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Making a bijection between semilabelled trees and some partitions, we build up a 
powerful theory for enumeration of trees. Theorems of Cayley, Menon, Clarke, 
Renyi, Erdelyi-Etherington are among the consequences. The theory of random 
semilabelled trees turns into the theory of random set partitions. Q 1989 Academic 

Press. Inc. 

The motivation for the present research was the perplexing fact that the 
semifactorial function arises as the solution in both of the following 
enumeration problems: What is the number of complete matchings in the 
complete graph K,,,? and What is the number of rooted binary trees with n 
labeled leaves? These results are folklore, the second author learned the 
second one from his co-authors of paper [l]. We succeeded in establishing a 
general bijection between some sets of trees and some sets of partitions. In 
this way, instead of enumeration of trees, we enumerate partitions. In most 
cases, this is easier to do. In particular, we solve some new enumeration 
problems for trees and give new derivation of a number of classical 
theorems, including Cayley’s theorem. The main tool is the antilexico- 
graphic order of subsets of an ordered set, which was introduced indepen- 
dently by Kruskal (71 and Katona [5]. We emphasize that our bijection is 
well computable in both directions. For the theory of enumeration of trees, 
see [6, lo]. 
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DEFINITION. Let X be an ordered set. The antilexicographic order cAL 
on the power set of X is defined as follows: 

A <AL B CJ max(AAB) = max{(A\B) U (B\A)} E B. 

DEFINITION. A semilabelled tree is a rooted tree on n + 1 vertices with 
k leaves. The leaves are labelled with the numbers 1,2,. . . , k. (Although the 
root may have degree one, it is never to be considered as a leaf.) We refer to 
the vertices differing from leaves and root as branching points. They are 
unlabelled. The descendants of a vertex are the neighbours of it, except the 
(possible) one in the root direction. The out-degree of a vertex is the 
number of its descendants, i.e., the number of neighbours, except the one in 
the root direction. The out-degree of the root is the degree of the root, the 
out-degree of other points is the degree minus one. 

THEOREM 1. The set of semilabelled trees on n f 1 vertices with k leaves 
are in a one-to-one correspondence with the set of partitions of { 1,2, . . . , n } 
into n - k + 1 non-empty classes. Hence, the number of semilabelled trees 
above is the Stirling number of second kind S( n, n - k + 1); and the total 
number of semilabelled trees on n + 1 vertices is the Bell number B,,, the total 
number of partitions of an n-element set. Furthermore, under this one-to-one 
correspondence, semilabelled trees with root degree t are in one-to-one corre- 
spondence with partitions in which n belongs to a t-element class. The 
out-degrees of the branching points and root are the cardinalities of the classes. 

Proof: For convenience, we make the bijection between semilabelled 
trees with labels of an ordered k-element set and partitions of an ordered 
n-element set. Let the label set of the leaves of the semilabelled trees be 
1 x1,x2,. . ., xk } and the set to be partitioned { y,, y,, . . . , y,}. Both sets are 
ordered by the subscripts. 

We construct a partition for a given tree. We call this map +. Let T 
denote the tree, V(T) denote its vertex set and r denote the root vertex. We 
assign to every vertex v E V(T), v Z r a set S(v) c {xi, x2,. . . , xk} as 

{v>. for v E {x1,x2,...,xk}; 
S(v) = the set of leaves separated 

from r by v otherwise. 

It may happen, that some sets S(v) occur with multiplicity, if some 
branching points have out-degree one. Therefore we use sAL instead of 
cAL ; put {S(v): v E V(T)\(r)} . t m o antilexicographic order keeping 
the following extra property: if S(v) = S(w), and v is closer to the root 
than w, then S(v) is bigger in the antilexicographic order than S(w). Now 
we give a partition of {y,, y,, . . . , y”} into n - k + 1 classes: let rank(v) 
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denote the place of S(u) in the antilexicographic order sAL on {S(u): 
u E V’(T)\ {r)), so we have 1 5 rank(u) I n. The partition classes will be 
of the following form: { yrankCuJ: u E W }, where W is any of the (non-empty) 
sets of descendants in the tree. We shall separate two steps in the algorithm 
above: +i assigns the ranks as labels to the vertices of the semilabelled tree 
and & reads the partition classes from the result of (pi. Obviously we have 
+ = +2+,. 

We construct the inverse of our bijection, # = I/~#~, which assigns a 
semilabelled tree with labels {xi, x2,. . . , xk} to a given partition 9 on 
{YDh...~ v,,}. The first step, JIi makes a rooted tree with n other labelled 
vertices. Add a root to { yi, y,, . . . , v,,} in order to get the vertex set, join 
the elements of the class of y, to the root and join the elements of the class 
P to 1 + max P. In the second step, J/2 deletes the labels of branching 
points and changes the labels of leaves for {xi, x2,. . . , xk } keeping their 
order. 

We are going to prove, that r$ is bijection and +Ic/ fixes the partitions. We 
make mathematical induction for 191 and an inner mathematical induction 
for 1 u 91 for a given 191. All the statements are obvious for 1~3’) = 1. 

Claim. If +(F) = 9 and P is the antilexicographically smallest ele- 
ment in 9, then max{i: y, E P} I k and {xi: y, E P} is the set of 
descendants of some vertex in F. 

The claim holds, since on a path from a leaf to the root the ranks are 
increasing and rank(x,) > i iff there is a complete set of descendants {xi: 
j E J} with max J < i. 

The claim implies that $I is injection. For the contrary, suppose the trees 
F and G are mapped to the same partition 9. Truncate the trees by 
deleting the vertices {xi: y, E P} and label their ancestor by max P. The 
new trees are F’ and G’. It is easy to see, that +(F’) = S\ P = $(G’). By 
hypothesis, F’ = G’ and F = G is implied. 

We prove that + is onto. Let us be given a partition 9 and take P as 
above. By hypothesis, JY\ P = +(T) for some semilabelled tree T with 
label set 

{x,: i E {1,2 ,..., k}\PU {maxP}}. 

Let T’ denote the following tree: delete the label x,, p in T and join the 
vertices {xi: yi E P } to this delabelled vertex. It is easy to check that 
$(T’) = B. (This step uses the second induction as well.) 

We have to prove (p$ = id. It is easy to see, that $iq2 = id and 
&+!~i = id. This is enough for us, since #J# = $~&i$~J/i. 

The root degree is equal to the cardinality of the partition class contain- 
ing n by the description of $. Cl 
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Under the bijection above, some special trees are in correspondence to 
special partitions. From now on we make use of the well-known elementary 
fact that the number of partitions of an n-element set into kj i-element 
classes (i = 1,2,..., n) is 

n! 

l!klk,!2!k2k,! . . . n!nk,!. 

A binary tree with k leaves has k - 2 branching points and 2k - 1 vertices 
in total, and we have 

COROLLARY 2. The semilabelled binary trees with k leaves are in one-to-one 
correspondence with the partitions of a 2k - 2 element set into 2-element 
subsets, and their number is (2k - 3)!!. 0 

In a more general setting, we have 

COROLLARY 3. The semilabelled t-ary trees with m branching points are in 
one-to-one correspondence with the partitions of a (m + l)t- element set into 
t-element classes, and their number is ((m + l)t)!/(t!m+‘(m + l)!). 

COROLLARY 4. The number of semilabelled trees on n + 1 vertices with 
maximum degree at most d are in one-to-one correspondence with the parti- 
tions of an n-element set into classes not bigger than d. 

COROLLARY 5 (Knuth [6], Poupard [ll]). The number of rooted labelled 
trees on n + 1 vertices with k leaves is n( n - 1) * * * (k + l)S( n, n - k + 1). 

Proof. We select k labels out of n in (L) ways for the leaves, build up 
S(n, n - k + 1) semilabelled trees for each by Theorem 1, and distribute 
the remaining (n - k) labels for the branching points in (n - k)! ways. 0 

COROLLARY 6 (RCnyi [12]). The number of labelled trees on n + 1 
vertices with k leaves is (n + l)n(n - 1) . . . (k + l)S(n - 1, n - k + 1). 

ProoJ The number of rooted semilabelled trees on n + 1 vertices with 
k leaves is S(n, n - k + l), with S(n - 1, n - k) having root degree 1. 
(We realize them by the class { n } in the corresponding partition.) There- 
fore, the number of rooted semilabelled trees on n + 1 vertices with k 
leaves with root degree at least two is 

S(n, n - k + 1) - S(n - 1, n - k) = (n - k + l)S(n - 1, n - k + 1). 

We label the branching points of these trees in (n - k)! ways, and there are 

0 i choices for the set of labels of leaves. We have that the number of 
labelled trees on n + 1 vertices with k leaves and with a special label whose 
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degree is at least two is 

f= ;(n - k + l)S(n - 1, n - k + 1). 

Count the ordered pairs (T, u), where T is a labelled tree on n + 1 vertices 
with k leaves and u is a vertex of it which is not a leaf. On the one hand, 
the number of pairs is n - k + 1 times the quantity looked for; on the 
other hand, the number of pairs is (n + 1)f. 0 

We give a new proof of Cayley’s theorem. We need the Faa di Bruno 
formula [6]: Let 0,“~ represent the k th derivative of a function u with 
respect to x. Then 

Dx”w= c c 
n! 

D,jw 
O<j<tt Cjki = n l!klk,!2!k2k2!. . . n!“nk,! 

where the inner summation is taken for non-negative integer values of ki 
with C kj = j. 

THEOREM 7 (Cayley [2]). The number of labelled trees on n vertices is 
nn-2 

Proof We prove the following equivalent of Cayley’s theorem: the 
number of rooted trees with n labelled non-root vertices (i.e., with n + 1 
vertices in total) is (n -t 1)“-l. Different partitions give rise to different 
semilabelled trees. How many different labelled trees come from a given 
partition, which contains kj i-element classes? The corresponding semi- 
labelled tree has C k, - 1 branching points. The set of names of leaves can 
be selected in ( 1 z k,n- r ways, we can name the branching points in (Z ki - 
l)! ways. Therefore, the number of rooted trees with n labelled non-root 
vertices is 

c n! 

n= Cik, 
l!k’k,!2!kzk,! . . . n!“nk,! 

where the summation is taken by ki 2 0. We recall the Fd di Bruno 
formula with the following cast: u = e*, w = e(“+nX and we evaluate the 
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derivative at x = 0. We have 

(n+1)“= c c 
j=Ck, n= 

x(n + l)n(n - 1) *.. (n -j + 2) 

and we divide both sides by (n + 1). •I 

THEOREM 8 (Clarke [3]). The number of rooted labelled trees on n + 1 
vertices with a root degree k is equal to 

( ) 
i z i nnpk. 

Proof. We claim that the number of corresponding semilabelled trees is 

c 
(n - k)! 

,r-k=xik; l!klk,!2!k2k,!. . . (n - k)!kn-kk,-k! ’ 

We have ( 1 E k,“- r (IX ki - l)! times more labelled trees for a given sequence 
ki, similarly to the proof of Cayley’s theorem. Applying the Faa di Bruno 
formula for w - e’lX and u = eX, to compute the (n - k)” derivative at 
x = 0 we get 

The formula claimed holds, since the neighbours of the root make the 
antilexicographically greatest artition class, which is the class containing 
the number n. We have ( P Z 1 i choices for this class and we find 

c (n - k)! 

,,-k=Ciki l!klk,!2!k2k,!. . . (n - k)!kn-kk,-k! 

partitions containing the given k-element class. 0 

THEOREM 9 (Menon [9]). Suppose CyS,,di = 2n. The number of labelled 
trees on n + 1 points with prescribed degrees d,, d,, . . . , d, is equal to 

(n - l)! 

(d, - l)! . . . (d, - l)! ’ 
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Proof: Let kj denote the number of occurrences of i + 1 in the se- 
quence d,, . . . , d,. In the first step we enumerate the semilabelled trees on 
n + 1 vertices with root degree d, and with k, labelled leaves. Among the 
corresponding partitions, the neighbours of the root make the antilexico- 
graphically greatest partition class, which contains the number n. We have 

choices for this class and we can build up 

(n - d,)! 

1!%,!2!%*! . . . (n - d,)!k~-dok,-do! 

partitions containing such a given class. Finally, there are k,!k,! . . . k,-,! 
ways to match the branching points and their possible names. Multiplying 
these numbers together, we have the formula claimed. 0 

Remark. As it is well known, the Menon theorem implies the Cayley, 
Clarke, and RCnyi theorems by the polynomial theorem. In this way we 
have an alternative proof for them, which avoids the Faa di Bruno formula. 

THEOREM 10 (Erdelyi-Etherington [4]). Suppose no = 1 + n2 + 2n, + 
3n, + *-. +(m - l)n,. The number of rooted, unlabeled, ordered trees 
(i.e., in which we order the subtrees hanging on the same point) having ni 
vertices with out-degree i (i = 0, 1, . . . , m) is equal to 

(no + n, + .*a +n, - l)! 

n,!n,! * . . n,! 

Proof. The number of rooted semilabelled trees with the prescribed 
out-degrees is 

(n, + n, + --’ +n, - l)! 

ni!l!“l ... n,!m!“m 

by Theorem 1. In order to get the number of rooted ordered semilabelled 
trees we multiply by lt’Q2r”* * * . m!“m . . since so many ways can we order 
the subtrees. Finally, we divide by n O!: since any rooted ordered tree has 
n,! semilabelling. 0 

DEFINITION. A rooted binary plane tree is a rooted unlabelled tree, in 
which each degree is 1 or 3, the root degree is 1, two plane trees are the 
“same,” if there is an isomorphism between them, which keeps the root and 
the cyclic ordering of edges in the star of each point. 
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COROLLARY 11 (Lovhz [S]). The number of rooted unlabelled binary 
plane trees on 2n vertices is the Catalan number 

12n-2 
n i 1 n-l ’ 

Proof: Delete the root and consider its neighbour as a new root. The 
deleted root defines an order of the two subtrees of the new root. 

Being the tree rooted binary, the sequence n, is determined and the 
Erdelyi-Etherington theorem may be applied with n, = n, n2 = n - 1. 
Alternatively, Corollary 2 can be also applied. Consider the semilabelled 
binary trees on 2n - 1 vertices, they are (2n - 3)!! in number. Multiply by 
2”-’ for the order of subtrees and divide by n! to lose the labels of leaves. 

0 

Choosing a proper definition for random semilabelled trees, under Theo- 
rem 1 the theory of random partitions turns into the theory of random 
semilabelled trees. 

DEFINITION. A random semilabelled tree on n + 1 vertices is a ran- 
domly selected one out of the semilabelled trees on n + 1 vertices, whose 
label set is a beginning segment of the set of natural numbers. Each of them 
occurs with the same probability. 

THEOREM 12. The distribution of the number of branching points in a 
random semilabelled tree is asymptotically normal with expected value 
(n/in n)(l + o(1)) and with uariance (n/(ln n)*)(l + o(1)). If 1 > 0 is a 
constant and x(l) counts the number of vertices with out-degree 1 in the 
random semilabelled tree, then x(l) is asymptotically normal with expected 
value (r’/l!)(l + o(1)) and with variance (r’/l!)(l + o(l)), where r is the 
solution of the equation re’ = n; for a jixed 1, the random semilabelled tree 
has a vertex with degree 1 with probability 1 - o(1). 

Proof Apply the theory of random partitions [13] and Theorem 1. 
Neglect a number one, if necessary. Actually, [13] contains more theorems 
which apply. •I 

For rooted, unlabelled trees the next theorem easily follows, but we did 
not manage to derive a formula for it. Let [I] denote the class of I and 7~” 
denote the action of a permutation rr on the power set. 

THEOREM 13. The number of rooted trees with n other, unlabelled vertices 
with k leaves out of them is equal to l/k! times the number of ordered pairs 
(9, ?r), where 9 is apartition of {1,2, _. . , n} into n - k + 1 classes and r 
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is a permutation of {1,2,. . . , n} under the assumptions: 

(9 OnI) = [nl, 
(ii) for all 1 I1 I n 1 [a(l)]/ = 1[1]1, 

(iii) P E 9, P Z [ ] pl’ n zm res a(1 + max P) = 1 + max T#(P). 

Furthermore, if we restrict our attention to the enumeration of trees above with 
a given out-degree sequence, then, on the other side, we have to consider 
partitions whose class sizes produce the sequence above. 
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