Edge Colourings

We assume in this chapter that G has no loops.

A $k-edge\ colouring\ of\ G$ is a mapping

$$c: E \to \{1, 2, \dots, k\}.$$

c(e) is the colour of edge e.

 $M_i = \{e \in E : c(e) = i\}$ is the set of edges with colour i.

c is proper if M_1,M_2,\ldots,M_k are matchings i.e. edges e,f sharing a common vertex have $c(e)\neq c(f)$.

Bipartite Graphs

Theorem 1 If G is a k-regular bipartite graph then $\chi'(G) = k$.

Proof $\chi'(G) \ge k$ by Lemma 1. We prove by induction on k that G has a proper k-colouring.

k=1: G is a matching covering all vertices and so is 1-edge colourable.

Assume that $\chi'(H)=\ell$ for all ℓ -regular bipartite graphs with $\ell < k$.

G contains a perfect matching M.

G-M is (k-1)-regular and so, by the inductive hypothesis, has a proper (k-1)-edge colouring c'. Define a proper k-edge colouring c of G by

$$c(e) = \begin{cases} c'(e) & e \notin M \\ k & e \in M \end{cases}$$

3

G is $k-edge\ colourable$ if it has a proper k-edge colouring.

 $\chi'(G) = \min\{k : G \text{ is } k\text{-edge colourable}\}.$

Lemma 1

$$\chi'(G) > \Delta(G)$$
.

Proof If $d(v) = \Delta$ then every edge incident with v must have a distinct colour in a proper edge colouring. \Box

Lemma 2 If G' is a subgraph of G then

$$\chi'(G) \geq \chi'(G')$$
.

Proof A proper colouring of G induces a proper colouring of G'. \Box

Corollary 1 If G is bipartite then $\chi'(G) = \Delta$.

Proof We add edges to G to produce a Δ -regular bipartite graph G'. (Repeatedly join pairs of vertices of degree < Δ until the graph is Δ -regular.)

Then

$$\Delta \leq \chi'(G) \leq \chi'(G') = \Delta.$$

Lemma 3 Let M,N be disjoint matchings of G with |M|>|N|. Then there exist disjoint matchings M',N' such that (i) $M'\cup N'=M\cup N$ and (ii) |M'|=|M|-1, |N'|=|N|+1.

Proof $G[M \cup N]$ contains at least one alternating path P which starts and ends with M-edges.

Let $M'=M\Delta P$ and $N'=N\Delta P$ i.e. remove the M-edges of P from M and replace them by the N-edges of P to obtain M'. Remove the N-edges of P from N and replace them by the M-edges of P to obtain N'.

5

Theorem 2 If G is a bipartite graph and $p \geq \Delta$ then there exists a p-edge colouring $M_1 \cup M_2 \cup \cdots \cup M_p$ such that

$$\lfloor |E|/p \rfloor \le |M_i| \le \lceil |E|/p \rceil \qquad 1 \le i \le p. \tag{1}$$

Proof Start with an arbitrary proper p-edge colouring of E (some colour classes may be empty.) If there exist a pair of matchings M_i, M_j which differ in size by 2 or more then use Lemma 3 to reduce the larger and increase the smaller. This yields a new proper edge colouring.

Repeat until (1) holds.

School Timetabling

m teachers A_1, A_2, \ldots, A_m . n classes B_1, B_2, \ldots, B_n . A_i teaches class B_j $p_{i,j}$ times. r rooms available.

Let

$$\begin{array}{ll} \Delta &=& \max \left\{ \max_{i=1}^m \sum_{j=1}^n p_{i,j}, \max_{j=1}^n \sum_{i=1}^m p_{i,j} \right\} \\ &=& \max \max \text{ class/teacher load} \end{array}$$

$$\ell = \sum_{i=1}^{m} \sum_{j=1}^{n} p_{i,j}$$
= total number of classes

Clearly we need at least

$$p = \max\{\Delta, \lceil \ell/r \rceil\}$$

periods.

Theorem 3 There is a feasible p period timetable.

7

Proof Define the bipartite graph G with $A = \{A_1, A_2, \ldots, A_m\}$, $B = \{B_1, B_2, \ldots, B_n\}$ and $p_{i,j}$ edges joining A_i and B_j .

G has maximum degree Δ .

By Theorem 2 G has a p-edge colouring M_1, M_2, \ldots, M_p with

$$|M_i| \le \lceil \ell/p \rceil \le \lceil \ell/\lceil \ell/r \rceil \rceil \le r.$$

Each M_i represents the teaching of a particular period. \Box

6

Vizing's Theorem

If G is an odd cycle then $\chi'(G) = 3 > \Delta(G) = 2$

Theorem 4 If G is simple then

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1.$$

Proof We need to prove the existence of a proper $(\Delta+1)$ -edge colouring. We prove this by induction on |V|. It is clearly true for |V|=1.

Assume inductively that the theorem is true for all simple graphs with fewer than n vertices and suppose that |V|=n.

 e_1 e_2 v

Colours F_1 missing at these edges.

To apply the lemma we let $r=d_G(v)$. e_1,e_2,\ldots,e_r are all the edges incident with v. $F_0=\{1,2,\ldots,\Delta+1\}.$ $|F_i|\geq 2$ for $1\leq i\leq r$ since if w_i is a neighbour of v in G then $d_{G'}(w_i)\leq \Delta-1$.

So we can apply Lemma 4 to conclude that G is $\Delta+1$ colourable. $\hfill\Box$

Proof of Lemma 4 This is by induction on r.

11

10

For $v \in V$ let G' = G - v.

$$\chi'(G') \le \Delta(G') + 1 \le \Delta(G) + 1$$
 induction.

Thus there is a $k = \Delta + 1$ proper edge colouring of the edges of G'.

Viziing's theorem follows from

Lemma 4 Let G be a simple graph, $v \in V$ and $e_1, e_2, \ldots, e_r \in E$ be incident with v where $e_i = vw_i, 1 \le i \le r$ and $w_0 = v$.

Suppose $k > \Delta(G)$ and $G^* = G - \{e_1, e_2, \dots, e_r\}$ is k-edge colourable with the following property: F_i is the set of colours not used on the edges incident with w_i for $0 \le i \le r$.

 $|F_i \cap F_0| \ge 2$, $2 \le i \le r$. $|F_1 \cap F_0| \ge 1$.

Then G is k-edge colourable.

Case r=1: we extend the colouring of G^* to G by giving e_1 a colour from $F_0 \cap F_1$.

Inductive Step

Choose $C_1 \subseteq F_0 \cap F_1$ and $C_i \subseteq F_0 \cap F_i$ where

$$|C_1| = 1$$
 and $|C_i| = 2$ for $2 \le i \le r$.

SubCase 1: There is a colour α such that α is in exactly **one** of C_1, C_2, \ldots, C_r . Suppose $\alpha \in C_i$. Colour e_i with α .

 $\alpha \notin C_j$ for $j \neq i$ and so the colours C_j are still missing from v and w_j for $j \neq i$. We can apply induction for the case r-1 to finish the colouring.

SubCase 2: No colour occurs in exactly one C_i .

There exists a colour $\alpha \in F_0 \setminus \bigcup_{i=1}^r C_i$. $(|F_0| \ge k - (\Delta - r) > r \text{ and } |\bigcup_{i=1}^r C_i| < r.)$

Let $C_1=\{\beta\}$ and let P be the path containing w_1 in the subgraph of G' induced by edges of colour α or β .

Note that $x \neq v$ or w_1 since α, β are both missing at v and β is missing at w_1 .

The vertices in the interior of ${\it P}$ have the same set of missing colours after the exchange of colours.

Thus at most one C_i , $i \geq 2$ changes (if $x = w_i$) and then by one. We have coloured one more edge, e_1 , and so we can again apply induction for the case r-1 to finish the colouring.

13 15

Recolour P

