Trees

WA

A tree is a graph which is
(a) Connected and

(b) has no cycles (acyclic).

Proof Every path P in G + e which is not in G
must contain e. Also,

w(G+e) <w(G).
Suppose
(x =UQ ULy - HUE = Uy U1 = Vy el e, Up = y)
is a path in G 4 e that uses e. Then clearly z € C;
andy € Cj.

(a) follows as now no new relations z ~ y are added.

(b) Only possible new relations z ~ y are for z € C}
andy € C;. Butu ~ vin G+ e andso C; UC;j
becomes (only) new component. O

Lemma 1 Let the components of G be
C1,C5,...,Cr,Supposee = (u,v) ¢ E,u € Cj, v €

c;.

@ i=j=w(G+e)=w(G).

(b) i #j=>w(G+e) =w(G) - 1.
@
(b)

Lemma2 G = (V, E) is acyclic (forest) with (tree)
components C1,Co,... ,Ck. |[V| =n. e = (u,v) ¢
E,uECi,UECj.

() i =7 = G + e contains a cycle.

(b) © # j = G + eis acyclic and has one less com-
ponent.

(c) G has n — k edges.




(@) u,v € C; implies there exists a path
(u = ug,u1,... ,up =v) inG.

So G + e contains the cycle ug, u1, ... , ug, ug.

The drop in the number of components follows from
Lemma 1.

The rest of the lemma follows from

(c) Suppose E = {eq,ep,...,er} and
G; = (‘/;{613627"' 7ei}) for0 <i<r.

Claim: G; has n — 7 components.

Induction on 4.

t = 0: Gg has no edges.
i > 0: G;_1 is acyclic and so is G;. It follows from
part (a) that e; joins vertices in distinct components of
G;_1. Itfollows from (b) that G; has one less compo-
nent than G;_1.

End of proof of claim

Thus r = n — k (we assumed G had k components).
O

(@)

Suppose G + e contains the cycle C. e € C else C'is
a cycle of G.
C = (u=ug,u1,... ,uy =v,uQ).

But then G contains the path (ug,u1,... ,uy) fromu
to v — contradiction.

Corollary 1 If atree T has n vertices then

(a) It has n — 1 edges.

(b) It has at least 2 vertices of degree 1, (n > 2).

Proof (a) is part (c) of previous lemma. k = 1
since T is connnected.

(b) Let s be the number of vertices of degree 1 in T'.
There are no vertices of degree 0 — these would form
separate components. Thus

2n—2= Y dr(v) >2(n—s)+s.
veV

Sos > 2. ]




Theorem 1 Suppose |V| =nand |E| =n — 1. The
following three statements become equivalent.

(a) G is connected.

(b) G is acyclic.

(c) Gisatree.

Corollary 2 If v is a vertex of degree 1 in a tree T'
then T — v is also a tree.

Proof Suppose T has n vertices and n edges.
Then T' — v has n — 1 vertices and n — 2 edges. It

Proof Let E = {e1,e2,...,e, 1} and acyclic and so must be a tree. |
G, = (‘/,{61,62,... ,ei}) foro0<i<n-—1.
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Cut edges
cut edge

(a) = (b): Gg has n components and G,,_1 has
1 component. Addition of each edge e; must reduce
the number of components by 1 — Lemma 1(b). Thus
G,;_1 acyclic implies G; is acyclic — Lemma 2(b). (b)
follows as G is acyclic.

(b) = (c): We need to show that G is connected.
Since G,,_1 is acyclic, w(G;) = w(G;_1) — 1 for
each ¢ — Lemma 2(b). Thus w(G,_1) = 1.

(c) = (a): trivial.
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eis acutedge of G if w(G — e) > w(G).

Theorem 2 e = (u,v) is a cut edge iff e is not on any
cycle of G.

Proof w increases iff there exist z ~ y € V such
that all walks from x to y use e.

Suppose there is a cycle (u, P, v, u) containing e. Then
if W = x, Wq,u,v, W,y is a walk from z to y using
e, z, W1, P,W5,y is a walk from z to y that doesn’t
use e. Thus e is not a cut edge.
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If e is not a cut edge then G —e contains a path P from
u 1o v (u ~ v in G and relations are maintained after
deletion of €). So (v,u, P,v) is a cycle containing e.

a

Corollary 3 A connected graph is a tree iff every edge
is a cut edge.
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Alternative Construction
Let E = {e1,e2,... ,em}.

begin
T:=0
fori =1,2,... ,mdo
begin
if T+ e; does not contain a cycle
thenT « T + ¢;
end
Output T
end
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Corollary 4 Every finite connected graph G contains
a spanning tree.

Proof Consider the following process: starting with
G,

1. If there are no cycles — stop.

2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected — we
delete edges of cycles. (ii) the process must terminate
as the number of edges is assumed finite.

On termination there are no cycles and so we have a
connected acyclic spanning subgraph i.e. we have a

spanning tree. a
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Lemma 3 If G is connected then (V, T") is a spanning
tree of G.

Proof Clearly T is acyclic. Suppose it is not con-
nected and has compponnents C1,C»,... ,Cy, k >
2. Let D = CoU---UC. Then G has no edges
joining C7 and D — contradiction. (The first C71 : D
edge found by the algorithm would have been added.)
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Theorem 3 Let T be a spanning tree of G = (V, E),
|V| = n. Suppose e = (u,v) € E\T.

(a) T + e contains a unique cycle C(T,e).

(b) f e C(T,e) implies that T+ e — f is a spanning
tree of G.
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Maximum weight trees
G = (V, E) is a connected graph.
w: E — R. w(e) is the weight of edge e.
For spanning tree T', w(T") = Y .c7 w(e).

Problem: find a spanning tree of maximum weight.
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Proof (a) Lemma 2(a) implies that 7' 4+ e has a
cycle C. Suppose that T' 4 e contains another cycle
C'#C. Letedge g e C'\C. T' =T+ e—gis
connected, has n — 1 edges. But 7' contains a cycle
C, contradictng Theorem 1.

(b) T+ e — f is connected and has n — 1 edges.
Therefore it is a tree. O

18

Greedy Algorithm

Sort edges so that E = {e1,e2,... ,em} Where

w(er) 2 w(ez) 2 - > w(em).

begin
T:=0
fori =1,2,... ,mdo
begin
if T' 4 e; does not contain a cycle
thenT <~ T +¢;
end
Output T
end

Greedy always adds the maximum weight edge which
does not make a cycle with previously chosen edges.
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Theorem 4 Let G be a connected weighted graph.
The tree constructed by GREEDY is a maximum weight
spanning tree.

Proof Lemma 3 implies that 7" is a spanning tree
of G.

Let the edges of the greedy tree be

e}, e5,...,¢e; 1, inorder of choice. Note thatw(e}) >

w(e;?+1) since neither makes a cycle with e}, e5,... , e} .

Let f1, f2,..., fn—1 be the edges of any other tree
where w(f1) > w(f2) > -+ w(fn—1)-

We show that

w(e) >w(f) 1<i<n—1. ()
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Let u; be the number of f; which have both endpoints
in C; and let v; be the number of vertices of C;. Then

1t pot o py g1 = k (2
vitvot vy g1 = 0 (3)

It follows from (2) and (3) that there exists ¢ such that

pt > vt (4)
[Otherwise
n—k+1 n—k+1
oo <Y (-1)
n—k+1
= Y u-(m-k+1) ]
i=1
= k—1.

But (4) implies that the edges f; such that f; C Cy
contain a cycle. ]
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Suppose (1) is false. There exists £ > 0 such that

w(el) > w(f;), 1 <i<kandw(ef) < w(fe)

Each f;, 1 < i < k is either one of or makes a cycle
with e7, €3, ... ,ej_;. Otherwise one of the f; would
have been chosen in preference to ej.

Let components of forest (V, {e},e5,... ,ef_41}) be
C1,Co,...,Cp_g41. Each f;; 1 <4 < k has both
of its endpoints in the same component.

C;
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Cut Sets and Bonds

If S CV,S # 0,V then the cut-set

S:S={e=vweE:veSwelS=V\S5}
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Lemma 4 Let G be connected and X C E. Then
G[E \ X] is not connected iff X contains a cutset.

Proof

Only if

G[E \ X] contains components C1, C», ... ,C},
k>2andso X DCq:CrandCqy #0,V.

If

Suppose X = S : Sandv € S,w € S. Then every
walk from v to w in G contains an edge of X.

2 S

,s/\/\/\g
v w

S

So G[E \ X] contains no walk from v to w. m|
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Theorem 5 G is connected and B isaabond < G\
B contains exactly 2 components.

Proof —: G\B contains components C1,Co, ... ,Cj.

Assume w.l.0.g. that there is at least one edge e in G
joining Cq and C». If k > 3 then B D C3 : C3 and
B # C3 : C3 since B contains e.

+: Assume that G \ B contains exactly two compo-
nents C; = G[S],C> = GIS]. Lete € B. Adding
e to the graph C1 U C5 clearly produces a connected
graph and so B\ e is not a cutset. |
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A Bond B is a minimal cut-set. l.e. B =S : § and if
T:TCBthenB=T:T.

S1=1{1,2,3} By =S5;:S51isabond
So ={2,3,4,5} By = S5 : S5 isnotahbond

since B, D S3: S3and By # S3: S3.
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A co-tree T of a connected graph G is the edge com-
plement of a spanning tree of G i.e. T = E\ T for
some spanning tree 7.

Theorem 6 LetT be a spanning tree of Gande € T.
Then

(@) T contains no bond of G.

(b) T 4+ e contains a unique bond B(T, e) of G.

(c) f € B(T,e) implies that T + e — f is a co-tree of
G.

[Compare with Tree + edge D cycle.]
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Proof (@) X C T «< G\ X D T which implies
that G \ X is connected. So X is not a bond.

(0)&(c) G\ (T + e) = T \ e contains exactly two
components and so by Theorem 5 T + e contains a
bond B = S : § where S, S are the 2 components of
T\e.

fe€EB = ecC(T,f)

= T+ f—ecisatree

= T +e— fisaco-tree proving (c)
Hence every bond of T' 4+ e contains f — otherwise

T+ e — f contains a bond, contradicting (a) and prov-
ing (b). O
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How many trees? — Cayley’s Formula

VANV

n=5 /[\ M /\/\

NN W <

31
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Contracting edges

If e = vw € E, v # w then we can contract e to
get G - e by (i) deleting e, (i) identifying v, w i.e. make
them into a single new vertex.

1 b 4
¢]

a = 5 >
f

2 c 3

G — e is obtained by deleting e.

7(@G) is the number of spanning trees of G.
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Theorem 7 If e € E is not a loop then

7(G) =7(G-e) + 7(G — e).

Proof

e 7(G — e) = the number of spanning trees of G
which do not contain e.

e 7(G - e) = the number of spanning trees of G
which contain e.

[Bijection T' — T' - e maps spanning trees of G which
contain e to spanning trees of G - e.]
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Pfuffer’s Correspondence

There is a 1-1 correspondence ¢y, between spanning
trees of Ky, (the complete graph with vertex set V)
and sequences V"2, Thus for n > 2

7(Kn) = n""2 Cayley’s Formula.

Assume some arbitrary ordering V. = {v; < vy <
e & Wn}-

¢y (T):
begin
T =T,
fori=1ton —2do
begin
s; = neighbour of least leaf ¢; of T;.
Tip1 =T — 4;
end QSV(T) = 8182...8p-2
end
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Matrix Tree Theorem

Define the V' x V matrix L = D — A where A is the
adjacency matrix of G and D is the diagonal matrix
with D(v,v) = degree of v.

2

3 -1 -1 -1
L=
-1 3 - -
a 1 1
3 B R 3 -1
a0 a1 -1 3
3 -1
Li- |4, 5 Determinant L1 = 16
-1 -1 3

Let Ly be obtained by deleting the first row and col-
umn of L.

Theorem 8

7(G) = determinant Lq.
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6,4,5,14,2,6,11,14,8,5,11,4,2
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Lemmab5 v € V(T) appears exactly dr(v) —1 times
in ¢y (T).

Proof Assume n = |V(T')| > 2. By induction on
n.
n = 2: ¢ (T) = A\ = empty string.

Assume n > 3:

¢y (T) = s1¢v,(T1) where V1 =V — {£1}.

s1 appears dpy (s1) — 1 + 1 = dp(sy) — 1 times —
induction.

v # s1 appears dr, (v) — 1 = dp(v) — 1 times —
induction. ]
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Number of trees with a given degree sequence

Corollary 5 If dy + do 4+ --- + d, = 2n — 2 then
he number of spanning trees of K, with degree se-
quence dq,ds, ... ,dnis

(10,527 a0m1) =
di—1,do—1,...,dn—1) =
(n—2)!

(d1 — D)W(do — 1)!--- (dn — 1)V

Proof From Pfuffer's correspondence and Lemma
5 this is the number of sequences of length n — 2 in
which 1 appears d1 — 1 times, 2 appears d, — 1 times
and so on. |
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Construction of ¢‘_,1

Inductively assume that for all | X| < n there is an
inverse function ¢>)}1. (True for n = 2).

Now define qb{,l by

(;5‘71(3132 e 8p_n) = ¢‘711(32 ...8p_2) plus edge s141,
where ¢1 = min{s: s & s1,s2,...5,_2}and V3 =
V—{ha}

Then

by (¢ (5152 .. 5p-2)) =
= ¢V(¢1_/11(52 ... 8p—2) plus edge s1£1)
= 51¢V1(¢§11(82 - 8p-2))
= 8182..-8p_2-

Thus ¢y has an inverse and the correspondence is
established.
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