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Theodore von Kármán (szöllőskislaki Kármán Tódor) was born in Budapest
in 1881 and died in Aachen in 1963. In 1902 he received his undergraduate
degree in Engineering from the Royal Joseph University of Polytechnics and
Economics in Budapest. In 1908, under the direction of the eminent fluid-
dynamicist Ludwig Prandtl, he received his doctorate from the University
of Göttingen for his work on the buckling of columns. He served there
as a Privatdozent under Prandtl until 1913, when he became Professor of
Aeronautics and Mechanics at the Technical University of Aachen. In 1929
he left for the California Institute of Technology in Pasadena, where he
spent the rest of his life.

Von Kármán’s degrees were in engineering, his academic appointments
were in engineering, and virtually all of his research was devoted to engi-
neering science and to practical questions about the design of aircraft and
missiles. He was an adept experimentalist. He always identified himself as
an engineer. He became a celebrity as an engineer in the United States. And
yet, von Kármán had marked mathematical ability, he was intimately asso-
ciated with the great mathematicians of Göttingen and respected by them
(they seemed to view him as mathematics’ favorite engineer (see {38}∗),
many of his research papers were regarded as applied mathematics par ex-
cellence, he effectively exploited his reputation as a consummate engineer to
promote the mathematical training of engineers, and he greatly influenced
work in applied mathematics. (The noted fluid-dynamicist W. R. Sears, a
student of von Kármán, wrote, “It was clear to those of us who worked close
to him that mathematics—applied mathematics—was his true love.” {39,
p. 176}.)

∗In this article, all reference numbers, enclosed in brackets, correspond to the list at
the end of this article.
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In this article, I discuss a small sampling of von Kármán’s scientific work
that could be regarded as applied mathematics when it was published. (Dis-
cussions of his contributions to technology and of his role as administrator,
government consultant, and public figure can be found in {9, 12, 13, 32}.)

The von Kármán equations for plates. At the invitation of Felix Klein
{32, pp. 52–53}, von Kármán {15} prepared the 75-page article Festigkeits-
probleme in Maschinenbau {15} for the Encyklopädie der mathematischen
Wissenschaften edited by Klein. (That this invitation was made when von
Kármán had just received his doctorate testifies to the esteem with which
he was held by the mathematical community at Göttingen.) This survey
of structural mechanics, i.e., the mechanics of deformable rods and shells,
derived the governing differential equations (mostly linear) and analyzed
some specific problems for them.

Von Kármán began his very brief treatment of the deformation of elastic
plates with a discussion of the Kirchhoff theory, which characterizes the
small transverse displacement w of a thin (homogeneous, isotropic) plate
(of constant thickness) under the action of a transverse force of intensity f
per unit area as the solution of

D∆2w = f

where
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∂4u
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is the two-dimensional biharmonic operator acting on a function u, and
where D is a positive constant accounting for the stiffness of the plate; D
is proportional to the cube of the thickness h. Von Kármán then observed
that this model is valid only if w is small relative to the thickness of the
plate. To construct a theory capable of describing larger displacements,
von Kármán replaced the linear relations between the in-plane strains and
the displacements with the correct nonlinear relations, but retained other
geometric simplifications, and took the relation between stress and strain
to be linear. By this process, in the span of one page, he came up with the
celebrated von Kármán equations for plates:

D∆2w − h[Φ,w] = f,

∆2Φ = −1
2
E[w, w]
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where

[u, v] :=
∂2u

∂x2

∂2v

∂y2
+

∂2u

∂y2

∂2v

∂x2
− 2

∂2u

∂x∂y

∂2v

∂x∂y

is the Monge–Ampère operator acting on the functions u and v, and E is the
elastic modulus. The function Φ is a stress function whose second derivatives
deliver the resultant contact forces (stress resultants) in the plane of the
plate.

Although the beauty of the von Kármán equations inherent in the pres-
ence of the biharmonic and Monge–Ampère operators could not fail to at-
tract mathematicians, their semilinearity put these equations beyond the
analytic resources available at the time. Indeed, in his influential exposi-
tory paper {28} of 1940, von Kármán called upon mathematicians to bring
their still primitive tools of nonlinear analysis to bear on these equations. (It
seems to me that von Kármán presented these equations to the mathemati-
cal community in 1940 with an assurance as to their value that was lacking
in 1910.) In the meantime, von Kármán {24, 26, 29} had demonstrated
the crucial role of nonlinearity in the buckling of shells. (The problems
discussed in these three papers continue to provide challenges for analysis.)

Friedrichs and Stoker {10} answered the call in 1941. Their lengthy
work, which influenced the development of bifurcation theory in the United
States, was the first rigorous mathematical analysis of the von Kármán
equations. (Friedrichs, a student of Courant’s at Göttingen, had been
sent by Courant to work with von Kármán at Aachen {38}.) In the mid-
1950’s began an intensive analysis of existence, multiplicity, and bifurcation
of solutions to boundary-value problems for the von Kármán and related
equations (see {6, 7, 43}). The fascinating role of these equations as an
inspiration for Rabinowitz’s {37} global bifurcation and continuation theory
is detailed in {1}.

That the von Kármán equations, obtained by an ad hoc combination of
theory with insight, represent an improvement over the traditional Kirch-
hoff theory has inspired several directions of research in shell theory and in
its mathematical analysis: (i) The derivation of the von Kármán and re-
lated equations systematically (albeit formally) as the leading term of an
asymptotic expansion in a thickness parameter {5, 6, 8}. (ii) The derivation
of “geometrically exact” equations for the large motion of shells {2, 11, 35}
(which do not rely on any geometric approximation and which describe
new phenomena. Underlying von Kármán’s derivation of his equation are
approximations analogous to replacing the sin function by its cubic approx-
imation.) (iii) The still largely open problem of deriving sharp estimates
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for the errors between solutions of equations for shells and those for the
3-dimensional theory {3}.

Throughout his scientific career, von Kármán maintained a research
interest in problems of solid mechanics. His work on the buckling of elastic
structures has become a standard part of the engineering theory of elastic
stability. His work on plasticity and plastic buckling have had an important
influence on modern developments {14}. But von Kármán’s main research
and engineering efforts after 1914 were increasingly directed towards fluid
dynamics.

The von Kármán vortex street. Von Kármán received his first recogni-
tion in fluid dynamics when he explained the failure of a student of Prandtl’s,
despite herculean efforts, to get rid of oscillations in the experimental mea-
surements of pressure on the surface of a circular cylinder obstructing the
flow of a steady stream of water {32, pp. 62 ff.}. Von Kármán first supposed
that the oscillations are in fact present, and that they are caused by water
rolling up into two trails of vortices (eddies) breaking off from the top and
bottom of the cylinder. (Many years earlier, Helmholtz had observed the
formation of vortices in the flow past a flat plate.) When the assumption
that the vortices were shed simultaneously led to unacceptable instabilities,
von Kármán assumed that they were shed alternately. He then determined
the spacings of these alternating vortices that are stable. Specifically, he
severely idealized the problem {16}: He considered the 2-dimensional irro-
tational flow of an invisicid incompressible fluid produced by two parallel
rows of equally spaced vortices, with one row of vortices rotating in one di-
rection and the other row in the opposite direction, and with each vortex
of one row opposite a midpoint of a pair of vortices of the other row. Since
all the rotation is concentrated at the singular points holding the vortices,
the flow is irrotational away from them. Consequently, the conjugate of the
complex velocity is the derivative of meromorphic function determined by
the poles at the vortices. Von Kármán was able to ignore the source of the
vortices, the cylinder, by regarding it as shifted to infinity. In other words,
he was studying a steady state that could conceivably exist away from the
source. He analyzed the linear stability of the flow by perturbing the loca-
tions of the vortices. Remarkably, the stable dispositions conform well to
what was observed in experiment. For accessible discussions of the physical
and mathematical setting of this work see {34, 36, 41}.

This work provided an explanation of a major and hitherto unknown
source of drag. The collapse of the Tacoma Narrows bridge in 1940 (dis-
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cussed in detail in {31}) is attributed to the resonant forcing produced by a
similar vortex structure that was shed by solid fences when the bridge was
subjected to a steady transverse wind.

The statistical theory of turbulence. Von Kármán, like Prandtl, had
long been concerned with the puzzling phenomena of turbulence, making
important contributions in {17, 19}. His most notable contribution to the
subject was to endow the statistical theory of turbulence initiated by G. I.
Taylor with a rich and useful mathematical structure. In the words of
S. Goldstein {12, p. 349}, “ . . . [H]e dealt mainly with a general systematic
development of [Taylor’s theory in {21, 22, 23}], the last with L. Howarth.
Von Kármán pointed out that the correlations between two velocity com-
ponents at any two points at a distance r apart are the components of a
tensor, which is a function of the vector distance between the points. In
the case of isotropy, the correlation divided by the mean square velocity
depends on just two scalar functions of the distance r and the time t. In
an incompressible fluid, the equation of continuity yields a relation between
these two scalar functions, so only one is involved. If the triple products
of components of velocities at the two points are neglected, an equation
can then be derived from the equations of motion for changes in this single
scalar, which can be used to obtain information about the rate of decay of
the turbulence. The triple correlations were first neglected in this way, but
this is incorrect, as G. I. Taylor pointed out. Von Kármán in fact explictly
stated that if this is incorrect the vortex filaments would have a perma-
nent tendency to be stretched or compressed along the axis of vorticity, and
thought this was not the case; Taylor pointed out that the facts showed
that it was, there being a tendency for the vortex filaments to stretch on
the average. Von Kármán and Howarth showed that the triple correlation
tensor also involves only one scalar function for the case of isotropy for an
incompressible fluid, and that the correlation between pressure and velocity
is zero in this case. A partial differential equation connecting the double and
triple correlation functions was then derived, and equations for the dissipa-
tion of energy and vorticity deduced.” Throughout the next 15 years, von
Kármán continued to contribute novel ideas to the subject of turbulence.
For a technical account of some of this work see {4}.

Mathematical methods in engineering. Following in the footsteps of
his father Mór (Moritz), whose role in modernizing the Hungarian educa-
tional system earned him a ‘von’, von Kármán did much to modernize the
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mathematical training of engineers in the United States and elsewhere. In
the 1930’s the mathematical sophistication of American engineers was far
inferior to that which von Kármán picked up in Göttingen and which he
found valuable in his own work. In pushing for a far richer (but not too
rich an) exposure to real mathematics for engineers, von Kármán demon-
strated the same political astuteness that served him so well in dealing with
bureaucracies as a public figure: In two publications {25, 30} in the 1940’s
directed to engineers on the role of mathematics in engineering, he promi-
nently identified himself as an engineer and put ‘engineer’ or ‘engineering’
in the titles. (These works have a flavor different from that of {18, 28} di-
rected to mathematicians.) In these works he cited stereotypical criticisms
of pure mathematicians: They are concerned with proving the existence of
solutions to equations that every engineer knows to have solutions on phys-
ical grounds, and if mathematicians were ever to solve specific problems,
they would employ the simplest possible geometries (just as von Kármán
did for his vortex street). Having thus demonstrated that he was not a syco-
phant of mathematics, he was then positioned to advocate effectively for the
enrichment of engineers’ actual mathematical education and also for the in-
corporation of mathematical notions in their scientific courses. (He was thus
trying to prevent American engineering students from experiencing his own
unhappy exposure to engineering sciences at the Royal Joseph University,
about which he said, “The conventional courses, such as hydraulics, electric-
ity, steam engineering, or structures, were taught like baking or carpentry,
with little regard for the understanding of nature’s laws which underlie
the sciences” {32, p. 26}.) The popular and valuable book {27}, written
with M. Biot, significantly advanced this program. It contained elementary
treatments of ordinary differential equations, linear algebra, Bessel func-
tions, Fourier methods, and finite differences in the setting of classical and
structural mechanics.

Aeronautics and astronautics. Whereas liquids like water are virtually
incompressible, gases are not, and the effects of compressibility in gases be-
come pronounced when they move at speeds exceeding about a fifth of the
speed of sound. The type of the governing partial differential equations
depends crucially upon whether the fluid is viscous, whether it is compress-
ible, and the local speed at which it moves. The most striking effect of
compressibility is the appearance of shocks (strictly speaking for an invis-
cid compressible fluid), which are discontinuities in the derivatives of the
velocity field and in the pressure field. Von Kármán had published some
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early papers on gas dynamics. In the 1930’s, well before high-speed flight
became a reality, he advocated the creation of a comprehensive theory and
began his fundamental work on it with {20}. In the 1940’s, he began seri-
ous work on rockets and jet propulsion, which would be the main focus of
his activities for the rest of his life. To handle the practical complexities of
high-speed flight both near and away from the earth, he promoted the de-
velopment of aerothermochemistry in which fluid-dynamical, thermal, and
chemical effects are coupled, as for example in combustion. It was not long
before many of these ideas formed the heart of graduate teaching in aero-
nautics. The most accessible scientific treatment of his work in this area is
in his own posthumous tract {33}.

Summary. Von Kármán’s work on fluid dynamics was immediately assim-
ilated into the main stream of the general theory and forms an extensive
contribution of permanent value. Accounts of much of this work can be
found in standard references on fluid dynamics. Von Kármán’s work on
solid mechanics, on the other hand, represented pioneering attacks on non-
linear problems of great theoretical and practical importance. His analyses
continue to challenge his successors, but they cannot be said to represent
permanent contributions, partly because the nonlinear problems he grap-
pled with had not yet been subsumed under a cohesive and mature theory
like that of fluid dynamics.

Appreciations of von Kármán’s scientific contributions are given in nu-
merous obituaries and memorials, among which are {9, 12, 40, 42, 44} all
by fluid-dynamicists. The best place to start to learn of the personal side
of von Kármán is his autobiography {32}, which is valuable also for his
discussion of his research.
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