz,X) > M(a,X)

O

We can reformulate Theorem 34. using the number of generators
instead of the concentrations:

Corollary 35. For all values d > 0, n >0 and 0 < k < 1 the bounds
K3 = Ks(n,d,k) and M = M(n,r) of Theorem 34. has the following
property. Let G be a linear algebraic group over F, with dim(G) < n
and A(G) < d. Suppose that G(F,) does not normalise any closed
subgroup H < G with 0 < dim(H) < dim(G) and the centraliser of
G(F,) in G is finite. If 1 € « C G(F,) is a generating set and X C G
s an infinite constructible subset defined over I, such that

0(X)<d and ‘aﬂX{ > Kgim(x)

then
|OéM‘ > ‘amX|n~dim(G)/dim(X) .



