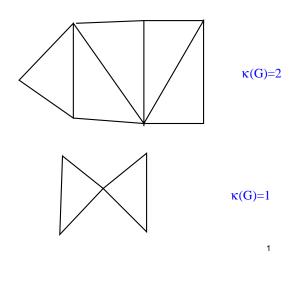
Connectivity

G is k-connected if $S \subseteq V, |S| < k$ implies G - S is connected.

 $\kappa(G) = \max\{k : G \text{ is } k \text{-connected}\}.$



Assume G connected.

S is a k-vertex cutset if $S \subseteq V, |S| = k$ and G - S is not connected.

A 1-vertex cutset is a *cutpoint*.

S is a k-edge cutset if $S \subseteq E, |S| = k$ and G - E is not connected.

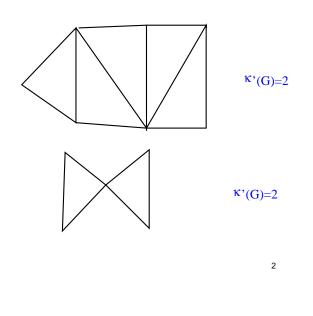
3

4

A 1-edge cutset is a *bridge* or cut-edge.

 $G \text{ is } k \text{-edge connected if } S \subseteq E, |S| < k \text{ implies } G - S \text{ is connected.}$

 $\kappa'(G) = \max\{k : G \text{ is } k \text{-edge connected}\}.$



Lemma 1 If *G* is connected and *e* is a bridge, then H = G - e has exactly 2 components.

Proof If *H* has components C_1, C_2, C_3 then G = H + e has ≥ 2 components, since adding an edge decreases the number of components by at most 1. This contradicts the fact that *G* is connected. \Box

Complete Graphs

 K_n has no vertex cutsets.

 $\kappa(K_n) = n - 1$ by convention.

 $\kappa'(K_n) = n - 1.$

So in general

 $\kappa(G) \leq \nu - 1.$

5

6

G not complete. v, w not neighbours. $V \setminus \{v, w\}$ is a $(\nu - 2)$ -vertex cutset. We prove that $\kappa \leq \kappa'$ by induction on κ' .

True for $\kappa' = 0$.

Assume true for all graphs with $\kappa' < k$ and let *G* be a graph with $\kappa'(G) = k$.

Suppose $A \subseteq E$ is a *k*-edge cutset of *G*.

Let $e \in A$ and H = G - e. Then

 $H - (A \setminus e) = G - A$ is not connected and so $\kappa'(H) < k$.

By the induction hypothesis $\kappa(H) \leq \kappa'(H) \leq k - 1$.

7

Let $S \subseteq V$ be a k - 1-vertex cutset of H.

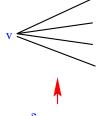
Theorem 1

$$\kappa(G) \leq \kappa'(G) \leq \delta(G).$$

Proof If G has no edges then

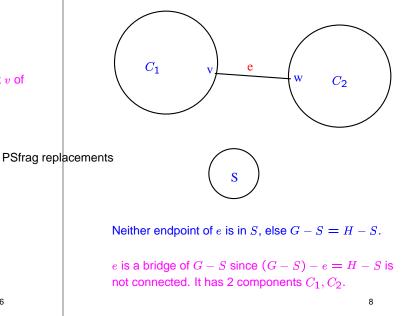
 $\kappa' = 0 = \delta.$

Otherwise the set of edges incident with a vertex v of minimum degree is a δ -edge cutset.



If G-S is not connected then $\kappa(G) \leq k-1 < \kappa'(G)$.

Assume therefore that G - S is connected.



Union and Intersection of Graphs

If $|C_1| \ge 2$ then S + v is a *k*-vertex cutset of *G* and so $\kappa(G) \le k$.

Similarly if $|C_2| \ge 2$.

So assume that G - S is the just the edge vw.

Then $\nu(G) = k + 1$ and so $\kappa(G) \leq k$.

$$G_i = (V_i, E_i), i = 1, 2.$$

 $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$

$$G_1 \cap G_2 = (V_1 \cap V_2, E_1 \cap E_2)$$

provided $V_1 \cap V_2 \neq \emptyset$.

Theorem 2 A connected graph *G* can be expressed as

$$G = B_1 \cup B_2 \cup \cdots B_r$$

where B_1, B_2, \ldots, B_r are the blocks of G.

By induction on ν . Trivial for $\nu = 1$. Assume true for all connected graphs with $\nu < k$ and suppose that *G* has *k* vertices.

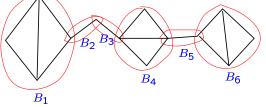
11

A *block* is a connected graph with no cutpoints.

Thus a block is either a single vertex, a single edge or if $\nu \ge 3$ it is a 2-connected graph.

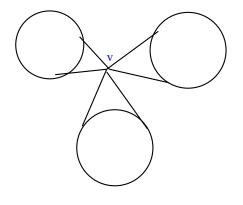
A block of a graph is a *maximal* connected subgraph with no cutpoints.

ag replacements



Note that blocks partition the edges of G, not the vertices.

- (a) *G* has no cutpoints $-G = B_1$.
- (b) G has a cutpoint v.



9

 $C_i + v$ is connected for $1 \le i \le s$. By induction

$$C_i + v = \bigcup_{j=1}^{k_i} B_{i,j}$$

where the $B_{i,j}$ are the blocks of $C_i + v$.

Thus

$$G = \bigcup_{i=1}^{r} \bigcup_{j=1}^{k_i} B_{i,j}.$$

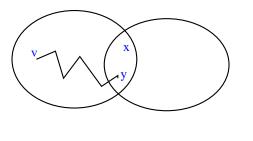
We still have to check that the $B_{i,j}$ are maximal 2connected subgraphs. But $B_{i,j}$ is not strictly contained in any 2-connected subgraph of $C_i + v$ since it is a block of $C_i + v$. Also, if $x \notin C_i + v$ then every path from x to C_i must go through v and so v is a cutpoint of any subgraph containing $B_{i,j}$ and x.

13

Theorem 3 If B_1 , B_2 are blocks of the connected graph G then

$$|V(B_1) \cap V(B_2)| \le 1.$$

Proof Suppose that $|V(B_1) \cap V(B_2)| \ge 2$. We obtain the contradiction that $B_1 \cup B_2$ is 2-connected. Let $x \in V(B_1) \cup V(B_2)$ and $y \in (V(B_1) \cap V(B_2)) - x$. Then there is a path in B_i from every vertex v of $B_i - x$ to y. Thus $B_1 \cup B_2 - x$ is connected. \Box



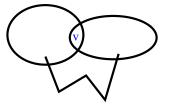
Lemma 2 If v is a cutpoint of connected graph then there exist blocks B_1, B_2 such that $V(B_1) \cap V(B_2) = \{v\}$.

Proof Let G-v have components C_1, C_2, \ldots, C_r . Let B_i be the block of $C_i + v$ which contains v for i = 1, 2. B_1, B_2 are blocks of G, by the same argument as given in end of proof of Theorem 2.

15

Lemma 3 If $B_1 \neq B_2$ are blocks of G and $V(B_1) \cap V(B_2) = \{v\}$ then every path from a vertex of B_1 to a vertex of B_2 goes through v.

Proof If there is a path *P* from $x \in B_1$ to $y \in B_2$ which avoids *v* then $B_1 \cup B_2 \cup P$ is 2-connected.



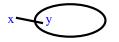
Corollary 1 If $B_1 \neq B_2$ are blocks of G and $V(B_1) \cap V(B_2) = \{v\}$ then v is a cutpoint of G.

14

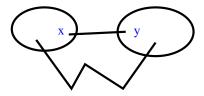
16

Lemma 4 Suppose $B_1 \neq B_2$ are vertex disjoint blocks of *G* and there is an edge xy with $x \in V(B_1), y \in V(B_2)$. Then x, y forms a block of *G* and both of x, y are cutpoints.

Proof If y is of degree 1 then $B_1 = x$ is not a block.



Otherwise if y is not of degree 1 and is not a cutpoint then there is a path P from B_2 to $B_1 - x$ which implies $B_1 \cup B_2 \cup P$ is 2-connected – contradiction.



17

Thus xy is a bridge of G and so is a block.

Proof If *G* is 2-connected then *H* consists of a single vertex. Assume that *G* is not 2-connected.

(a) H is connected.

Suppose that *H* contains components C_1, C_2, \ldots, C_r , $r \ge 2$. Each component contains at least one block vertex and at least one cut vertex – each block contains a cutpoint and each cutpoint is contained in a block.

Since G is connected, there exist C_i, C_j and $b_i \in C_i, b_j \in C_j$ such that either

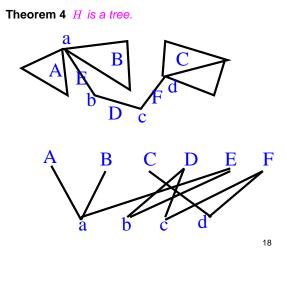
- 1. $V(B_i) \cap V(B_j) = \{c\}$: but then *H* contains the path b_i, c, b_j contradiction.
- 2. $V(B_i) \cap V(B_j) = \emptyset$ and there is an edge x, y joining B_i to B_j : but then x, y is a block B_k , say, and H contains the path b_i, x, b_k, y, b_j contradiction.

19

Block Graph

Let *G* be a connected graph with blocks B_1, B_2, \ldots, B_r and cutpoints c_1, c_2, \ldots, c_s . We define a bipartite graph *H* with $V(H) = \{b_1, b_2, \ldots, b_r\} \cup \{c_1, c_2, \ldots, c_s\}$ (block vertices and cut vertices) and $E(H) = \{b_i c_j : c_j \in B_i\}$. (b) *H* contains no cycles.

If *H* contains the cycle $(b_1, c_1, b_2, c_2, \dots, b_k, c_k, b_1)$ then $B_1 \cup B_2 \cup \dots B_k$ is 2-connected – contradiction.



PSfrag replacements

