
Vertex Colourings

We assume in this chapter that
�

is simple.

A �������	�
�	�
�	����� of (the vertices of)
�

is a mapping

������������� �!�#"$"#"%� ��&'"
�)(+*�, is the colour of vertex * .

-�.0/ �1*324�5�6�)(+*�, / �7& is the set of vertices with
colour � .
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� is proper if
-38 � -:9 �$"$"$";� -:<

are independent sets
i.e. adjacent vertices *
�+= have �)(+*�,�>/ �)( =?, .

1

�
is ���@���	�
�	�
�	ACB��
D if it has a proper � - colouring.

A graph is � -colourable iff it is � -partite.
The Chromatic Number

E ( � , /GF6HJI �	�3� �
is � -colourable &'"

Lemma 1

E ( � ,LK F3MON �1���P( � ,)�RQTS	UV( � ,W&
where �$�7( � , is the size of the largest clique n

�
.

Proof If X is a clique of
�

then every vertex of X
must have a different colour in a proper colouring of�

.

If
- 8 � - 9 �$"$"#"%� -:<

defines a proper � -colouring then

Q /
<Y.
Z 80[ -�. [O\ �CU]( � ,)"

^
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Greedy Colouring Algorithm

Let � / �1* 8 �+* 9 �$"$"#"%�+*	_�& and � . / �W* 8 � * 9 �#"$"$";�+* . &
for � / ��� �!�#"$"#"%�+� .

begin
for � / � to � do
begin�)(+* . ,�� /`F6HJI �bac�d> eO=f26gihj( * . ,lkm� .on 8

with
�p(+=L, / a�q

end
end
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Theorem 1

E ( � , \sr ( � ,lt5��"

The Greedy Colouring algorithm produces a proper
� -colouring for some � \ur t5� where

� \ �?t F3MCN. [ g�hj(+* . ,lk3� .on 8 [ " (1)

(a) The colouring is proper: Suppose *)v�*	wx2zy and
�x{}| . �)( *	v#,m>/ �)( *	w�, since �p(+*)w�, is the lowest num-
bered colour that is not used by a neighbour of *pw in
�W* 8 �+* 9 �#"$"#"%�+* w n 8 & ,

(b) At most r tG� colours are used: [ g�hj( * . , [%\~r
and so the minimum above is never more than r t}� .^

If
�

is a complete graph or an odd cycle then E ( � , /
r t5� .
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Colouring Number

Let � � ( � , /`F3MCN�����
�
( ���
	�� ,

(the maximum over the vertex induced subgraphs of
their minimum degrees.)

G

�
( � , / � and

� � ( � , /�

.
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Theorem 2

E ( � , \
� � ( � ,0t5��"

Proof Let � / �1* 8 �+* 9 �$"#"#"%�+*	_�& where

* . is a minimum degree vertex of
��� � . � .
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Run the greedy colouring algorithm with this vertex
order.

[ gih (+* . ,lk3� .on 8 [ /
�
( ��� � . � , \

� � "
The theorem follows from (1).

^
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Brook’s Theorem

Theorem 3 If
�

is a connected graph which is not a
complete graph or an odd cycle then E ( � , \ur ( � , .
Proof We shall prove this by induction on the num-
ber of vertices in

�
.

Assume that
�

is connected but not a complete graph
or an odd cycle.

If
�

has a cutpoint * let
� � * have components

X 8 � X 9 �$"$"#"%� X�� and let � .%/ X . t * for � / ���R�;�#"#"$"%��� .
Let � .:/ E ( ��� � . � , and properly � . -colour the ver-
tices of each � .

so that * has colour 1 in each.
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This induces a proper � -colouring of
�

where � /F3MCN �1� 8 � � 9 �$"$"#"%� � � &C"
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We argue that � \ r . If say � 8 / r tG� then (by
induction) either � 8

is an odd cycle or a complete
graph on � 8 vertices..
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If � 8
is an odd cycle then � 8 / 


and r / � but
now

� hj(+*�,LK 

— contradiction.

If � 8
is a complete graph on � 8 vertices then r K

� h (+*�,LKs� 8 — contradiction.

Suppose next that
�

contains a vertex * with
� hj(+*�, \

r �u� . Let � / � � * .
If � is an odd cycle then r ( � , / 


. We can 3-colour
� and then colour * with a colour not used by one of
its \ � neighbours. Thus E ( � , / 


as required.
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If � is a � -clique then r ( � , / � . We � -colour �
and extend the colouring to * as * has less than �
neighbours in � .
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If � is is neither a clique or an odd cycle then we
can r -colour it. We can extend this colouring to * by
using one of the colours not used so far in g hj( *�, .
We can therefore assume that

�
is r -regular and 2-

connected with r K 

.
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We now consider 2-vertex cutsets. Suppse first that�
contains vertices �!� * such that �
* 24y and � is a

cut point of � / � �@* .
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Let X 8 � X 9 �$"$"$";� X <
be the components of �@�j* . Each

X .
contains at least one neighbour � . of * , else � is a

cutpoint of
�

.

Take a r -colouring of � . Assume first that all neigh-
bours of � have different colours. Interchange colours
� 8 �+� 9 of �

8 ��� 9 within X 9
only.

11

c
2

c
2

c
2

c
1

c
2c

1

c
1u

v

c
1

c
c1

Because � does not have colour � 8 or � 9 and X 8
has

no neighbours other than � we see that this yields a
new proper colouring of � , but now �

8
and �

9
have

the same colour � 8 .
Thus we can assume that we have a r -colouring of
� in which 2 neighbours of * have the same colour.
This colouring can be extended to * since fewer than

r colours are being used by neighbours of * .
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Suppose then that there are no two neighbours which
form a 2-vertex cut set. We prove the existence of
vertices A
�+B	�+� such that

AOB	�+AO�?2 y and Bb� S2 y and
� � �1B1� �W& is connected.

(2)

Choose � 2 � and let � be at distance 2 from � . �
cannot be a neighbour of every other vertex else

�
is

( r t �O, -clique. Let � be the middle vertex of a path
from � to � of length 2. Then ��������� 2 y and ���6S2 y .

If
� � �����O& is connected then let A��+B	� � / �;���
��� .
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Otherwise let
� �?�����O& have components X 8 � X 9 �$"$"#"%�RX <

.
� has a neighbour U >/ � in X 8

else � is of degree 2
or is a neighbour of � which is a cutpoint of

� ��� .
Similarly, � has a neighbour � >/ � in X 9

.

xα β

y z

C 1 C 2

We claim that �
/ � � �1U �	� & is connected and so

we can take A
� B1� � / �
�+UV�
� .
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D1

D2

C 1

Suppose X 9 ��� has components � 8 ��� 9 �$"$"#" . Then
� is adjacent to � 8

else � is a cutpoint of
� �
� . Sim-

ilarly, � is adjacent to all components of X 8 � U and
X 9 ��� . Now � contains the path �;���
��� and every
other component X����#"$"$"%�RX <

is connected to ����� and
so � is connected.
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Suppose that (2) holds. We run the Greedy colouring
algorithm with

* 8 / B1� * 9 / �	� *����#"$"$"%� * _ n 8 �+*	_ / A
The sequence *��T�#"#"$"%�+* _ n 8 � *1_ is obtained by doing
BFS from A in

� � �WB	�+�1& .

a=vb

c
v

v

v vv

v

v
8

7

6

5

4

3

1

2

The important thing is that for

 \ � \ �m�s�

e	a�� � such that *�� is a neighbour of * . . (3)
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Greedy uses at most r colours.

* 8 and * 9 both get colour 1.

For

 \ � \ �3�z� , (3) implies that at most r �u� of

* . ’s neighbours have already been coloured when we
come to colour * �@� .
Finally, *	_ / A has at least 2 neighbours, B1� � using
the same colour and so at most r � � colours have
been used so far in A ’s neighbourhood.

^
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Chromatic Polynomial

� < ( � , is the number of distinct proper � -colourings of�
.

π

π

k =k(k-1)(k-2)

k = k(k-1) 7

Theorem 4 Let D / ��* be an edge of
�

. Then

� < ( � , / � < ( � �4D1,]� � < ( ��� DW,)"
Proof � < ( � , = the number of � -colourings of� �4D in which �!� * have different colours.� < ( ��� D1, = the number of � -colourings of

� �zD in
which �!�+* have the same colour.

^
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Theorem 5 � < ( � , is a polynomial of degree Q in �
with integer coefficients, leading term � � and constant
term zero. The coefficients alternate in sign.

Proof By induction on [ y [ . If y /��
then � < ( � , /

� � .
Assume true for all graphs with {�� edges and let

�
be a graph with � edges. Then by induction

� < ( � ��D1, / � � t
� n 8Y.
Z 8 ($� �O, � n%. A . � .

� < ( ��� D1, / � � n 8 t
� n 9Y.oZ 8 (#� �O, � n 8 n%. B . � .

where A 8 �$"$"#"%�+A � n 8 � B 8 �#"$"$"%� B � n 9
are non-negative in-

tegers. Then

� < ( � , / � � ��( A � n 8 t4�O,$� � n 8 t
� n 9Y.
Z 8 ($� �O, � n%. (+A . t3B . ,#� . "

^
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Triangle free graphs with high chromatic number

Theorem 6 For any positive integer � , there exists a
triangle-free graph with chromatic number � .

Proof For � / ��� � we use
-38 � -:9

respectively.

For larger � we use induction on � . Suppose we have
a triangle-free graph

� <L/ (R� < �+y < , of chromatic num-
ber � . Let � < / �1* 8 �+* 9 �#"$"$";�+*	_�& . Form

� <
as fol-

lows:

uvi i

v

Add vertices �1*T&
	�� / �1� 8 � � 9 �$"$"#"%� ��_�& to
� <

. Join� . to * and the neighbours of * . in
� <

, for � \ � \ � .
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(a)
� <�� 8

has no triangles.
� is an independent set and so any triangle will have
at most one vertex from � . Thus there are no trian-
gles involving * . Finally, if � . � * �'�+* < is a triangle then
* . �+* � �+* < is a triangle of

� <
.

(b)
� <�� 8

does not have a proper � -colouring.
Suppose there was one � � . We can assume that � � (+*�, /
� and then � is coloured from ����� �!�$"#"$"%�R���s��& . But
now we can define a proper ( �?���C, -colouring � of

� <
by

�)(+* . , /�� � � (+* . , if � � (+* . ,�>/ �� � (+� . , if � � (+* . , / �
This is a proper colouring of

� <
since if * . * � is an

edge of
� <

with �)(+* . , / �)(+* � , then exactly one of
�)(+* . ,f>/ � � ( * . , or �)( * �	, >/ � � (+*��1, holds. Assume
the former. Then � � (+* . , / � and �)(+* . , / � � (+� . , >/
� � ( * �	, / �)( * �	, . Thus

� <�� 8
is � -colourable implies� <

is ( ���s�O, -colourable, which it isn’t.
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(c)
� <�� 8

has a proper ( �it5�O, -colouring.
Let � be a proper � -colouring of

� <
. Extend this to

� by putting �)(+� . , / �p(+* . , and then let �)(+*�, / � t
� . Note that � . and * . have the same colour and the
same neighbours in � < and so the colouring remains
proper.
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