Matchings

A matching M of a graph G=(V,E) is a set of edges, no two of which are incident to a common vertex.

Perfect Matching

1

M is a maximum matching of G if no matching M' has more edges.

Theorem 1 M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose M has an augmenting path $P=(a_0,b_1,a_1,\ldots,a_k,b_{k+1})$ where $e_i=(a_{i-1},b_i)\notin M,\ 1\leq i\leq k+1$ and $f_i=(b_i,a_i)\in M,\ 1\leq i\leq k$.

$$M' = M - \{f_1, f_2, \dots, f_k\} + \{e_1, e_2, \dots, e_{k+1}\}.$$

3

M-alternating path

M not M not M M

An M-alternating path joining 2 M-unsaturated vertices is called an M-augmenting path.

- |M'| = |M| + 1.
- M' is a matching

For $x \in V$ let $d_M(x)$ denote the degree of x in matching M, So $d_M(x)$ is 0 or 1.

$$d_{M'}(x) = \begin{cases} d_M(x) & x \notin \{a_0, b_1, \dots, b_{k+1}\} \\ d_M(x) & x \in \{b_1, \dots, a_k\} \\ d_M(x) + 1 & x \in \{a_0, b_{k+1}\} \end{cases}$$

So if ${\cal M}$ has an augmenting path it is not maximum.

2

Suppose M is not a maximum matching and |M'|>|M|. Consider $H=G[M\Delta M']$ where $M\Delta M'=(M\setminus M')\cup(M'\setminus M)$ is the set of edges in exactly one of M,M'.

Maximum degree of H is 2, at most 1 edge from M or M^\prime . So H is a collection of vertex disjoint alternating paths and cycles.

 $|M^\prime|>|M|$ implies that there is at least one path of type (d).

Such a path is M-augmenting

5

Hall's Theorem

Theorem 2 G contains a matching of size |A| iff

$$|N(S)| \ge |S| \qquad \forall S \subseteq A. \tag{1}$$

 $N(\{a_1,a_2,a_3\})=\{b_1,b_2\}$ and so at most 2 of a_1,a_2,a_3 can be saturated by a matching.

7

Bipartite Graphs

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition A, B.

For $S \subseteq A$ let $N(S) = \{b \in B : \exists a \in S, (a,b) \in E\}.$

$$N(a_2, a_3) = \{b_1, b_3, b_4\}$$

Clearly, $|M| \leq |A|, |B|$ for any matching M of G.

Only if: Suppose $M = \{(a, \phi(a)) : a \in A\}$ saturates A.

 $|N(S)| \ge |\{\phi(s) : s \in S\}| = |S|$

and so (1) holds.

If: Let $M=\{(a,\phi(a)): a\in A'\}$ $(A'\subseteq A)$ is a maximum matching. Suppose $a_0\in A$ is M-unsaturated. We show that (1) fails.

Let

 $A_1 = \{a \in A : \text{such that } a \text{ is reachable from } a_0 \text{ by an } M\text{-alternating path.}\}$

 $B_1 = \{b \in B : \text{ such that } b \text{ is reachable from } a_0 \text{ by an } M\text{-alternating path.}\}$

No $A_1: B \setminus B_1$ edges

9

10

Marriage Theorem

Theorem 3 Suppose $G=(A\cup B,E)$ is k-regular. $(k\geq 1)$ i.e. $d_G(v)=k$ for all $v\in A\cup B$. Then G has a perfect matching.

Proof

$$k|A| = |E| = k|B|$$

and so |A| = |B|.

Suppose $S\subseteq A$. Let m be the number of edges incident with S. Then

$$k|S| = m \le k|N(S)|.$$

So (1) holds and there is a matching of size |A| i.e. a perfect matching.

11

- ullet B_1 is M-saturated else there exists an M-augmenting path.
- If $a \in A_1 \setminus \{a_0\}$ then $\phi(a) \in B_1$.

• If $b \in B_1$ then $\phi^{-1}(b) \in A_1 \setminus \{a_0\}$.

So

$$|B_1| = |A_1| - 1.$$

• $N(A_1) \subseteq B_1$

So

$$|N(A_1)| = |A_1| - 1$$

and (1) fails to hold.

Edge Covers

A set of vertices $X\subseteq V$ is a *covering* of G=(V,E) if every edge of E contains at least one endpoint in X.

Lemma 1 If X is a covering and M is a matching then $|X| \ge |M|$.

Proof Let $M=\{(a_1,b_i): 1\leq i\leq k\}$. Then $|X|\geq |M|$ since $a_i\in X$ or $b_i\in X$ for $1\leq i\leq k$ and a_1,\ldots,b_k are distinct. \square

Konig's Theorem

Let $\mu(G)$ be the maximum size of a matching. Let $\beta(G)$ be the minimum size of a covering. Then

$$\mu(G) \leq \beta(G)$$
.

Theorem 4 If G is bipartite then $\mu(G) = \beta(G)$.

Proof Let M be a maximum matching. Let S_0 be the M-unsaturated vertices of A. Let $S\supseteq S_0$ be the A-vertices which are reachable from S by M-alternating paths. Let T be the M-neighbours of $S\setminus S_0$.

Tutte's Theorem

We now discuss arbitrary (i.e. non-bipartite) graphs.

For $S \subseteq V$ we let o(G - S) denote the number of components of odd cardinality in G - S.

Theorem 5 G has a perfect matching iff

$$o(G-S) \le |S|$$
 for all $S \subseteq V$. (2)

Proof We restrict our attention to simple graphs.

15

Let $X = (A \setminus S) \cup T$.

 $\bullet |X| = |M|.$

 $|T| = |S \setminus S_0|$. The remaining edges of M cover $A \setminus S$ exactly once.

• X is a cover.

There are no edges (x,y) where $x\in S$ and $y\in B\setminus T$. Otherwise, since y is M-saturated (no M-augmenting paths) the M-neightbour of y would have to be in S, contradicting $y\notin T$.

Only if:

Need to match x,y,z to a,b

Suppose |S|=k and O_1,O_2,\ldots,O_{k+1} are odd components of G-S. In any perfect matching of G, at least one vertex x_i of C_i will have to be matched outside O_i for $i=1,2,\ldots,k+1$. But then x_1,x_2,\ldots,x_{k+1} will all have to be matched with S, which is impossible.

14

13

If: Suppose (2) holds and G has no perfect matching. Add edges until we have a graph G^* which satisfies

- \bullet G^* has no perfect matching.
- $G^* + e$ has a perfect matching for all $e \notin E(G^*)$.

Clearly,

$$o(G^* - S) \le o(G - S) \le |S|$$
 for all $S \subseteq V$.

In particular, if $S=\emptyset$, $o(G^*)=0$ and |V| is even.

$$U = \{ v \in V : d_{G^*}(v) = \nu - 1 \}.$$

 $U \neq V$ else G^* has a perfect matching.

17

Let $H=M_1\Delta M_2$. H is a collection of vertex disjoint even cycles.

Case 1: xz, yw are in different cycles of H.

+ edges form a perfect matching in G^* – contradiction.

19

Suppose C is a component of G^*-U which is not a clique. Then there exist $x,y,z\in C$ such that $xy,xz\in E(G^*)$ and $xz\notin E(G^*)$.

Take $x, z \in C$ at distance 2 in G^* .

 $y \notin U$ implies that there exists $w \notin U$ with $yw \notin E(G^*)$.

Let M_1, M_2 be perfect matchings in $G^* + xz, G^* + yw$ respectively.

Case 2: xz, yw are in same cycle of H.

+ edges form a perfect matching in G^* – contradiction.

Claim is proved.

Suppose G-U has ℓ odd components. Then

- $\ell < |U|$ from (3).
- $\ell = |U| \mod 2$, since |V| is even.

 G^* has a perfect matching — contradiction. \square

21

Petersen's Theorem

Theorem 6 Every 3-regular graph without cutedges contains a perfect matching.

Proof Suppose $S\subseteq V$. Let G-S have components C_1,C_2,\ldots,C_r where C_1,C_2,\ldots,C_ℓ are odd.

 m_i is the number of C_i : S edges; $m_i \geq$ 2. n_i is the number of edges contained in C_i .

$$3|C_i|=m_i+2n_i.$$

So m_i is odd for $1 \leq i \leq \ell$. Hence $m_i \geq 3$ for $1 \leq i \leq \ell$. Thus

$$3\ell \leq m_1 + m_2 + \cdots + m_\ell \leq 3|S|,$$

and (2) holds.