Planar Graphs

A graph G = (V, E) is planar if it can be “drawn” on
the plane without edges crossing except at endpoints
— a planar embedding or plane graph.

More precisely: there is a 1-1 function f : V — R?

and for each e € E there exists a 1-1 continuous ge :
[0,1] — R2 such that

(a) e = zy implies f(z) = ge(0) and f(y) = ge(1).
(b) e # €' implies that ge(z) # g (z')
forall z,z' € (0, 1).

ge Or its image is referred to as a curve.

Planar

Faces

Given a plane graph G, a face is a maximal region S
such that =,y € S implies that z,y can be joined by
a curve which does not meet any edge of the embed-
ding.

The above embedding has 7 faces.
fo is the outer or infinite face.

#(G) is the number of faces of G.

e Theorem (Fary)
A simple planar graph has an embedding in which
all edges are straight lines.

b d

e Not all graphs are planar.

e Graphs can have several non-isomorphic embed-
dings.

Jordan Curve Theorem

If f is a 1-1 continuous map from the circle S1 — R?
then f partitons R? \ f(S1) into two disjoint con-
nected open sets Int(f), Ext(f). The formeris bounded
and the latter is unbounded.

As a consequence, if z € Int(f), y € Ezt(f) and
z,y are joined by a closed curve C in R2 then C
meets f(S1).




K is not planar.

/1

vq is inside or outside of C' — assume inside.

Vi

V2 ! ' V.

3

V1V 3V4Vq etc
define Jordan
curves.

Now no place to put vg — e.g. if we place vg into Cq
then the vgv3 curve crosses the boundary of C1.

The boundary b(f) of face f of plane graph G is a
closed clockwise walk around the edges of the face.

b(fo) = eiexezegegeigeriegeses
b(f1) = eiezezegereseses
b(f2) = ege1pe11

b(f3) = ez

Stereographic Projection

A graph is embeddable in the plane iff it is embed-
dable on the surface of a sphere.

z

>

f:R? = 52\ {z}. f(z,y) = (27“”,%,%2) where
p=1+22+4y2

Given an embedding on the sphere we can choose z
to be any point not an edge or vertex of the embed-
ding. Thus if v is a vertex of a plane graph, G can be
embedded in the plane so that v is on the outer face.
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The degree d(f) of face f is the number of edges in
b(f).

Each edge appears twice as an edge of a boundary
and so if F' is the set of faces of G, then

Z d(f) = 2e.
feFr

A cut edge like eg appears twice in the boundary of a
single face.




Dual Graphs

Let G be a plane graph. We define its dual G* =
(V*, E*) as follows: There is a vertex f* correspond-
ing to each face f of G.

There is an edge e* corresponding to each edge e of
G.

f* and g* are joined by edge e* iff edge e is on the
boundary of f and g.

Cut edges yield loops.

Theorem 1
(a) G* is planar.
(b) G connected implies G** = G.

The following is possible: start with planar graph G
and form 2 distinct embeddings G1,G>. The duals
G731, G5 may not be isomorphic.

G has a face of degree 5 and so G5 has a vertex of
degree 5. G% has maximum degree 4.

Thus duality is a meaningfull notion w.r.t. plane graphs
and not planar graphs.
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¢(@) is the number of faces of plane graph G.

@) v(G*) = ¢(G).

(b) e(G*) = €(G).

(€) dg+(f*) = da(f).

Note that (c) says that the degree of f* in G* is equal
to the size of the boundary of f in G.
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Euler’s Formula

Theorem 2 Let G be a connected plane graph. Then

v—e+op=2.

Proof By induction on v.
If v = 1 then G is a collection of loops.

¢=¢€e+ 1.
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Corollary 1 All plane embeddings of a planar graph
G have the same number € — v + 2 faces.

Corollary 2 If G is a simple plane graph with v > 3
then

e < 3v—6.

Proof Every face has at least 3 edges. Thus

2e=Y d(f) > 3¢. (1)

feF
Thus by Euler’s formula,

2
— —e> 2.
v e+3e_

O

It follows from the above proof that if e = 3v — 6 then
there is equality in (1) and so every face of G is a
triangle.
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If v > 1 there must be an edge e which is not a loop.
Contracteto get G - e.
G - e is connected.

#(G-e) = ¢(G)
v(G-e) = v(G)-1
e(G-e) = e(G)—-1

But then

v(G) —¢(G) +e(G) = v(G-e)—¢(G-e)+e(G-e)
= 2

by induction. m]

14

Corollary 3 If G is a planar graph then 6(G) < 5.

Proof

vd < 2e < 6v—12.

Corollary 4 If G is a planar graph then x(G) < 6.

Proof Since each subgraph H of G is planar we
see that the colouring number §*(G) < 5. |

Corollary 5 Kjg is non-planar.

Proof

e(Ks) =10 > 3v(Ks) — 6 = 0.
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Corollary 6 K3 3 is non-planar.

Proof K3 3 has no odd cycles and so if it could be
embedded in the plane, every face would be of size at
least 4. In which case

4 < > d(f)=2¢=18

feF
and so ¢ < 4.

But then from Euler’s formula,

2=6-9+4+¢<1,

contradiction. O
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Theorem 4 If G is planar then x(G) < 5.

By induction on v. Trivial for v = 1.

Suppose G has v > 1 vertices and the result is true
for all graphs with fewer vertices. G has a vertex v
of degree at most 5. H = G — v can be properly

5-coloured, induction.

If dg(v) < 4 then we can colour v with a colour not
used by one of its neighbours.
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Kuratowski’s Theorem

A sub-division of a graph G is one which is obtained
by replacing edges by (vertex disjoint) paths.

Clearly, if G is planar then any sub-division of G is
also planar.

Theorem 3 A graph is non-planar iff it contains a sub-
division of K3 3 or K.
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Suppose dg(v) = 5. Take some planar embedding.

Vi Vo

Vs
V3

Vg

H = G — v can be 5-coloured. We can assume
that c(v;) 7 c(v;) for i # j else we can extend the
colouring ¢ to v as previously. We can also assume
that c(v;) = ifor1 <7 < 5.
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Let K;={ueV—-v: c(u)=iforl <i<5and
|etHi’j=H[KiUKj]fOI’1§i<j§5.

First consider H; 3. If v1 and vz belong to different
components C1, C3 of Hy 3 then we can interchange
the colours 1 and 3 in C; to get a new proper colour-
ing ¢ of H with ¢/(v1) = ¢/(v3) = 3 which can then
be extended to v.

So assume that there is a path Py 3 from v; to v3

which only uses vertices from K7 U K3. Assume
w.l.o.g. that v5 is inside the cycle (vy,v,v3, Py 3,v1),

21

Vi

13
A

Vg

Now consider H 4. We claim that v and v4 are in
different components Cs, Cy4, in which case we can
interchange the colours 2 and 4 in C5 to get a new
colouring ¢” with ¢’ (vo) = ' (v4).

If v and v4 are in the same component of Hy 4 then

there is a path P54 from vy to vwg Which only uses

vertices of colour 2 or 4. But this path would have to

cross Py 3 which only uses vertices of colour 1 and 3

— contradiction. m|
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