Eulerian Graphs

An Eulerian cycle of a graph G=(V,E) is a closed walk which uses each edge $e\in E$ exactly once.

The walk using edges a,b,c,d,e,f,g,h,j,k in this order is an Eulerian cycle.

The converse is proved by induction on $\vert E\vert$. The result is true for $\vert E\vert=$ 3. The only possible graph is a triangle.

Assume $|E| \geq 4$. G is not a tree, since it has no vertex of degree 1. Therefore it contains a cycle C. Delete the edges of C. The remaining graph has components K_1, K_2, \ldots, K_r .

Each K_i is connected and is of even degree – deleting C removes 0 or 2 edges incident with a given $v \in V$. Also, each K_i has strictly less than |E| edges. So, by induction, each K_i has an Eulerian cycle, C_i say.

We create an Eulerian cycle of G as follows: let $C=(v_1,v_2,\ldots,v_s,v_1)$. Let v_{i_t} be the first vertex of C which is in K_t . Assume w.l.o.g. that $i_1 < i_2 < \cdots < i_r$.

$$W = (v_1, v_2, \dots, v_{i_1}, C_1, v_{i_1}, \dots, v_{i_2}, C_2, v_{i_2}, \dots, v_{i_r}, C_r, v_{i_r}, \dots, v_1)$$

is an Eulerian cycle of G.

2

Theorem 1 A connected graph is Eulerian i.e. has an Eulerian cycle, iff it has no vertex of odd degree.

Proof Suppose $W=(v_1,v_2,\ldots,v_m,v_1)$ (m=|E|) is an Eulerian cycle. Fix $v\in V$. Whenever W visits v it enters through a new edge and leaves through a new edge. Thus each visit requires 2 new edges. Thus the degree of v is even.

Corollary 1 A connected graph has an Eulerian Walk i.e. a walk which uses each edge exactly once, iff it has exactly 2 vertices of odd degree.

Proof If a walk exists then the endpoints have odd degree and the interior vertices have even degree.

Conversely, if there are two odd degree vertices x,y add an extra edge e=xy to create a connected graph G' with only even vertices. This has an Eulerian cycle C. Delete e from C to create the required path.

4

Hamilton Cycles

A Hamilton Cycle of a graph G = (V, E) is a cycle which goes through each vertex (once).

A graph is called *Hamiltonian* if it contains a Hamilton cycle.

Hamiltonian Graph

Non-Hamiltonian Graph Petersen Graph

5

Lemma 1 Let G=(V,E) and |V|=n. Suppose $x,y\in V$, $e=(x,y)\notin E$ and $d(x)+d(y)\geq n$. Then

G + e is Hamiltonian $\leftrightarrow G$ is Hamiltonian.

Proof

 $\leftarrow \ \mathsf{Trivial}.$

ightarrow Suppose G+e has a Hamilton cycle H. If $e \notin H$ then $H \subseteq G$ and G is Hamiltonian.

Suppose $e \in H$. We show that we can find another Hamilton cycle in G+e which does not use e.

$$\begin{split} H &= (x = v_1, v_2, \dots, v_n = y, x). \\ S &= \{i : \ (x, v_{i+1}) \in E\} \text{ and } \\ T &= \{i : \ (y, v_i) \in E\}. \\ \\ S &\subseteq \{1, 2, \dots, n-2\}, \ T \subseteq \{2, 3, \dots, n-1\}. \\ |S| + |T| \geq n \text{ and } |S \cup T| \leq n-1. \end{split}$$
 Thus
$$|S \cap T| = |S| + |T| - |S \cup T| \geq 1$$
 and so $\exists 1 \neq k \in S \cap T$ and then

 $H' = (v_1, v_2, \dots, v_k, v_n, v_{n-1}, \dots, v_{k+1}, v_1)$

is a Hamilton cycle of G.

7

Bondy-Chvatál Closure of a graph

 $\begin{array}{l} \mathbf{begin} \\ c(G) := G \\ \mathbf{while} \ \exists (x,y) \notin E \ \text{with} \ d_{c(G)}(x) + d_{c(G)}(y) \geq n \ \mathbf{do} \\ \mathbf{begin} \\ c(G) := c(G) + (x,y) \\ \mathbf{end} \\ \mathbf{Output} \ c(G) \\ \mathbf{end} \end{array}$

The graph c(G) is called the closure of G.

6

Lemma 2 c(G) is independent of the order in which edges are added i.e. it depends only on G.

Proof Suppose algorithm is run twice to obtain

$$G_1 = G + e_1 + e_2 + \dots + e_k \text{ and }$$

$$G_2 = G + f_1 + f_2 + \dots + f_\ell.$$
 We show that $\{e_1, e_2, \dots, e_k\} = \{f_1, f_2, \dots, f_\ell\}.$

Suppose not. Let
$$t=\min\{i: e_i\notin G_2\}, e_t=(x,y)$$
 and $G'=G+e_1+e_2+\cdots+e_{t-1}$. Then

$$d_{G_2}(x) + d_{G_2}(y) \ge d_{G'}(x) + d_{G'}(y)$$

> n

since e_t was added to G'.

But then e_t should have been added to G_2 – contradiction.

9

- c(G) Hamiltonian $\Rightarrow G$ is Hamiltonian.
- c(G) complete $\Rightarrow G$ is Hamiltonian.
- $\delta(G) \ge n/2 \Rightarrow G$ is Hamiltonian.

Second statement is due to Bondy and Murty. Third statement is due to Dirac.

Theorem 2 Let G be a simple graph with degree sequence $d_1 \leq d_2 \leq \cdots \leq d_{\nu}, \ \nu \geq 3$. Suppose that there does **not** exist $m < \nu/2$ such that

 $d_m \leq m$ and $d_{\nu-m} < \nu-m$.

Then G is Hamiltonian.

Proof We prove that c(G) is complete. Let d' denote degree in c(G). Suppose c(G) is not complete. Among all pairs of vertices u,v which are not adjacent in c(G) choose a pair which maximise d'(u)+d'(v) and assume $m=d'(u)\leq d'(v)$. Note that

$$d'(u) + d'(v) \le \nu - 1.$$

 $S = \{w \in V \setminus \{v\} : v, w \text{ not adjacent in } c(G)\}.$ $T = \{w \in V \setminus \{u\} : u, w \text{ not adjacent in } c(G)\}.$

$$|S| = \nu - 1 - d'(v) \ge d'(u) = m$$
 (1)

$$|T \cup \{u\}| = \nu - m. \tag{2}$$

11

The choice of u,v means that

$$d'(w) < d'(u) \quad \text{for} \quad w \in S \tag{3}$$

$$d'(w) \le d'(v) < \nu - m \quad \text{for} \quad w \in T$$

Now $d(w) \leq d'(w)$ for $w \in V$ and so

- (1) and (3) imply that $d_m \leq m$.
- (2) and (4) imply that $d_{\nu-m} < \nu m$.

Contradiction.