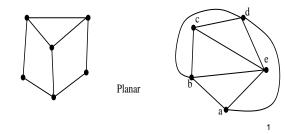
Planar Graphs

A graph G = (V, E) is *planar* if it can be "drawn" on the plane without edges crossing except at endpoints – a *planar embedding* or *plane graph*.

More precisely: there is a 1-1 function $f: V \to \mathbb{R}^2$ and for each $e \in E$ there exists a 1-1 continuous g_e : $[0,1] \to \mathbb{R}^2$ such that

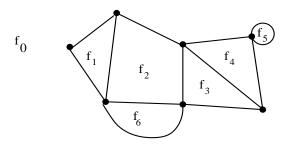
(a) e = xy implies $f(x) = g_e(0)$ and $f(y) = g_e(1)$. (b) $e \neq e'$ implies that $g_e(x) \neq g_{e'}(x')$ for all $x, x' \in (0, 1)$.

 g_e or its image is referred to as a *curve*.



Faces

Given a plane graph G, a face is a maximal region S such that $x, y \in S$ implies that x, y can be joined by a curve which does not meet any edge of the embedding.

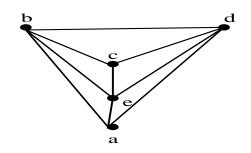


The above embedding has 7 faces. f_0 is the *outer* or *infinite* face.

 $\phi(G)$ is the number of faces of G.

• Theorem (Fáry)

A simple planar graph has an embedding in which all edges are straight lines.



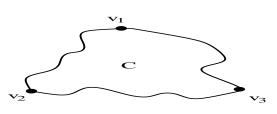
- Not all graphs are planar.
- Graphs can have several non-isomorphic embeddings.

Jordan Curve Theorem

If f is a 1-1 continuous map from the circle $S^1 \rightarrow \mathbb{R}^2$ then f partitions $\mathbb{R}^2 \setminus f(S^1)$ into two disjoint connected open sets Int(f), Ext(f). The former is bounded and the latter is unbounded.

As a consequence, if $x \in Int(f)$, $y \in Ext(f)$ and x, y are joined by a closed curve C in \mathbb{R}^2 then C meets $f(S^1)$.

 K_5 is not planar.

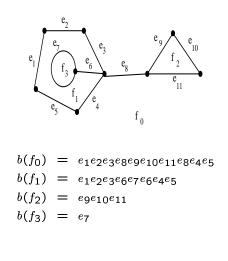


 v_4 is inside or outside of C – assume inside.

Now no place to put v_5 – e.g. if we place v_5 into C_1 then the v_5v_3 curve crosses the boundary of C_1 .

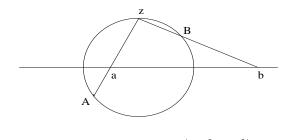
5

The *boundary* b(f) of face f of plane graph G is a closed clockwise walk around the edges of the face.



Stereographic Projection

A graph is embeddable in the plane iff it is embeddable on the surface of a sphere.



 $f: \mathbb{R}^2 \to S^2 \setminus \{z\}.$ $f(x,y) = \left(\frac{2x}{\rho}, \frac{2y}{\rho}, \frac{\rho-2}{\rho}\right)$ where $\rho = 1 + x^2 + y^2.$

Given an embedding on the sphere we can choose z to be any point not an edge or vertex of the embedding. Thus if v is a vertex of a plane graph, G can be embedded in the plane so that v is on the outer face.

The degree d(f) of face f is the number of edges in b(f).

Each edge appears twice as an edge of a boundary and so if F is the set of faces of G, then

$$\sum_{f \in F} d(f) = 2\epsilon$$

A cut edge like e_6 appears twice in the boundary of a single face.

Dual Graphs

Let G be a plane graph. We define its dual $G^* = (V^*, E^*)$ as follows: There is a vertex f^* corresponding to each face f of G.

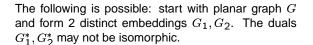
There is an edge e^* corresponding to each edge e of G.

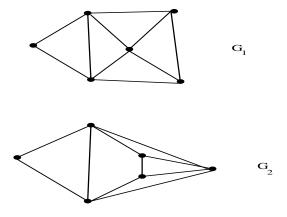
 f^* and g^* are joined by edge e^* iff edge e is on the boundary of f and g. Cut edges yield loops.

Theorem 1

(a) G* is planar.
(b) G connected implies G** = G.

9

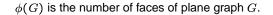




 G_1 has a face of degree 5 and so G_1^* has a vertex of degree 5. G_2^* has maximum degree 4.

Thus duality is a meaningfull notion w.r.t. plane graphs and not planar graphs.

11

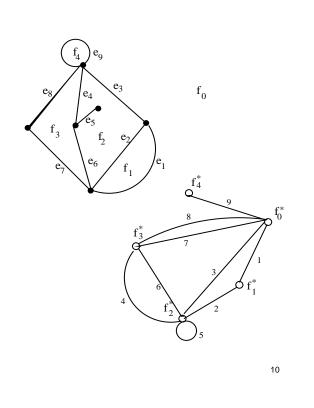


(a) $\nu(G^*) = \phi(G)$.

(b) $\epsilon(G^*) = \epsilon(G)$.

(c) $d_{G^*}(f^*) = d_G(f)$.

Note that (c) says that the *degree* of f^* in G^* is equal to the size of the boundary of f in G.

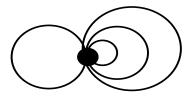


Euler's Formula

Theorem 2 Let G be a connected plane graph. Then

$$\nu - \epsilon + \phi = 2.$$

Proof By induction on ν . If $\nu = 1$ then *G* is a collection of loops.



 $\phi = \epsilon + 1.$

If $\nu > 1$ there must be an edge *e* which is not a loop.

 $\phi(G \cdot e) = \phi(G)$

 $\nu(G \cdot e) = \nu(G) - 1$ $\epsilon(G \cdot e) = \epsilon(G) - 1$

 $\nu(G) - \phi(G) + \epsilon(G) = \nu(G \cdot e) - \phi(G \cdot e) + \epsilon(G \cdot e)$

= 2

Contract *e* to get $G \cdot e$. $G \cdot e$ is connected.

But then

by induction.

13

Corollary 2 If *G* is a simple plane graph with $\nu \ge 3$ then

$$\epsilon \leq 3\nu - 6.$$

Proof Every face has at least 3 edges. Thus

$$2\epsilon = \sum_{f \in F} d(f) \ge 3\phi. \tag{1}$$

Thus by Euler's formula,

$$\nu - \epsilon + \frac{2}{3}\epsilon \ge 2.$$

It follows from the above proof that if $\epsilon = 3\nu - 6$ then there is equality in (1) and so every face of *G* is a triangle.

15

Corollary 3 If G is a planar graph then $\delta(G) \leq 5$.

Proof

$$\nu\delta \leq 2\epsilon \leq 6\nu - 12.$$

Corollary 4 If G is a planar graph then $\chi(G) \leq 6$.

Proof Since each subgraph *H* of *G* is planar we see that the colouring number $\delta^*(G) \leq 5$.

Corollary 5 K_5 is non-planar.

Proof

$$\epsilon(K_5) = 10 > 3\nu(K_5) - 6 = 9.$$

14

Corollary 6 $K_{3,3}$ is non-planar.

Proof $K_{3,3}$ has no odd cycles and so if it could be embedded in the plane, every face would be of size at least 4. In which case

$$4\phi \leq \sum_{f \in F} d(f) = 2\epsilon = 18$$

and so $\phi \leq 4$.

But then from Euler's formula,

$$2 = 6 - 9 + \phi \le 1$$
,

contradiction.

17

Theorem 4 If G is planar then $\chi(G) \leq 5$.

By induction on ν . Trivial for $\nu = 1$.

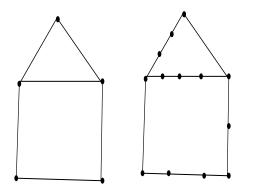
Suppose *G* has $\nu > 1$ vertices and the result is true for all graphs with fewer vertices. *G* has a vertex *v* of degree at most 5. H = G - v can be properly 5-coloured, induction.

If $d_G(v) \leq 4$ then we can colour v with a colour not used by one of its neighbours.

19

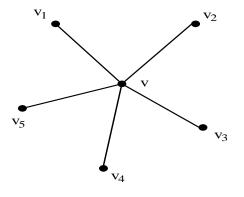
Kuratowski's Theorem

A *sub-division* of a graph G is one which is obtained by replacing edges by (vertex disjoint) paths.



Clearly, if G is planar then any sub-division of G is also planar.

Theorem 3 A graph is non-planar iff it contains a subdivision of $K_{3,3}$ or K_5 . Suppose $d_G(v) = 5$. Take some planar embedding.

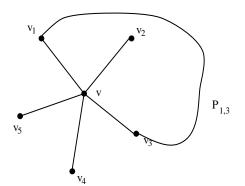


H = G - v can be 5-coloured. We can assume that $c(v_i) \neq c(v_j)$ for $i \neq j$ else we can extend the colouring c to v as previously. We can also assume that $c(v_i) = i$ for $1 \leq i \leq 5$.

Let $K_i = \{u \in V - v : c(u) = i \text{ for } 1 \le i \le 5 \text{ and}$ let $H_{i,j} = H[K_i \cup K_j] \text{ for } 1 \le i < j \le 5.$

First consider $H_{1,3}$. If v_1 and v_3 belong to different components C_1, C_3 of $H_{1,3}$ then we can interchange the colours 1 and 3 in C_1 to get a new proper colouring c' of H with $c'(v_1) = c'(v_3) = 3$ which can then be extended to v.

So assume that there is a path $P_{1,3}$ from v_1 to v_3 which only uses vertices from $K_1 \cup K_3$. Assume w.l.o.g. that v_2 is inside the cycle $(v_1, v, v_3, P_{1,3}, v_1)$,



Now consider $H_{2,4}$. We claim that v_2 and v_4 are in different components C_2, C_4 , in which case we can interchange the colours 2 and 4 in C_2 to get a new colouring c'' with $c''(v_2) = c''(v_4)$.

If v_2 and v_4 are in the same component of $H_{2,4}$ then there is a path $P_{2,4}$ from v_2 to v_4 which only uses vertices of colour 2 or 4. But this path would have to cross $P_{1,3}$ which only uses vertices of colour 1 and 3 – contradiction.