Vertex Colourings

We assume in this chapter that G is simple.
A k - colouring of (the vertices of) G is a mapping

$$
c: V \rightarrow\{1,2, \ldots, k\} .
$$

$c(v)$ is the colour of vertex v.
$K_{i}=\{v \in V: c(v)=i\}$ is the set of vertices with colour i.

c is proper if $K_{1}, K_{2}, \ldots, K_{k}$ are independent sets i.e. adjacent vertices v, w have $c(v) \neq c(w)$.

Greedy Colouring Algorithm

Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{i}=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ for $i=1,2, \ldots, n$.

```
begin
    for i=1 to }n\mathrm{ do
    begin
    c(vi):= min {j:\not\existsw\inN
                                    c(w)=j}
    end
end
```


Theorem 1

$$
\chi(G) \leq \Delta(G)+1
$$

The Greedy Colouring algorithm produces a proper k-colouring for some $k \leq \Delta+1$ where

$$
\begin{equation*}
k \leq 1+\max _{i}\left|N_{G}\left(v_{i}\right) \cap V_{i-1}\right| . \tag{1}
\end{equation*}
$$

(a) The colouring is proper: Suppose $v_{r} v_{s} \in E$ and $r<s . c\left(v_{r}\right) \neq c\left(v_{s}\right)$ since $c\left(v_{s}\right)$ is the lowest numbered colour that is not used by a neighbour of v_{s} in $\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\}$,
(b) At most $\Delta+1$ colours are used: $\left|N_{G}\left(v_{i}\right)\right| \leq \Delta$ and so the minimum above is never more than $\Delta+1$.

If G is a complete graph or an odd cycle then $\chi(G)=$ $\Delta+1$.

Colouring Number

Let

$$
\delta^{*}(G)=\max _{S \subseteq V} \delta(G[S])
$$

(the maximum over the vertex induced subgraphs of their minimum degrees.)

$\delta(G)=2$ and $\delta^{*}(G)=3$.

Theorem 2

$$
\chi(G) \leq \delta^{*}(G)+1
$$

Proof Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where v_{i} is a minimum degree vertex of $G\left[V_{i}\right]$.

Run the greedy colouring algorithm with this vertex order.

$$
\left|N_{G}\left(v_{i}\right) \cap V_{i-1}\right|=\delta\left(G\left[V_{i}\right]\right) \leq \delta^{*}
$$

The theorem follows from (1).

Brook's Theorem

Theorem 3 If G is a connected graph which is not a complete graph or an odd cycle then $\chi(G) \leq \Delta(G)$.

Proof We shall prove this by induction on the number of vertices in G.

Assume that G is connected but not a complete graph or an odd cycle.

If G has a cutpoint v let $G-v$ have components $C_{1}, C_{2}, \ldots, C_{p}$ and let $W_{i}=C_{i}+v$ for $i=1,2, \ldots, p$. Let $k_{i}=\chi\left(G\left[W_{i}\right]\right)$ and properly k_{i}-colour the vertices of each W_{i} so that v has colour 1 in each.

This induces a proper k-colouring of G where $k=$ $\max \left\{k_{1}, k_{2}, \ldots, k_{p}\right\}$.

We argue that $k \leq \Delta$. If say $k_{1}=\Delta+1$ then (by induction) either W_{1} is an odd cycle or a complete graph on k_{1} vertices..

If W_{1} is an odd cycle then $k_{1}=3$ and $\Delta=2$ but now $d_{G}(v) \geq 3$ - contradiction.

If W_{1} is a complete graph on k_{1} vertices then $\Delta \geq$ $d_{G}(v) \geq k_{1}$ - contradiction.

Suppose next that G contains a vertex v with $d_{G}(v) \leq$ $\Delta-1$. Let $H=G-v$.
If H is an odd cycle then $\Delta(G)=3$. We can 3-colour H and then colour v with a colour not used by one of its ≤ 2 neighbours. Thus $\chi(G)=3$ as required.

If H is a k-clique then $\Delta(G)=k$. We k-colour H and extend the colouring to v as v has less than k neighbours in H.

If H is is neither a clique or an odd cycle then we can Δ-colour it. We can extend this colouring to v by using one of the colours not used so far in $N_{G}(v)$.

We can therefore assume that G is Δ-regular and 2connected with $\Delta \geq 3$.

We now consider 2-vertex cutsets. Suppse first that G contains vertices u, v such that $u v \in E$ and u is a cut point of $H=G-v$.

Let $C_{1}, C_{2}, \ldots, C_{k}$ be the components of $H-v$. Each C_{i} contains at least one neighbour x_{i} of v, else u is a cutpoint of G.

Take a Δ-colouring of H. Assume first that all neighbours of u have different colours. Interchange colours c_{1}, c_{2} of x_{1}, x_{2} within C_{2} only.

Because u does not have colour c_{1} or c_{2} and C_{1} has no neighbours other than u we see that this yields a new proper colouring of H, but now x_{1} and x_{2} have the same colour c_{1}.

Thus we can assume that we have a Δ-colouring of H in which 2 neighbours of v have the same colour. This colouring can be extended to v since fewer than Δ colours are being used by neighbours of v.

Suppose then that there are no two neighbours which form a 2 -vertex cut set. We prove the existence of vertices a, b, c such that $a b, a c \in E$ and $b c \notin E$ and $G-\{b, c\}$ is connected.

Choose $y \in V$ and let x be at distance 2 from x. y cannot be a neighbour of every other vertex else G is ($\Delta+1$)-clique. Let x be the middle vertex of a path from x to y of length 2. Then $x y, x z \in E$ and $y z \notin E$.

If $G-\{y z\}$ is connected then let $a, b, c=x, y, z$.

Suppose $C_{2}-\beta$ has components D_{1}, D_{2}, \ldots Then z is adjacent to D_{1} else β is a cutpoint of $G-y$. Similarly, z is adjacent to all components of $C_{1}-\alpha$ and $C_{2}-\beta$. Now H contains the path x, y, z and every other component C_{3}, \ldots, C_{k} is connected to y, z and so H is connected.

Otherwise let $G-\{y z\}$ have components $C_{1}, C_{2}, \ldots, C_{k}$. y has a neighbour $\alpha \neq x$ in C_{1} else x is of degree 2 or is a neighbour of z which is a cutpoint of $G-z$. Similarly, y has a neighbour $\beta \neq x$ in C_{2}.

We claim that $H=G-\{\alpha, \beta\}$ is connected and so we can take $a, b, c=y, \alpha, \beta$.

Suppose that (2) holds. We run the Greedy colouring algorithm with

$$
v_{1}=b, v_{2}=c, v_{3}, \ldots, v_{n-1}, v_{n}=a
$$

The sequence $v_{3}, \ldots, v_{n-1}, v_{n}$ is obtained by doing BFS from a in $G-\{b, c\}$.

The important thing is that for $3 \leq i \leq n-1$

$$
\begin{equation*}
\exists j>i \text { such that } v_{j} \text { is a neighbour of } v_{i} \text {. } \tag{3}
\end{equation*}
$$

Greedy uses at most Δ colours.

v_{1} and v_{2} both get colour 1.

For $3 \leq i \leq n-1$, (3) implies that at most $\Delta-1$ of v_{i} 's neighbours have already been coloured when we come to colour $v-i$.

Finally, $v_{n}=a$ has at least 2 neighbours, b, c using the same colour and so at most $\Delta-1$ colours have been used so far in a 's neighbourhood.

Chromatic Polynomial

$\pi_{k}(G)$ is the number of distinct proper k-colourings of G.

$$
\pi_{\mathrm{k}}=\mathrm{k}(\mathrm{k}-1)(\mathrm{k}-2)
$$

Theorem 4 Let $e=u v$ be an edge of G. Then

$$
\pi_{k}(G)=\pi_{k}(G-e)-\pi_{k}(G \cdot e)
$$

Proof $\quad \pi_{k}(G)=$ the number of k-colourings of $G-e$ in which u, v have different colours. $\pi_{k}(G \cdot e)=$ the number of k-colourings of $G-e$ in which u, v have the same colour.

Theorem $5 \pi_{k}(G)$ is a polynomial of degree ν in k with integer coefficients, leading term k^{ν} and constant term zero. The coefficients alternate in sign.

Proof \quad By induction on $|E|$. If $E=\emptyset$ then $\pi_{k}(G)=$ k^{ν}.

Assume true for all graphs with $<m$ edges and let G be a graph with m edges. Then by induction

$$
\begin{aligned}
\pi_{k}(G-e) & =k^{\nu}+\sum_{i=1}^{\nu-1}(-1)^{\nu-i} a_{i} k^{i} \\
\pi_{k}(G \cdot e) & =k^{\nu-1}+\sum_{i=1}^{\nu-2}(-1)^{\nu-1-i} b_{i} k^{i}
\end{aligned}
$$

where $a_{1}, \ldots, a_{\nu-1}, b_{1}, \ldots, b_{\nu-2}$ are non-negative integers. Then
$\pi_{k}(G)=k^{\nu}-\left(a_{\nu-1}+1\right) k^{\nu-1}+\sum_{i=1}^{\nu-2}(-1)^{\nu-i}\left(a_{i}+b_{i}\right) k^{i}$.

Triangle free graphs with high chromatic number
Theorem 6 For any positive integer k, there exists a triangle-free graph with chromatic number k.

Proof For $k=1,2$ we use K_{1}, K_{2} respectively.
For larger k we use induction on k. Suppose we have a triangle-free graph $G_{k}=\left(V_{k}, E_{k}\right)$ of chromatic number k. Let $V_{k}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Form G_{k} as follows:

Add vertices $\{v\} \cup U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ to G_{k}. Join u_{i} to v and the neighbours of v_{i} in G_{k}, for $1 \leq i \leq n$.
(a) G_{k+1} has no triangles.
U is an independent set and so any triangle will have at most one vertex from U. Thus there are no triangles involving v. Finally, if u_{i}, v_{j}, v_{k} is a triangle then v_{i}, v_{j}, v_{k} is a triangle of G_{k}.
(b) G_{k+1} does not have a proper k-colouring.

Suppose there was one c^{*}. We can assume that $c^{*}(v)=$ k and then U is coloured from $\{1,2, \ldots, k-1\}$. But now we can define a proper $(k-1)$-colouring c of G_{k} by

$$
c\left(v_{i}\right)= \begin{cases}c^{*}\left(v_{i}\right) & \text { if } c^{*}\left(v_{i}\right) \neq k \\ c^{*}\left(u_{i}\right) & \text { if } c^{*}\left(v_{i}\right)=k\end{cases}
$$

This is a proper colouring of G_{k} since if $v_{i} v_{j}$ is an edge of G_{k} with $c\left(v_{i}\right)=c\left(v_{j}\right)$ then exactly one of $c\left(v_{i}\right) \neq c^{*}\left(v_{i}\right)$ or $c\left(v_{j}\right) \neq c^{*}\left(v_{j}\right)$ holds. Assume the former. Then $c^{*}\left(v_{i}\right)=k$ and $c\left(v_{i}\right)=c^{*}\left(u_{i}\right) \neq$ $c^{*}\left(v_{j}\right)=c\left(v_{j}\right)$. Thus G_{k+1} is k-colourable implies G_{k} is $(k-1)$-colourable, which it isn't.
(c) G_{k+1} has a proper $(k+1)$-colouring.

Let c be a proper k-colouring of G_{k}. Extend this to U by putting $c\left(u_{i}\right)=c\left(v_{i}\right)$ and then let $c(v)=k+$ 1. Note that u_{i} and v_{i} have the same colour and the same neighbours in V_{k} and so the colouring remains proper.

