Independent sets and cliques

S C V is independent if no edge of G has both of its
endpoints in S.

Proof
@d+p <v

Let M be a maximum matching of G.
Let U be the set of vertices unsaturated by M.

Cover U with edges X, | X| = |U]|.

M U X is a cover.

M M M
X X
a(G)=maximum size of an independent set of G.
Lemma1l S is independentiff V' \ S is a cover. v
Corollary 1 g< M|+ |X]
= o + (v -2d)
a(@) + B(G) = v. = v—d.
1 3
b) ' + 6" >v.

L C Eis an edge covering if every v € V is contained
in an edge of L.

1

B'(G)=minimum size of an edge cover
o/ (G)=maximum size of a matching.

Theorem 1 If there are no isolated vertices then

o +48 =

Let L be a minimum edge cover of G.
G[L] is a collection of disjoint stars S1, So, ..., Sk.

M

[\ N N
X

[t condned N7 thenL-y isasmaler cover)

Choose matching M, one edge from each S;.

F=L = vk
= v—|[M]
> v—d




Ramsey’s Theorem

Suppose we 2-colour the edges K¢ of Red and Blue.
There must be either a Red triangle or a Blue triangle.

This is not true for K.

There are 3 edges of the same colour incident with
vertex 1, say (1,2), (1,3), (1,4) are Red. Either (2,3,4)
is a blue triangle or one of the edges of (2,3,4) is Red,
say (2,3). But the latter implies (1,2,3) is a Red trian-
gle.




Ramsey’s Theorem

For all positive integers k, £ there exists R(k, £) such
thatif N > R(k,¢) and the edges of K are coloured
Red or Blue then then either there is a “Red k-clique”
or there is a “Blue £-clique.

A clique is a complete subgraph and it is Red if all of

its edges are coloured red etc.

R(1,k)
R(2,k)

R(k,1)
R(k,2)

Theorem 2

R(k,£) < R(k,£ — 1) + R(k — 1,¢).

Proof Let N = R(k,£— 1)+ R(k —1,%).

Vg ={(z: (1,z) is coloured Red} and Vg = {(z :

(1,z) is coloured Blue}.

Since

VRl +1|VB] = N-1
= R(k,f—1)+R(k—1,0) — 1.

Suppose for example that |Vg| > R(k — 1,¢). Then
either Vg contains a Blue ¢-clique — done, or it con-
tains a Red k — 1-clique K. But then K U {1} is a
Red k-clique.

Similarly, if [Vg| > R(k,£—1) then either V5 contains
a Red k-clique — done, or it contains a Blue ¢ — 1-
clique L and then L U {1} is a Blue ¢-clique. O




Theorem 3
k+4¢—2
R(k,e)g( L1 )

Proof Induction on k + £. True for k 4+ £ < 5 say.
Then

R(k,£) < R(k,£—1)+ R(k—1,¢)

k+£—-3 k+¢-3
< (a0
k+£—2
= ( k—1 )'
O
So, for example,
RGsE) < (277
< 4k
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Let C1,Co,...,Cn, N = (Z) be the vertices of the

N k-cliques of Ky,
Let £ ; be the event: {C; is Red}.

Pr(égrUéB) < Pr(&r)+ Pr(&p)
= QPI‘((SR)

N
QPI‘ U ER,]'
j=1

N
2 Z Pr(SR,]‘)

(1)(9
2

IN
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nk /1 ®
2 (=
5 ()

k*/2 ®
< 227 (2
- k' \2
21+k/2
k!

< 1.
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Theorem 4
R(k, k) > 2k/2

Proof  We must prove that if n < 2%/2 then there
exists a Red-Blue colouring of the edges of Ky, which
contains no Red k-clique and no Blue k-clique. We
can assume k > 4 since we know R(3,3) = 6.

We show that this is true with positive probability in a
random Red-Blue colouring. So let 2 be the set of all
Red-Blue edge colourings of Ky, with uniform distribu-
tion. Equivalently we independently colour each edge
Red with probability 1/2 and Blue with probability 1/2.

Let
&g be the event: {There is a Red k-clique} and
Epg be the event: {There is a Blue k-clique}.

We show
Pr(EgrUép) < 1.

11

More than two colours

n > R(ki,ko,...,km) implies that if the edges of
Ky, are coloured with {1,2,... ,m} then 3z : K,
contains a k;-clique all of whose edges have colour 3.
These numbers exist and satisfy

Theorem 5 (a)

R(kl,k:Q,... ,km) <
R(ky —1,ko, ...  km)—+
Rk1,ko—1,...  km)+
+---+R(k1,ko,... ykm—1)—(m—2).
(b)
(k1+k2+“‘+km_m)!
Rlk1, k2, km) < (k1 — D!(ka — 1)1 (km — 1)1

O

13




Schur’s Theorem

Theorem 6 For any k > 1 there exists an integer f
such that for any partition S1, S, ... , S of {1,2,..., fi}
there exists an < and a,b,c € S; such thata + b= c.

Proof Let f = fr, = R(3,3,...,3). Edge colour
Kf by

zy gets colour 7 iff [z — y| € S;.
There exists ¢ such that a triangle is coloured i.

X<y<z
z
a = y—z€S;
b = z—yes;
c = z—x2 €S
a+b = ¢
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t-partite graphs

G is t-partite if V = V; U Vo U --- U V4 is a partition
where V7, V5, ..., V4 are independent sets.

3-partite

A t-partite graph is K 1-free — pigeon hole princi-
ple.

Kmq,mo,...,m; IS @ complete t-partite graph.
Vil =m;forl <i<t.
Every vertex in V; is connected to every vertex in V;
byanedge, 1 <i<j<t.
16

Turan’s Theorem

A graph is Ky — free if it contains no clique of size
m (or more).

How many edges can a there be in a Ky, — free
graph?

m = 3 —triangle free.

K|, /2],[v/2] has no triangles and no triangle free graph
with v vertices has more edges.
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Therefore
t—1 t
G(Kml,mg,...,mt) = Z Z mim;.
i=1j=i+1

Which v vertex t-partite graph has most edges?

Suppose v = kt + £ where 0 < £ < t.

Tty = Kipk,... k+1
(t—£ k's and £ k+1's in the sequence k, k, ... ,k+1.)

Lemma?2 Ifmqy +mo 4+ --- 4+ my = v then

6(I{Tnlv,’nQv"' vmt) < E(n,ll)
unless Kmy mo,...,ms = Tt -

Proof Suppose that mo > mq + 2. Then

€(I(ml—i-l,mg—l,...,m,g) = e(Kmymo,..,ms) +
+mo—mp—1
> G(Kml,mg,... ,mt)~
So if the block sizes are not as even as possible, the
number of edges is not maximum. a
17




G1 = (V, E1) degree majorises Go = (V, E») if
dg,(v) > dg,(v) forallv € V.
We write G1 >4, Go.

Theorem 7 If G is simple and K, 1 free then there
exists a complete m-partite graph H such that

(@) H 24 G-

(b) e(G) = e(H) implies that G £ H.

Proof By induction on m.
True for m = 1 as K»-free means E = ().

Assume the result for m’ < m and let G be Kmg1-
free.

18

Let
H =V, /NG;.

H containsall
possible Vlzvzedga

<
® ®© ® 060600 O

We claim that
H >4y G.

v € V, implies dg(v)
v € V7 implies dg(v)

A =dg(v)
[Va| +dg, (v)
|Va| + dp, (v)
dg(v)

A IAIA
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Let da(u) = A(G), Vi = N(u), |[Vi| = A and
Vo =V \1WA.

G1 = G[V1] is K -free.

There is a complete (m — 1)-partite graph H7 such
that Hy >4, G1 — induction.

19

(b) Now suppose that e(G) = e(H). This implies that
da(v) =dg(v) forallv e V.

Let ¢ be the number of edges contained in V5. We
claim thatt = 0.

AlVp| = 2t+|V2: V]
«(G) = t+|Va: V1| +e(G1)
e(H) = A|Va|+ e(Hy).
So00 <t =¢€e(G1) —e(H1) < 0. Thus e(G1) =
€(G») and V5 is an independent set in G. We can
now use induction to argue that G; = H; and then
G=H. |

21




Theorem 8 If G is simple and K, 1-free then

@ (@) < ﬁ(Tm7y).

(b) (@) = e(Tm,v) imipies that G = T .

Proof (a) follows from Lemma 2 and Theorem 7a.
For (b) we observe that the graph H of Theorem 7
satisfies
e(G) = e(H) =e(Tmy)
G = H

But then e(H) = e(Tm,,) and Lemma 2 implies that
HZ Ty O

22
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There exist 4, j, k such that /X1 X; X}, > m/2. Then

12> X XE)? > X X512 + | X5 X5/

24

Geometry Problem

Theorem 9 Let X1, X, ..., Xn be points in the plane
suchthatforl1 <i<j<n

|Xi — X;/ < 1.
Then

{G,3) i< jand|X; — X;| > 1/v2}| < [n?/3].

Proof Define graph G with V. = {1,2,... ,n}
and E = {(4,7) : |X; — X,| > 1/v/2}. We claim
that G has no K4 and so

|B| < e(T3,) = [n°/3].

23

The circles are of radius r and the sides of the triangle
are 1 —2r where 0 < r < (1 — 1/4/2)/4. The
n points are split as evenly as possible within each
circle.

25




Theorem 10 If d = 2¢/v = the average degree of
simple graph G then

(@) 2

d+1

Proof Letw(1),n(2),...,n(v) be an arbitrary per-
mutation of V. Let N(v) denote the set of neighbours
of vertex v and let

I(r) ={v: m(w) >w(v) forallw € N(v)}.

Claim 1 I is an independent set.

b d
h
a
c e g
ab c de fghl
m ¢ b f haged {cf}
mp g f h d e a b c {g,da}
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Now &(v) = 1 if v comes before all of its neighbours
in the order 7. Thus

1
Pr(6(v) =1) > m

and the claim follows. O

Thus there exists a 7 such that
1
(m)| > e
X +1
and so

1
MO D —
Zoawy+1

We finish the proof of Theorem 10 by showing that
1 v
)3 >
Sdw)+17d+1
This follows from the following claim by putting =, =
d(v) +1forveV.

Claim 3 If z1,x2,...2; > 0 then

1 1 1 k2
S T 44> @1
w1+m2+ +$k_m1+$2+"'+wk @)
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Proof of Claim 1

Suppose wi,wy € I(w) and wiwy € E. Suppose

m(wy) < w(wp). Then wy ¢ I(w) — contradiction.
O

Now let = be a random permutation.

Claim 2
1
Proof of Claim 2
Let
1 vel
8(v) = { 0 v¢I
Thus
1l = Y 6(v)
veV
E(I)) = Y E(5(v))
veV

= Y Pr(5(v) =1).

veV
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Proof of Claim 3

Multiplying (1) by 1 + 22 + - - - + = and subtracting

k from both sides we see that (1) is equivalent to
x—+ﬁ) > k(k — 1). 2

1<i<j<k <‘”j Z4
But for all z,y > 0

and (2) follows. m]
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Parallel searching for the maximum — Valiant

We have n processors and n numbers 1, xo, ... , Zn.
In each round we choose n pairs Z, 7 and compare the
values of z;, z;.

The set of pairs chosen in a round can depend on the
results of previous comparisons.

Aim: find ¢* such that z;x = max; ;.

Claim 4 For any algorithm there exists an input which
requires at least % log, logs i rounds.

30

Let C(a, b) be the maximum number of rounds needed
for a processors to compute the maximum of b values
in this way.

Lemma 3

b2
C(a,b) >1+4+C (a, [M‘D .

Proof The set of b comparisons defines a b-edge
graph G on a vertices where comparison of x;, z; pro-
duces an edge 75 of G. Theorem 10 implies that

b b2
a(G) 2 |5, = " -‘ .
P41 2a+b
For any independent set I it is always possible to de-
fine values for z1,z, ... ,zq Such I is the index set
of the |I| largest values and so that the comparisons

do not yield any information about the ordering of the
elements z;,i € I.

Thus after one round one has the problem of finding
the maximum among a(G) elements. a
32

Suppose that the first round of comparisons involves
comparing z;, z; for edge 45 of the above graph and
that the arrows point to the larger of the two values.
Consider the independent set {1,2,5,8,9,}. These
are the indices of the 5 largest elements, but their rel-
ative order can be arbitrary since there is no implied
relation between their values.
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Now define the sequence cg, c1,... by cg = n and

g = | %
1T o, 4+l
It follows from Lemma 3 that
ci > 2 implies C(n,n) > k+ 1.

Claim 4 now follows from

Claim 5

> n
c; > —
32¢-1

By induction on <. Trivial for 4 = 0. Then

> 1
c; .
i+1 = 32i+12 2n+32?71
n 3
IR T S
320-1
n
>
- 32’+171
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