Matchings

A matching M of a graph G = (V,E) is a set
of edges, no two of which are incident to a
common vertex.

M is a maximum matching of G if no matching
M' has more edges.

Theorem 1 M is a maximum matching iff M
admits no M-augmenting paths.
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M-alternating path

An M-alternating path joining 2 M-unsaturated
vertices is called an M-augmenting path.

e M' is a matching

For z € V let dys(z) denote the degree of z in
matching M, So dys(x) is 0 or 1.

dy(x) z ¢ {ag,b1,... ,bp41}
dyp(z) = ¢ dpy(z) x € {b1,...,a}
dy(z) +1 z € {ag, b1}

So if M has an augmenting path it is not max-
imum.




Suppose M is not a maximum matching and |M’| > |M]|.
Consider H = G[MAM'] where MAM' = (M \ M')U
(M'\ M) is the set of edges in exactly one of M, M.

Maximum degree of H is 2, at most 1 edge from M or
M'. So H is a collection of vertex disjoint alternating
paths and cycles.
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|M'| > |M| implies that there is at least one path of type
(d).

Such a path is M-augmenting ]

Hall’s Theorem

Theorem 2 G contains a matching of size |A|

iff
IN(S)| > [S] VS C A (1)
al b1
an bo
as b3
ag ba

N({a1,a2,a3}) = {b1,bp} and so at most 2 of
a1,ap,a3 can be saturated by a matching.
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Bipartite Graphs

Let G = (AU B, E) be a bipartite graph with
bipartition A, B.

For SC Alet N(S) ={b€ B: Ja€ S,(a,b) €
E}.

al b1
a2 bo
as b3
a4 ba

N(CLQ, a3) = {bla b37 b4}

Clearly, |M| < |A|,|B| for any matching M of
G.

Only if: Suppose M = {(a,¢(a)) : a € A}
saturates A.
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S P4) +non-matching
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4 93 € N(S

IN(S)| > [{(s) : s €S} =S
and so (1) holds.
If. Let M = {(a,¢(a)) : a € A} (4 C A)

is @ maximum matching. Suppose ag € A is
M-unsaturated. We show that (1) fails.




Let

A; ={a € A:such that a is reachable from ag
by an M-alternating path.}

B; = {b € B: such that b is reachable from ag
by an M-alternating path.}

By B1 Bi1 B;

ag Aq Aq Aq Aq

No A; : B\ By edges

Marriage Theorem

Theorem 3 Suppose G = (AUB, E) is k-regular.
(k>1)ie dg(w) =k for allve AUB. Then
G has a perfect matching.

Proof
k|A| = |E| = k|B|
and so |A| = |B].

Suppose S C A. Let m be the number of edges
incident with S. Then

k|S| = m < k|N(S)|.

So (1) holds and there is a matching of size
|A| i.e. a perfect matching.
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e B4 is M-saturated else there exists an M-
augmenting path.

e If a € A1 \ {ap} then ¢(a) € B;.

I [ —

O

agp #(a) a

e If b e By then ¢ 1(b) € A1\ {ap}.

So
|B1| = |A1] - 1.
e N(A1) C By
o o— o0 © ° 1
ao b ¢~ *(b)

So
IN(A1)| = [A1] -1
and (1) fails to hold.
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Edge Covers

A set of vertices X C V is a covering of G =
(V,E) if every edge of E contains at least one
endpoint in X.

{ e} isacovering

Lemma 1 If X is a covering and M is a match-
ing then |X| > |M|.

Proof Let M = {(a1,b;) : 1 < i < k}.
Then |X| > |M]| since a; € X or b; € X for
1<i:<kanday,...,b are distinct. O




Konig’s Theorem

Let u(G) be the maximum size of a matching.
Let B(G) be the minimum size of a covering.
Then

mw(G) < B(G).

Theorem 4 IfG is bipartite then u(G) = B(G).

Tutte’s Theorem

We now discuss arbitrary (i.e. non-bipartite)
graphs.

For S CV we let o(G — S) denote the number
of components of odd cardinality in G — S.

Theorem 5 G has a perfect matching iff

o(G—-1S)<|S| for all S C V. (2)
Proof Let M be a maximum matching.
Let Sp be the M-unsaturated vertices of A.
Let SO Sp be the A-vertices which are reach- Proof We restrict our attention to simple
able from S by M-alternating paths. graphs.
Let T be the M-neighbours of S\ Sp.
13 15
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Let X = (A\ S)UT.
o | X|=|M|.
|T| = |S\ So|- The remaining edges of M cover
A\ S exactly once. Need to match x.y,z to ab

e X is a cover.

There are no edges (z,y) where z € S and

y € B\ T. Otherwise, since y is M-saturated

(no M-augmenting paths) the M-neightbour

of y would have to be in S, contradicting y ¢ T'.
ad
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Suppose |S| =k and O1,0,... ,0,41 are odd
components of G—S. In any perfect matching
of G, at least one vertex z; of C; will have to
be matched outside O; for : = 1,2,... ,k 4+ 1.
But then zq,zo,..., w41 Will all have to be
matched with S, which is impossible.
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If: Suppose (2) holds and G has no perfect
matching. Add edges until we have a graph
G* which satisfies

e G* has no perfect matching.

e G* + e has a perfect matching for all e ¢
E(G*).

Clearly,
o(G*—=8) <o(G-25) <|S] for all SCV.
(3)

In particular, if S = 0, o(G*) = 0 and |V| is
even.

U={veV:dg(v)=v—1}
U # V else G* has a perfect matching.
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Let H = M1AM>. H is a collection of vertex
disjoint even cycles.

Case 1: zz,yw are in different cycles of H.
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+ edges form a perfect matching in G* — con-
tradiction.
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Claim: G*—U is the disjoint union of complete
graphs.

Suppose C is a component of G* — U which is
not a clique. Then there exist z,y,z € C such
that zy,zz € E(G*) and zz ¢ E(G*).

Take z,z € C at distance 2 in G*.

y ¢ U implies that there exists w ¢ U with
yw ¢ E(G*).

Let M1, M5 be perfect matchings in G*4-zz, G*+
yw respectively.

18

Case 2: zz,yw are in same cycle of H.
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m m m [

+ edges form a perfect matching in G* — con-
tradiction.

Claim is proved.
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Suppose G — U has ¢ odd components. Then
e ¢ < |U| from (3).
e (= |U| mod 2, since |V] is even.

------- 0dd Components ---------- --Even Components--

NS

« o &

G* has a perfect matching — contradiction. O
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Petersen’s Theorem

Theorem 6 Every 3-regular graph without cut-
edges contains a perfect matching.

Proof Suppose S C V. Let G — S have
components C1,C5, ... ,Cr where C1,Co, ... ,Cp
are odd.

m; is the number of C; : S edges; m; > 2.
n; is the number of edges contained in C;.

3|Cs| = m; + 2n;.

So m; is odd for 1 < ¢ < ¢. Hence m; > 3 for
1<i<¥ Thus

3¢ <mi+mo+---+my < 3|S5,
and (2) holds. O
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