
Planar Graphs

A graph
���������
	��

is planar if it can be “drawn” on
the plane without edges crossing except at endpoints
– a planar embedding or plane graph.

More precisely: there is a 1-1 function 
�� �������
and for each ��� 	

there exists a 1-1 continuous �������� � �"!#�$�%�
such that

(a) � ��&('
implies 
 �)&*�+� �"� � � � and 
 �)'(�,� �-� �.�/� .

(b) �%0� �21 implies that �"� �)&*� 0� � �43 �5& 1 �
for all

&6�)& 17� � � � �/�
.

�-� or its image is referred to as a curve.
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8 Theorem (Fáry)
A simple planar graph has an embedding in which
all edges are straight lines.
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8 Not all graphs are planar.

8 Graphs can have several non-isomorphic embed-
dings.
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Faces

Given a plane graph
�

, a face is a maximal region 9
such that

&*�:' �;9 implies that
&*�:'

can be joined by
a curve which does not meet any edge of the embed-
ding.
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The above embedding has 7 faces.

=< is the outer or infinite face.

>#�
�?�
is the number of faces of

�
.
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Jordan Curve Theorem

If 
 is a 1-1 continuous map from the circle 9A@ �$� �
then 
 partitions

� �CB 
 � 9D@ � into two disjoint con-
nected open sets E-F*G � 
 �.�H	I& G � 
 � . The former is bounded
and the latter is unbounded.

As a consequence, if
& �JE-F*G � 
 �=�K' � 	L& G � 
 � and&*�:'

are joined by a closed curve M in
� �

then M
meets 
 � 9D@ � .
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���
is not planar.
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��� is inside or outside of M – assume inside.

v1 v3 v4v 1 etc.

define Jordan
curves.
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Now no place to put � � – e.g. if we place � � into M @
then the � � ��� curve crosses the boundary of M @ .
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Stereographic Projection

A graph is embeddable in the plane iff it is embed-
dable on the surface of a sphere.
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 � � � � 9 � B	��

�
. 
 �5&6�)'H�?��� ���� � ���� � ��� ���� where� � �	� & � � ' �

.

Given an embedding on the sphere we can choose



to be any point not an edge or vertex of the embed-
ding. Thus if � is a vertex of a plane graph,

�
can be

embedded in the plane so that � is on the outer face.
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The boundary � � 
 � of face 
 of plane graph
�

is a
closed clockwise walk around the edges of the face.
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� � 
.< � � � @ � � � � ��� ����� @ <�� @-@ ��� � � � �� � 
 @ � � � @ � � � � ������� ���"� � � �� � 
 � � � ����� @ < � @ @� � 
 � � � ���
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The degree � � 
 � of face 
 is the number of edges in� � 
 � .
Each edge appears twice as an edge of a boundary
and so if  is the set of faces of

�
, then!"$#&% � � 
 �,�('*),+

A cut edge like � � appears twice in the boundary of a
single face.
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Dual Graphs

Let
�

be a plane graph. We define its dual
��� �

�
���=�
	��2�
as follows: There is a vertex 
 � correspond-

ing to each face 
 of
�

.
There is an edge � � corresponding to each edge � of�

.

 � and � � are joined by edge � � iff edge � is on the
boundary of 
 and � .
Cut edges yield loops.

Theorem 1
(a)

���
is planar.

(b)
�

connected implies
�����+� � +

�
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The following is possible: start with planar graph
�

and form 2 distinct embeddings
�
@
�
� � . The duals� �

@
�
� �� may not be isomorphic.

1

2

G

G

�
@ has a face of degree 5 and so

� �
@ has a vertex of

degree 5.
���� has maximum degree 4.

Thus duality is a meaningfull notion w.r.t. plane graphs
and not planar graphs.
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>#�
�?�
is the number of faces of plane graph

�
.

(a) �
�
� � �,� >#�
�?�

.

(b)
)2�
� � � � )=�
�?�

.

(c) �	��
 � 
 �2�,� �	� � 
 � .
Note that (c) says that the degree of 
 � in

���
is equal

to the size of the boundary of 
 in
�

.
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Euler’s Formula

Theorem 2 Let
�

be a connected plane graph. Then

��� ) � > �(' +

Proof By induction on � .
If �

� �
then

�
is a collection of loops.

> �() � � +
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If � � �
there must be an edge � which is not a loop.

Contract � to get
��� � .��� � is connected.

> �
��� � � � >#�
�?�
�
�
��� � � �

�
�:��� � �)2�
��� � � � )2�
�?� � �

But then

�
�:��� � > �
�?� � )2�
�?� �

�
�
��� � � � >#�
��� � � � )=�:��� � �� '

by induction.
�
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Corollary 1 All plane embeddings of a planar graph�
have the same number

) � � � '
faces.

Corollary 2 If
�

is a simple plane graph with ���	�
then )�
 � ���
� +

Proof Every face has at least 3 edges. Thus' ) � !" #&% � � 
 � ��� > + (1)

Thus by Euler’s formula,

��� ) � '
�
) � ' +

�

It follows from the above proof that if
)D� � ����� then

there is equality in (1) and so every face of
�

is a
triangle.
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Corollary 3 If
�

is a planar graph then � �
�?��
��
.

Proof

��� 
 '*)�
 � ��� �&' +
�

Corollary 4 If
�

is a planar graph then � �
�?��
 � .

Proof Since each subgraph � of
�

is planar we
see that the colouring number � � �:����
��

.
�

Corollary 5
� �

is non-planar.

Proof )2� � � �,� � � � � � � � � � �
� ��� +
�

16



Corollary 6
� ��� � is non-planar.

Proof
� ��� � has no odd cycles and so if it could be

embedded in the plane, every face would be of size at
least 4. In which case

� > 
 !"$#&% � � 
 �,�('*)D� ���

and so
> 
 �

.

But then from Euler’s formula,' � � � � � > 
 �K�
contradiction.

�
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Kuratowski’s Theorem

A sub-division of a graph
�

is one which is obtained
by replacing edges by (vertex disjoint) paths.

Clearly, if
�

is planar then any sub-division of
�

is
also planar.

Theorem 3 A graph is non-planar iff it contains a sub-
division of

� ��� � or
� �

.
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Theorem 4 If
�

is planar then � �
�?��
��
.

By induction on � . Trivial for �
� �

.

Suppose
�

has � � �
vertices and the result is true

for all graphs with fewer vertices.
�

has a vertex �
of degree at most 5. � � � � � can be properly
5-coloured, induction.

If �	� � � � 
 �
then we can colour � with a colour not

used by one of its neighbours.
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Suppose � � � � �,� �
. Take some planar embedding.
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� � � � � can be 5-coloured. We can assume
that � � ��� � 0� � � �	� � for 
 0���

else we can extend the
colouring � to � as previously. We can also assume
that � � � � �,� 
 for

� 
 
 
�� .
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Let
� � � ��� � � � � � � � � � � 
 for

� 
 
 
 � and
let � � � � � � � � ��� � � ! for

� 
 
�� � 
��
.

First consider � @ � � . If � @ and � � belong to different
components M @

� M � of � @ � � then we can interchange
the colours 1 and 3 in M @ to get a new proper colour-
ing ��1 of � with ��1 � � @ � � ��1 � � � �L� � which can then
be extended to � .
So assume that there is a path � @ � � from � @ to � �
which only uses vertices from

�
@ � � � . Assume

w.l.o.g. that � � is inside the cycle
� � @ � � � � � � � @ � � � � @ � ,
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Now consider � � � � . We claim that � � and � � are in
different components M � � M � , in which case we can
interchange the colours 2 and 4 in M � to get a new
colouring � 1 1 with � 1 1 � � � �,� � 1 1 � � � � .
If � � and ��� are in the same component of � � � � then
there is a path � � � � from � � to � � which only uses
vertices of colour 2 or 4. But this path would have to
cross � @ � � which only uses vertices of colour 1 and 3
– contradiction.

�
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