
Network Flows

A Network is a digraph
���������
	��

plus 2 distin-
guished vertices, a source  and a sink � .
Notation: if ��� 	����

then for � �������
,

� � � ������� �
� �"! #%$
&('*)+�-,/.102$ � ��34��51�

� is a flow from  to � if

� ��56���7�98 � �:�;�
51�<�>=
for all

5@?A����5CB�  � � – conservation of flow.
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Arc D has capacity E � D ��F�=
.

A flow is feasible if

=HG � � D �IG E � D � D ?C	7J

Lemma 1 If � is a flow from  to � then

� �  �:�K�98 � �:���  �<� � �:��� � �98 � � � ���L�MJ

Proof
=N� � �����:�K�98 � �:�����7�

� O � �  �:�K�QP � � � �:�K�:R28�O � �:���  ��P � ����� � �:RSP
P �

#(TU<V ! W
� � �
56�:�K�98 � �:����51�X�

� O � �  �:�K�QP � � � �:�K�:R28�O � �:���  ��P � ����� � �:R�J
Y
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� �  �:�K�Z8 � �����  �
is the net flow out of  .

� ����� � �98 � � � �:�K�
is the net flow into � .

The common value is called the value
5([

of the flow
� .

A feasible flow which maximises
5([

is called a maxi-
mum flow.
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Cuts

Let  ? � �\�
and � ?^]� �_��` � . The set of arcs

�a� ]� �b	acd� �fe ]� �
is called an  � � cut.
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S={x,a,c,e,f}: capacity of S:S is 4+5+15=24.
-

3

�a� ]� has capacity E � � � ]� �gJ
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Lemma 2 If � is a feasible flow and � � ]� is an  � �
cut then

5 [ G E � � � ]� �gJ

Proof
5 [ � � �  �:�7� 8 � �����  �

� �
# & , � �
56�:�K�98 �

# &1, � �:�;�
51�
� � � � � � ��P � � � � ]� �98 � � � � � �98 � � ]� � � �
� � � � � ]� � 8 � � ]� � � �

(1)G E � �a� ]� �gJ
Y
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Flow � saturates arc D if � � D ��� E � D �
.

Lemma 3 If flow � � and  � � cut � � � ]� � are such that

(i) � � saturates every arc of � � � ]� � .
(ii) � � � D �<�>=

for every D ? ]� � �1� � .
then

(a)
5 [��Q� E � � � � ]� � � .

(b) � � is a maximum flow.

(c) � � � ]� � is a minumum capacity cut.

Proof (a) follows from (i), (ii) and (1). Now let � be
any feasible flow and let �a� ]� be any  � � cut. Then

5g[ G E � � � � ]� � �<�b5 [ � G E � � � ]� �MJ
Y
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� -augmenting paths

Let � be a feasible flow. A path
��� � �� �  � �� � J J%J �


	 � � �
from  to � in the underlying graph � ��� �

is
� -augmenting if

�  ����� ?C	
implies that � � �  ����� ��� E � �  ����� �MJ

(2)

 ����� �� ?C	
implies that � �  ����� � ��� =/J

(3)
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7

Theorem 1 � is a maximum flow iff if there are no � -
augmenting paths.

Proof If: Suppose
� �N�  � �  �  � �%J%J J � �	 �

� �
is an � -augmenting path. let� ��������� E � �  ����� � 8 � � ��  ����� � ��  ����� ?�	

� �  ����� � �  ����� � ?�	
(4)

Then
� ��=

.
Define �! by

�  � D �<�#"$% $&
� � �  �'��� �QP � D � �  ����� ?C	
� �  �����  � �98 � D �  �����  � ?C	
� � D �

otherwise
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(i) �  is a flow.

5��?���� �  �
56�
�7�<� � �
5 �:�7�
and �  �����
51�Z� � �����
51�
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(iii)
5 [�� � 5 [ P � � 5 [

.

or

x x

+θ −θ

Only if: Suppose there are no � -augmenting paths.
let

� ���X3C?A� �	� a path
� � � � �� �  � �� � J%J J � �	 �b3+�

in � which satisfies (2,(3)
(5)
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S={x} yields a mimimum cut
11

Then
(i)  ? � and � �? �

(ii) D ��365A? � � ]� implies � � D �L� E � D �
. If � � D � �

E � D �
then

� � � �
51�
satisfies (2),(3) and so

5@? � – con-
tradiction.

(iii) D � 5"3a? ]� �4� implies � � D �@� =
. If � � D � �^=

then
� � � �
5 �

satisfies (2),(3) and so
5f? � – contra-

diction.

It follows from Lemma 3 that � is a maximum flow (and
�a� ]� is a minimum cut).
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Max-Flow Min-Cut Theorem

Theorem 2 �����[ 5 [ ����� �, E � � � ]� �MJ
(6)

Proof Lemma 2 shows that the LHS of (6) is at
most the RHS.

Suppose � is a maximum flow. Let � be as defined in
(5). � has no � -augmenting paths and so5g[K� E � �a� ]� �MJ Y
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Lemma 4 If E � D �
is an integer for all D ?C	

then there
is a maximum flow with � � D �

integer for all D ?C	
.

Proof Start with the feasible flow � � =
. Repeat-

edly find flow augmenting paths until a maximum flow
is reached. We can argue inductively that � stays inte-
ger throughout. This is because

�
of (4) will be integer

if � and E are.
Y
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Alternate proof of Hall’s Theorem

x

X Y

y

1
1

1

1

1
1

1

1

G=(V,E)

� ��� ��� G	� 
��
.

Let

E � D �<� "$% $&
� D �  34� 3C?��
� D � 5 � ��5@?

� D ?�

An integral flow � from  to � defines a matching
� � � 365@?� � � �
3651�<�����"�

and conversely.
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Let � � ]� be an  � � cut and let

� � � � c��C� ��� � � c�
QJ
If � 3H? � � and

5@?
�`�� � such that
3S5@?�

then

E � � � ]� ��F E �
3651�<� � J
So

E � �a� ]� ��� � iff � � � � ��� � � J
In which case

E � �a� ]� �<� ��� ���M8�� � � � ��P�� ��� � J
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By the Max-Flow Min-Cut Theorem� � � ��� � � � � � � ��������
�
	 � ��� �������

� � ���M8 � � � � �QP � � � �

� ��� �, ����� ��� ��� 8 � � � � � P � � � � � � �
Thus there exists a matching of size

� ���
iff

� ���M8 � � � �%P � � � � � � � F � ���
for all � � � �

, which is Hall’s theorem.
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A graph � is � -orientable if there is an orientation
�

of � with � � ��� ��F � . ( � � �
� �<����� � ��� � �
51� � 5@?
� �

).

For � ���
let � � � �

denote the number of edges of �
with at least one end in � .

Theorem 3 � is � -orientable iff � � � � F � � � � for all
� ���

.

Proof Only if: Suppose that
�

is an orientation
of � with � � F � . Then

� � � ��F �
# & ,

� � � � ��F � � � � J
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Interpret uv uf=1

as orient uv from u to v.
Interpret uv v

as orient uv from v to u.
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� is � -orientable iff there exists a flow of value � � � � .
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Suppose the maximum flow value is
� � � � � . Let � �]� be a minimum cut in � . Let

	 � � c�
and � �

� c �
.
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There are no edges from
	

to � in � else E � �a� ]� �<�
� . So

� � � � G � ���M8 � 	 �
� ��� 8 � 	 �%P � � � � � � � ���

and � � � ��� � � � � . Y
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Menger’s Theorems

In the following  � � ?A�
.

Theorem 4 The maximum number of arc disjoint di-
rected paths joining  and � in a digraph

�
equals the

minimum number of arcs whose deletion destroys all
directed  � � paths.

Theorem 5 The maximum number of internally ver-
tex disjoint directed paths joining  and � in a digraph�

equals the minimum number of vertices (
B�  � � )

whose deletion destroys all directed  � � paths.

Theorem 6 The maximum number of edge disjoint
paths joining  and � in a graph � equals the min-
imum number of edges whose deletion destroys all
 � � paths.

Theorem 7 The maximum number of internally ver-
tex disjoint paths joining  and � in a graph

�
equals

the minimum number of vertices (
B�  � � ) whose dele-

tion destroys all  � � paths.
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Lemma 5 Let � be a network in which each arc has
capacity 1. Let � � be a maximum flow and � � � ]� � a
minimum cut.

(a)
5 [ �

is the maximum number � � � , of arc disjoint
directed  � � paths.

(b) E � � � � ]� � � is the minimum number � �� of arcs
whose deletion destroys all directed  � � paths.

(a) If
� � � � � � J J%J � ��� � � is a set of arc disjoint directed

 � � paths then we can send one unit of flow along
each path. Thus

5 [ �9F � � � .
To prove

5 [ � G � � � delete all arcs with � � � D � � =
to

obtain arc set
	 �

. Note that � � � D � � �
for

	 ?a	 �
.

Add
5 [ � �( arcs. The digraph

� � � �����
	 � �
has an

Euler tour. Deleting the �" edges from the tour yields5g[��
arc disjoint directed  � � paths.
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(b) Let ��� ]� be an  � � cut in � . ��� ]� meets every
 � � path and so deleting � � ]� destroys all  � � paths
and E � �a� ]� �<��� �a� ]� � F � �� .
On the other hand, if

�
is any set of arcs which meet

every  � � path, let � � � 5 � 5
is reachable from

 by a directed path in
�>8 ���

. Then � ? ]� and��� ��� ]� . (If there is an arc
365 �? �C� 3 ? � �
5H? ]�

then
5

is reachable from  in
� 8 �

, contradiction.)
Thus

� ��� F E � � � ]� �
which implies � �� is at least the

minimum capacity of a cut.
Y

Theorem 4 follows from the above lemma and the
Max-Flow Min-Cut theorem.
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Lemma 6 Let
� � be the maximum number of arc disjoint  � � di-
rected paths in

�C� � �
.

� � be the maximum number of arc disjoint  � � di-
rected paths in

�C� � �
such that

at most one of
3656�
5"3

can be used

as an edge in the set of paths. (7)

Then � � � � � .

Proof Clearly � � F � � . For the converse, let� � � � � � J J%J � � � � be a collection of arc disjoint  � � di-
rected paths and assume that � � � � � is as small as
possible. We claim that (7) holds.

24
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We can reduce � � � � � by removing the
365

and
5"3

.

u
v

x y
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Proof of Theorem 6.

� �
max. number of edge disjoint  � � paths in �� � � of Lemma 6� � � of Lemma 6���� � � the minimum number of arcs whose deletion

destroys all directed  � � paths in � ��� �
by Theorem 4

�
F �  �

minimum number of edges whose deletion

destroys all  � � paths in � .
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If � covers all  � � paths in
�C� � �

then �  covers all
 � � paths in � .
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We finish by showing that �  F��� � . Suppose that
the deletion of

�C��� ��� � �  destroys all  � � paths in� .
�

is minimal with this property. So � 8 �
has two

components.

x y

Cx C y

Let

 � � 365 � 3S5 ? �C�
3\?�� V ��5�?�� W � . Then� ���I� � 
 �

and there are no directed  � � paths in�H� � �98 

. Thus �  F��� � . Y
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Proof of Theorem 5

D D’=(V’,A’)

v v’ v"

Each vertex
5

of
�

becomes an arc D # of
�  . For

� ���
let

	 , ��� D # � 5 ? � � .
(a) In the transformation

� � �  node disjoint paths
correspond to arc disjoint paths.
(b)
(i) � covers all directed  � � paths in

�
implies

	��
covers all directed  � � paths in

�  .
29

(ii)



covers all directed  � � paths in
�  , 
 has as few

arcs as possible, then we can assume

 � 	��

.

v’ v"a

b

(Can always replace D by � .)

30

Proof of Theorem 7

Node disjoint paths in � map to node disjoint paths in� �
� �
.

G
D

�N� �
covers all  � � paths in � iff

�
covers all di-

rected  � � paths in
�

.
Y
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