Proof Trees must contain e. Also, Suppose and $y \in C_j$. A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C_1, C_2, \ldots, C_r , Suppose $e = (u, v) \notin E, u \in C_i, v \in$ C_j . (a) $i = j \Rightarrow \omega(G + e) = \omega(G)$. $E, u \in C_i, v \in C_j$. (b) $i \neq j \Rightarrow \omega(G+e) = \omega(G) - 1$. (a) ponent. (b) (c) G has n - k edges. 2

Every path P in G + e which is not in G

$$\omega(G+e) \le \omega(G).$$

 $(x = u_0, u_1, \dots, u_k = u, u_{k+1} = v, \dots, u_{\ell} = y)$

is a path in G + e that uses e. Then clearly $x \in C_i$

(a) follows as now no new relations $x \sim y$ are added.

(b) Only possible new relations $x \sim y$ are for $x \in C_i$ and $y \in C_j$. But $u \sim v$ in G + e and so $C_i \cup C_j$ becomes (only) new component.

3

4

Lemma 2 G = (V, E) is acyclic (forest) with (tree) components C_1, C_2, \ldots, C_k . |V| = n. $e = (u, v) \notin$

- (a) $i = j \Rightarrow G + e$ contains a cycle.
- (b) $i \neq j \Rightarrow G + e$ is acyclic and has one less com-

(a) $u, v \in C_i$ implies there exists a path $(u = u_0, u_1, \dots, u_{\ell} = v)$ in *G*.

So G + e contains the cycle $u_0, u_1, \ldots, u_\ell, u_0$.

5

6

The drop in the number of components follows from Lemma 1.

The rest of the lemma follows from

(c) Suppose $E = \{e_1, e_2, \dots, e_r\}$ and $G_i = (V, \{e_1, e_2, \dots, e_i\})$ for $0 \le i \le r$.

Claim: G_i has n - i components. Induction on *i*. i = 0: G_0 has no edges. i > 0: G_{i-1} is acyclic and so is G_i . It follows from part (a) that e_i joins vertices in distinct components of G_{i-1} . It follows from (b) that G_i has one less component than G_{i-1} . End of proof of claim

End of proof of claim

Thus r = n - k (we assumed *G* had *k* components).

7

8

(a)

Suppose G + e contains the cycle C. $e \in C$ else C is a cycle of G.

 $C = (u = u_0, u_1, \dots, u_\ell = v, u_0).$

But then *G* contains the path $(u_0, u_1, \ldots, u_\ell)$ from *u* to v - contradiction. PSfrag replacements

Corollary 1 If a tree T has n vertices then

(a) It has n-1 edges.

(b) It has at least 2 vertices of degree 1, $(n \ge 2)$.

Proof (a) is part (c) of previous lemma. k = 1 since *T* is connnected.

(b) Let s be the number of vertices of degree 1 in T. There are no vertices of degree 0 – these would form separate components. Thus

$$2n-2=\sum_{v\in V}d_T(v)\geq 2(n-s)+s.$$
 So $s\geq 2.$

Theorem 1 Suppose |V| = n and |E| = n - 1. The following three statements become equivalent.

(a) G is connected.

(b) G is acyclic.

(c) G is a tree.

Proof Let $E = \{e_1, e_2, \dots, e_{n-1}\}$ and $G_i = (V, \{e_1, e_2, \dots, e_i\})$ for $0 \le i \le n - 1$.

Corollary 2 If v is a vertex of degree 1 in a tree T then T - v is also a tree.

Proof Suppose *T* has *n* vertices and *n* edges. Then T - v has n - 1 vertices and n - 2 edges. It acyclic and so must be a tree.

11

 $(a) \Rightarrow (b)$: G_0 has *n* components and G_{n-1} has 1 component. Addition of each edge e_i must reduce the number of components by 1 – Lemma 1(b). Thus G_{i-1} acyclic implies G_i is acyclic – Lemma 2(b). (b) follows as G_0 is acyclic.

 $(b) \Rightarrow (c)$: We need to show that G is connected. Since G_{n-1} is acyclic, $\omega(G_i) = \omega(G_{i-1}) - 1$ for each i – Lemma 2(b). Thus $\omega(G_{n-1}) = 1$.

 $(c) \Rightarrow (a)$: trivial.

e is a *cut* edge of *G* if $\omega(G - e) > \omega(G)$.

Theorem 2 e = (u, v) is a cut edge iff e is not on any cycle of G.

Proof ω increases iff there exist $x \sim y \in V$ such that all walks from x to y use e.

Suppose there is a cycle (u, P, v, u) containing *e*. Then if $W = x, W_1, u, v, W_2, y$ is a walk from *x* to *y* using *e*, x, W_1, P, W_2, y is a walk from *x* to *y* that doesn't use *e*. Thus *e* is not a cut edge.

Alternative Construction

if $T + e_i$ does not contain a cycle

Let $E = \{e_1, e_2, \dots, e_m\}.$

for i = 1, 2, ..., m do

then $T \leftarrow T + e_i$

 $T := \emptyset$

begin

end

Output T

end

begin

P u v

If *e* is not a cut edge then G-e contains a path *P* from *u* to *v* ($u \sim v$ in *G* and relations are maintained after deletion of *e*). So (v, u, P, v) is a cycle containing *e*.

Corollary 3 A connected graph is a tree iff every edge is a cut edge.

13

15

Corollary 4 *Every finite connected graph G contains a spanning tree.*

Proof Consider the following process: starting with *G*,

- 1. If there are no cycles **stop**.
- 2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected – we delete edges of cycles. (ii) the process must terminate as the number of edges is assumed finite.

On termination there are no cycles and so we have a connected acyclic spanning subgraph i.e. we have a spanning tree.

Lemma 3 If G is connected then (V, T) is a spanning tree of G.

Proof Clearly *T* is acyclic. Suppose it is not connected and has components $C_1, C_2, \ldots, C_k, k \ge 2$. Let $D = C_2 \cup \cdots \cup C_k$. Then *G* has no edges joining C_1 and D – contradiction. (The first $C_1 : D$ edge found by the algorithm would have been added.)

Theorem 3 Let *T* be a spanning tree of G = (V, E), |V| = n. Suppose $e = (u, v) \in E \setminus T$.

- (a) T + e contains a unique cycle C(T, e).
- **(b)** $f \in C(T, e)$ implies that T + e f is a spanning tree of *G*.

17

Maximum weight trees

G = (V, E) is a connected graph.

 $w: E \to \mathbf{R}$. w(e) is the *weight* of edge e.

For spanning tree T, $w(T) = \sum_{e \in T} w(e)$.

Problem: find a spanning tree of maximum weight.

Greedy Algorithm

Sort edges so that $E = \{e_1, e_2, \dots, e_m\}$ where

 $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m).$

begin $T := \emptyset$ for i = 1, 2, ..., m do begin if $T + e_i$ does not contain a cycle then $T \leftarrow T + e_i$ end Output Tend

Greedy always adds the maximum weight edge which does not make a cycle with previously chosen edges.

Proof (a) Lemma 2(a) implies that T + e has a cycle *C*. Suppose that T + e contains another cycle $C' \neq C$. Let edge $g \in C' \setminus C$. T' = T + e - g is connected, has n - 1 edges. But T' contains a cycle *C*, contradicting Theorem 1.

(b) T + e - f is connected and has n - 1 edges. Therefore it is a tree. **Theorem 4** Let *G* be a connected weighted graph. The tree constructed by GREEDY is a maximum weight spanning tree.

Proof Lemma 3 implies that *T* is a spanning tree of *G*.

Let the edges of the greedy tree be

 $e_1^{\star}, e_2^{\star}, \dots, e_{n-1}^{\star}$, in order of choice. Note that $w(e_i^{\star}) \ge w(e_{i+1}^{\star})$ since neither makes a cycle with $e_1^{\star}, e_2^{\star}, \dots, e_{i-1}^{\star}$.

Let $f_1, f_2, \ldots, f_{n-1}$ be the edges of any other tree where $w(f_1) \ge w(f_2) \ge \cdots w(f_{n-1})$.

We show that

 $w(e_i^{\star}) \ge w(f_i) \qquad 1 \le i \le n-1.$ (1)

21

Let μ_i be the number of f_j which have both endpoints in C_i and let ν_i be the number of vertices of C_i . Then

$$\mu_1 + \mu_2 + \cdots + \mu_{n-k+1} = k \tag{2}$$

 $\nu_1 + \nu_2 + \cdots + \nu_{n-k+1} = n$ (3)

It follows from (2) and (3) that there exists t such that

$$\mu_t \ge \nu_t. \tag{4}$$

[Otherwise

$$egin{array}{rll} {n-k+1} \sum\limits_{i=1}^{n-k+1} \mu_i &\leq \sum\limits_{i=1}^{n-k+1} (
u_i-1) \ &= \sum\limits_{i=1}^{n-k+1}
u_i - (n-k+1) \ &= k-1. \end{array}$$

But (4) implies that the edges f_j such that $f_j \subseteq C_t$ contain a cycle.

23

Cut Sets and Bonds

If $S \subseteq V, S \neq \emptyset, V$ then the **cut-set**

$$S: \bar{S} = \{e = vw \in E: v \in S, w \in \bar{S} = V \setminus S\}$$

$$S = \{1, 2, 3\}$$
 $S : \overline{S} = \{d, e, f\}.$

Suppose (1) is false. There exists k > 0 such that

$$w(e_i^{\star}) \ge w(f_i), \ 1 \le i < k \text{ and } w(e_k^{\star}) < w(f_k).$$

Each f_i , $1 \le i \le k$ is either one of or makes a cycle with $e_1^{\star}, e_2^{\star}, \ldots, e_{k-1}^{\star}$. Otherwise one of the f_i would have been chosen in preference to e_k^{\star} .

Let components of forest $(V, \{e_1^{\star}, e_2^{\star}, \dots, e_{k-1}^{\star}\})$ be $C_1, C_2, \dots, C_{n-k+1}$. Each $f_i, 1 \leq i \leq k$ has both of its endpoints in the same component.

Proof (a) $X \subseteq \overline{T} \leftrightarrow G \setminus X \supseteq T$ which implies that $G \setminus X$ is connected. So X is not a bond.

(b)&(c) $G \setminus (\overline{T} + e) = T \setminus e$ contains exactly two components and so by Theorem 5 $\overline{T} + e$ contains a bond $B = S : \overline{S}$ where S, \overline{S} are the 2 components of $T \setminus e$.

$$f \in B \implies e \in C(T, f)$$

$$\implies T + f - e \text{ is a tree}$$

$$\implies \overline{T} + e - f \text{ is a co-tree}$$

Hence every bond of $\overline{T} + e$ contains f – otherwise $\overline{T} + e - f$ contains a bond, contradicting (a) and proving (b).

29

proving (c)

Contracting edges

If $e = vw \in E$, $v \neq w$ then we can **contract** e to get $G \cdot e$ by (i) deleting e, (ii) identifying v, w i.e. make them into a single new vertex.

G - e is obtained by deleting e.

 $\tau(G)$ is the number of spanning trees of G.

Theorem 7 If $e \in E$ is not a loop then

$$\tau(G) = \tau(G \cdot e) + \tau(G - e)$$

Proof

- $\tau(G e)$ = the number of spanning trees of G which do not contain e.
- $\tau(G \cdot e)$ = the number of spanning trees of G which contain e.

[Bijection $T \to T \cdot e$ maps spanning trees of G which contain e to spanning trees of $G \cdot e$.]

33

Pfuffer's Correspondence

There is a 1-1 correspondence ϕ_V between spanning trees of K_V (the complete graph with vertex set V) and sequences V^{n-2} . Thus for $n \ge 2$

 $\tau(K_n) = n^{n-2}$ Cayley's Formula.

Assume some arbitrary ordering $V = \{v_1 < v_2 < v_2$ $\cdots < v_n$.

 $\phi_V(T)$: begin $T_1 := T;$ for i = 1 to n - 2 do begin $s_i :=$ neighbour of least leaf ℓ_i of T_i . $T_{i+1} = T_i - \ell_i.$ end $\phi_V(T) = s_1 s_2 \dots s_{n-2}$ end

Matrix Tree Theorem

Define the $V \times V$ matrix L = D - A where A is the adjacency matrix of G and D is the diagonal matrix with D(v, v) = degree of v.

$$\begin{array}{c} 3 & -1 \\ -1 & 3 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \end{array}$$

ag replacements $L_1 = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$

$$L = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

Determinant $L_1 = 16$

-1

Let L_1 be obtained by deleting the first row and column of L.

Theorem 8

 $\tau(G) = \operatorname{determinant} L_1.$

6,4,5,14,2,6,11,14,8,5,11,4,2

Lemma 5 $v \in V(T)$ appears exactly $d_T(v) - 1$ times in $\phi_V(T)$.

Proof Assume $n = |V(T)| \ge 2$. By induction on n. n = 2: $\phi_V(T) = \Lambda$ = empty string.

Assume $n \ge 3$:

PSfrag replacements

$$\phi_V(T) = s_1 \phi_{V_1}(T_1)$$
 where $V_1 = V - \{\ell_1\}$.

 s_1 appears $d_{T_1}(s_1) - 1 + 1 = d_T(s_1) - 1$ times - induction.

 $v \neq s_1$ appears $d_{T_1}(v) - 1 = d_T(v) - 1$ times – induction.

37

Number of trees with a given degree sequence

Corollary 5 If $d_1 + d_2 + \cdots + d_n = 2n - 2$ then he number of spanning trees of K_n with degree sequence d_1, d_2, \ldots, d_n is

$$\binom{n-2}{d_1-1,d_2-1,\ldots,d_n-1} = \frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$$

Proof From Pfuffer's correspondence and Lemma 5 this is the number of sequences of length n - 2 in which 1 appears $d_1 - 1$ times, 2 appears $d_2 - 1$ times and so on.

39

Construction of ϕ_V^{-1}

Inductively assume that for all |X| < n there is an inverse function ϕ_X^{-1} . (True for n = 2). Now define ϕ_V^{-1} by

 $\phi_V^{-1}(s_1s_2...s_{n-2}) = \phi_{V_1}^{-1}(s_2...s_{n-2}) \text{ plus edge } s_1\ell_1,$ where $\ell_1 = \min\{s : s \notin s_1, s_2, ...s_{n-2}\}$ and $V_1 = V - \{\ell_1\}.$

Then

$$\begin{split} \phi_V(\phi_V^{-1}(s_1s_2\dots s_{n-2})) &= \\ &= \phi_V(\phi_{V_1}^{-1}(s_2\dots s_{n-2}) \text{ plus edge } s_1\ell_1) \\ &= s_1\phi_{V_1}(\phi_{V_1}^{-1}(s_2\dots s_{n-2})) \\ &= s_1s_2\dots s_{n-2}. \end{split}$$

Thus ϕ_V has an inverse and the correspondence is established.