Edge Colourings
We assume in this chapter that G has no loops.

A k — edge colouring of G is a mapping
c: E—{1,2,...,k}.
c(e) is the colour of edge e.

M; = {e € E: c(e) = i} is the set of edges
with colour <.
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cis proper if My, Mo, ..., M, are matchings i.e.

edges e, f sharing a common vertex have c(e) #

().

Bipartite Graphs

Theorem 1 If G is a k-regular bipartite graph
then X'(G) = k.

Proof x'(G) > k by Lemma 1. We prove
by induction on k that G has a proper k-colouring.

k = 1: G is a matching covering all vertices
and so is 1-edge colourable.

Assume that x/(H) = ¢ for all ¢-regular bipar-
tite graphs with 2 < k.

G contains a perfect matching M.
G—M is (k—1)-regular and so, by the inductive
hypothesis, has a proper (k—1)-edge colouring

. Define a proper k-edge colouring ¢ of G by
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G is k—edge colourable if it has a proper k-edge
colouring.
X' (G) = min{k : G is k-edge colourable}.
Corollary 1 If G is bipartite then x'(G) = A.
Lemma 1
X'(G) > A(R). Proof We add edges to G to produce a
A-regular bipartite graph G'.
(Repeatedly join pairs of vertices of degree <
Proof If d(v) = A then every edge inci- A until the graph is A-regular.)
dent with v must have a distinct colour in a
proper edge colouring. | Then

Lemma 2 If G’ is a subgraph of G then

X'(G) > X'(G).

Proof A proper colouring of GG induces a
proper colouring of G'. |

A <X(G) <X(G) = A.




Lemma 3 Let M,N be disjoint matchings of
G with |[M| > |N|. Then there exist disjoint
matchings M', N' such that (i) M'UN' = MUN
and (ii) |M'| = |M| -1, |N'| = |N|+ 1.

Proof G[M U N] contains at least one al-
ternating path P which starts and ends with
M-edges.

Let M/ = MAP and N/ = NAP i.e. remove
the M-edges of P from M and replace them by
the N-edges of P to obtain M’'. Remove the
N-edges of P from N and replace them by the
M-edges of P to obtain N’. O

School Timetabling

m teachers Ay, Ao, ..., An.

n classes By, By,... ,Bnp.

A; teaches class Bj p; ; times.
r rooms available.

Let

m n A m
A = max {gﬂzaf 2 Pij» Max ; Pi,j
j=1 i=1
= maximum class/teacher load
m n
L= 3 > pij
i=1j=1
= total number of classes
Clearly we need at least
p=max{A,[{/r]}

periods.

Theorem 3 There is a feasible p period timetable.
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Theorem 2 IfG is a bipartite graph andp > A
then there exists a p-edge colouring My U MU
---U My such that

LIEl/p] < [M;] < T|E|/p] 1<i<p.
(1)

Proof Start with an arbitrary proper p-
edge colouring of E (some colour classes may
be empty.) If there exist a pair of matchings
M;, M; which differ in size by 2 or more then
use Lemma 3 to reduce the larger and increase
the smaller. This yields a new proper edge
colouring.

Repeat until (1) holds. O

Proof Define the bipartite graph G with
A = {A1,As,... ,Am}, B = {B1,B>,...,Bn}
and p; ; edges joining A; and B;.

G has maximum degree A.
By Theorem 2 G has a p-edge colouring
My, Mo, ..., Mp with

|M;| < [¢/p] < [4/Te/r]] <.

Each M; represents the teaching of a particular
period. m|




Vizing’s Theorem

If G is an odd cycle then x'(G) =3 > A(GQ) =
2.

Theorem 4 If G is simple then

A(G) <X(G) < AG) + 1.

Proof We need to prove the existence of
a proper (A + 1)-edge colouring. We prove
this by induction on |V|. It is clearly true for
V] =1.

Assume inductively that the theorem is true
for all simple graphs with fewer than n vertices
and suppose that |V| =n.

Colours Fy

missing at these
edges.

€1

To apply the lemma we let » = dg(v).
e1,en,...,ep are all the edges incident with v.
Fo={1,2,...,A+1}.

|F;| > 2 for 1 <4 <r since if w; is a neighbour
of v in G then dg(w;) < A —1.

So we can apply Lemma 4 to conclude that G
is A 4+ 1 colourable. O

Proof of Lemma 4 This is by induction on r.
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ForveVlet G =G —w.

X'(G) < AG)+H1 < Aa(@)+1 induction.

Thus there is a k = A+ 1 proper edge colour-
ing of the edges of G'.

Viziing's theorem follows from

Lemma 4 Let G be a simple graph, v € V and
e1,ep,... ,er € E be incident with v where e; =
vw;, 1 <1< r and wg = v.

Suppose k > A(G) and G* = G—{e1,e2,... ,er}
is k-edge colourable with the following prop-
erty: F; is the set of colours not used on the
edges incident with w; for 0 <i <.

|F;nFol>2, 2<i<r.
|F1 N Fol > 1.

Then G is k-edge colourable.
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Case r=1: we extend the colouring of G* to
G by giving e; a colour from Fpn Fy.

Inductive Step
Choose C1 C FoN Fy and C; C Fp N F; where

|Ci]=1and |C;| =2 for 2< i<
SubCase 1: There is a colour a such that

« is in exactly one of C1,C5,...,Cr. Suppose
a € C;. Colour e; with a.

ws

a ¢ Cj for j # i and so the colours C; are still
missing from v and w; for j # 1.
We can apply induction for the case r — 1 to
finish the colouring.
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SubCase 2: No colour occurs in exactly one
C;.

There exists a colour a € Fo \U—; C;.
(|JFol>k—=(A—=r)>rand |[U_{Ci| <7.)

Let C; = {8} and let P be the path containing

wy in the subgraph of G’ induced by edges of
colour « or 3.

13

Note that =z # v or wj since «, 3 are both miss-
ing at v and B is missing at wj.

The vertices in the interior of P have the same
set of missing colours after the exchange of
colours.

Thus at most one C;,7 > 2 changes (if z = w;)
and then by one. We have coloured one more
edge, ey, and so we can again apply induction
for the case r — 1 to finish the colouring.
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