Eulerian Graphs

An Eulerian cycle of a graph G = (V,E) is a
closed walk which uses each edge e € E exactly
once.
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Thewalk using edges a,b,c,d,ef,g,hj,kin
this order is an Eulerian cycle.

The converse is proved by induction on |E|.
The result is true for |E| = 3. The only possi-
ble graph is a triangle.

Assume |E| > 4. G is not a tree, since it has
no vertex of degree 1. Therefore it contains a
cycle C. Delete the edges of C. The remaining
graph has components K, K»p,... , K.

Each Kj; is connected and is of even degree —
deleting C removes 0 or 2 edges incident with
a given v € V. Also, each K; has strictly less
than |E| edges. So, by induction, each K; has
an Eulerian cycle, C; say.

We create an Eulerian cycle of G as follows:
let C = (vy1,v2,...,vs,v1). Let v;, be the first
vertex of C which is in K;. Assume w.l.0.g.
that i1 <ip <+ < ip.

W = (vlana"' ’vilacla’vila"' aviQ’CQaviza
- 7virvc7'7”i7-a"' ,'1)1)

is an Eulerian cycle of G. O

Theorem 1 A connected graph is Eulerian i.e.
has an Eulerian cycle, iff it has no vertex of odd
degree.

Proof Suppose W = (v1,v2,... ,Um,v1)
(m = |EJ|) is an Eulerian cycle. Fix v € V.
Whenever W visits v it enters through a new
edge and leaves through a new edge. Thus
each visit requires 2 new edges. Thus the de-
gree of v is even.
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Corollary 1 A connected graph has an Eule-
rian Walk i.e. a walk which uses each edge
exactly once, iff it has exactly 2 vertices of
odd degree.

Proof If a walk exists then the endpoints
have odd degree and the interior vertices have
even degree.

Conversely, if there are two odd degree ver-
tices z,y add an extra edge e = zy to create
a connected graph G’ with only even vertices.
This has an Eulerian cycle C. Delete e from C
to create the required path. O




Hamilton Cycles

A Hamilton Cycle of a graph G = (V,E) is a
cycle which goes through each vertex (once).

A graph is called Hamiltonian if it contains a
Hamilton cycle.

Hamiltonian Graph Non-Hamiltonian Graph
Petersen Graph
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(z =v1,v0,... ,0n =1y, T).

{i : (:E,vi+1) € E} and

{7‘ : (y7vi) S E}

SC{1,2,...,n—2}, TC{2,3,...,n—1}.
|S|4+|T| >nand |[SUT| <n-—1.

H =
S =
T =

Thus
ISNT|=[S|+|T|-|SUT|>1
and so 41 #k € SNT and then

1 —
H = (,U17,023"' s VUkyUns Un—1,y- - - ,Uk+1,1)1)
is a Hamilton cycle of G.

Lemma 1 Let G = (V,E) and |V| = n. Sup-
pose z,y €V, e = (z,y) ¢ E and d(z) + d(y) >
n. Then

G + e is Hamiltonian <« G is Hamiltonian.

Proof
< Trivial.

— Suppose G + e has a Hamilton cycle H. If
e ¢ H then H C G and G is Hamiltonian.

Suppose e € H. We show that we can find
another Hamilton cycle in G + e which does
not use e.

Bondy-Chvatal Closure of a graph

begin
(@) =G
while 3(z,y) ¢ E with dC(G)(m) + dC(G)(y) >n do
begin
c(G) :=c(G) + (z,y)
end
Output ¢(G)
end

The graph ¢(G) is called the closure of G.




Lemma 2 ¢(G) is independent of the order in
which edges are added i.e. it depends only on
G.

Proof Suppose algorithm is run twice to
obtain

Gi=G+e1+ex+---+¢ and

Go=G+ fi+fot+---+fer

We show that {eq,es,...,ex} = {f1, fo,--., fr}

Suppose not. Let t = min{i : e; & Go}, et =
(z,y) and G’ =G +e1+ex+---+e_1. Then
dg,(z) +dg,(y) > dg(x) + dei(y)

>n
since e; was added to G'.

But then e; should have been added to Gy —
contradiction.

Theorem 2 Let G be a simple graph with de-
gree sequence d1 < dp < ---<dy, v>3. Sup-
pose that there does not exist m < v/2 such
that

dm <m and dy—m < v —m.

Then G is Hamiltonian.

Proof We prove that ¢(G) is complete.
Let d' denote degree in ¢(G). Suppose c¢(@)
is not complete. Among all pairs of vertices
u,v which are not adjacent in ¢(G) choose a
pair which maximise d'(u) + d'(v) and assume
m = d'(u) < d'(v). Note that

du)+d@ <v-1.

S ={weV\{v}:v,w not adjacent in ¢(G)}.
T ={w e V\ {u} : v,w not adjacent in ¢(G)}.

18] = v—1-d()>dw) =m (1)
[T U{u} = v—m. (2)
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e c(G) Hamiltonian = G is Hamiltonian.

e c(G) complete = G is Hamiltonian.

e §(G) > n/2 = @G is Hamiltonian.

Second statement is due to Bondy and Murty.
Third statement is due to Dirac.
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The choice of u,v means that

d(w) <d(u) for wes 3
d(w)<d@w)<v—m for weT (4)

Now d(w) < d'(w) for w € V and so
(1) and (3) imply that dm < m.
(2) and (4) imply that dy—m < v —m.

Contradiction. O
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