Network Flows

A Network is a digraph D = (V, A) plus 2 distin-
guished vertices, a source x and a sink y.
Notation: if f : A — Rthenfor S, T CV,

f(8,T) = > f(u,v)
(u,v)EAN(SXT)
f is a flow from z to y if
f@, V)= f(V,v) =0

for all v € V,v # «, y — conservation of flow.

f(z, V) — f(V,z) is the net flow out of z.
Ff(V,y) — f(y, V) is the net flow into y.

The common value is called the value vy of the flow

f.

A feasible flow which maximises vy is called a maxi-
mum flow.

Arc a has capacity c(a) > 0.

A flow is feasible if

0 < f(a) < c(a) a€ A

Lemmal If fis a flow from z to y then

f@,V)—f(V,z) = f(V,y) — f(y, V).

Proof

0 = f(V,V)—-Ff(V,V)
= [f(@ V) + f(y, V] - [F(V,2) + f(V,9)] +
+ > (f(w, V) = f(V,v))

vFETY

= [f(& V) + fly, ] - [F(V,z) + f(V,9)].
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Cuts

Letz € SCVandy e §=V\S. The set of arcs
S:85=AnNn(S x 8)iscalled an z, y cut.

20

h
S={x,acef}: capacity of S:Sis4+5+15=24.

S : 8 has capacity ¢(S, 5).




Lemma?2 If f is a feasible flow and S : Sis an z,y
cut then

ve<e(S: 5).

Proof

vp = f(z,V) - f(V,z)
Y [ V)= f(V,v)

vES veS
= f(85,8)+ f(S,8) — £(S,8) - £(S5,9)
= f(S,5) - f(S5,9) @
< ¢(S:8).

f-augmenting paths

Let f be afeasible flow. Apath P = (zg = z,z1,... ,
zp, = y) from z to y in the underlying graph G(D) is
f-augmenting if

TiTigq € A implies that f(:cixi_'_l) < C(ximi-l-l)-
&)

z;y1z; € Aimplies that f(z;412;) > 0. (3)
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X,a,c,d,by is f-augmenting

Flow f saturates arc a if f(a) = c(a).

Lemma 3 If flow f* and z,y cut S* : §* are such that
(i) f* saturates every arc of S* : 5*.

(i) f*(a) = O foreverya € §*: S*.

then

(@) vpx = c(S*: §%).

(b) f*is a maximum flow.

(c) S* : 8* is a minumum capacity cut.

Proof (a) follows from (i), (ii) and (1). Now let f be

any feasible flow and let S : S be any z, y cut. Then
vf < e(S*:8) =vp < e(S:5).

Theorem 1 f is a maximum flow iff if there are no f-
augmenting paths.

Proof If: Suppose P = (zg = z,21,... ,T}, =
y) is an f-augmenting path. let

0 = min ¢@izit1) — f(@izig1) zzip1 € A
(@it12i) Ti41%; € 14(4)

Then 6 > 0.
Define f' by

) frizip1) +0 a=mzxiy1 €A
fla@) =1 flzjy12;) -0 a=z,415, €A
f(a) otherwise
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(i) f'is a flow.

vg P=f'(v,V) = f(v,V) and f'(V,v) = f(V,v)

(iii) vpr=v5+ 0> vy

+0 /_e/
/ o
X X

Only if: Suppose there are no f-augmenting paths.
let

S={ueV: Japath P, = (g = z,21,... ,2p = u)in.
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S={x} yields amimimum cut
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Then
()zeSandy ¢ S

(i) a = uv € S: Simplies f(a) = c(a). If f(a) <
c(a) then (Py,v) satisfies (2),(3) and so v € S — con-
tradiction.

(i) a = vu € § : S implies f(a) = 0. If f(a) > 0
then (Py,v) satisfies (2),(3) and so » € S — contra-
diction.

It follows from Lemma 3 that f is a maximum flow (and
S : S is a minimum cut).
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Max-Flow Min-Cut Theorem
Theorem 2

mjgx vp = mSin (S : 5). (6)

Proof Lemma 2 shows that the LHS of (6) is at
most the RHS.

Suppose f is a maximum flow. Let S be as defined in

(5). f has no f-augmenting paths and so
vy =1c(S:8). O
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Alternate proof of Hall's Theorem

X v G=(VE)

m=|X|<|Yl.
Let

1 a=zu,ue X
c(a)=4 1 a=wvy,veY
o~ acFE

An integral flow f from « to y defines a matching
M={uw e E: f(uv) =1},

and conversely.
15

Lemma 4 If c(a) is an integer for all a € A then there
is a maximum flow with f(a) integer for all a € A.

Proof Start with the feasible flow f = 0. Repeat-
edly find flow augmenting paths until a maximum flow
is reached. We can argue inductively that f stays inte-
ger throughout. This is because 6 of (4) will be integer
if f and c are. |
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Let S : S be an z,y cut and let
S1=8NX,S=858nY.
If 3u € S; and v € Y \ X5 such that uv € E then
c(S:8) > c(uv) = .
So
c(S:8) < x0iff N(S1) C So.
In which case

e(8:8) = (IX] - |81 +[S2].
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By the Max-Flow Min-Cut Theorem

max{|M|} = (X = |51 +1S2]

min
S1CX
N(81)CS>CY
= in (|X|— N
sTg"}(O | = 151]) + IN(S1)|
Thus there exists a matching of size | X| iff
|X] = [S1] + [N(S1)| = [X]

for all S; C X, which is Hall's theorem.
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Interpret UML-u Interpret w
asorient uv fromutov. asorient uv fromv to u.
f=1

G is m-orientable iff there exists a flow of value m|V/|.
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A graph G is m-orientable if there is an orientation D
of G with 6T (D) > m. (67 (D) = min{d+(v) : v €
V.

For S C V let1(S) denote the number of edges of G
with at leastone end in S.

Theorem 3 G is m-orientable iff 1(S) > m|S] for all
SCV.

Proof Only if: Suppose that D is an orientation
of G with 61 > m. Then

1(8) > 3" dT(S) > mlS].
veS

18

Suppose the maximum flow value is < m|V|. Let S :
S be a minimum cutinl. Let A= SNEand B =
SNnV.

A

There are no edges from Ato Z inT else c(S : 5) =
0. So

1(Z) < |EI-1A|
|E| = Al +m|B| < m|V|
and 1(Z) < m|Z|. O
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Menger’s Theorems
In the following z,y € V.

Theorem 4 The maximum number of arc disjoint di-
rected paths joining = and y in a digraph D equals the
minimum number of arcs whose deletion destroys all
directed z, y paths.

Theorem 5 The maximum number of internally ver-
tex disjoint directed paths joining z and y in a digraph
D equals the minimum number of vertices (# z,y)
whose deletion destroys all directed z, y paths.

Theorem 6 The maximum number of edge disjoint
paths joining z and y in a graph G equals the min-
imum number of edges whose deletion destroys all
x,y paths.

Theorem 7 The maximum number of internally ver-
tex disjoint paths joining z and y in a graph D equals
the minimum number of vertices (# x, y) whose dele-
tion destroys all z, y paths.

21

(b) Let S : Sbean z,ycutin N. S : § meets every
x,y path and so deleting S : S destroys all z, y paths
and c(S:8) =|5:5| >m3.

On the other hand, if X is any set of arcs which meet
every z,y path, let S = {v : v is reachable from
x by a directed path in D — X}. Theny € S and
X DS8:8. (fthereisanarcuv ¢ X, u € S,v € S
then v is reachable from z in D — X, contradiction.)
Thus |X| > ¢(S : §) which implies m% is at least the
minimum capacity of a cut. |

Theorem 4 follows from the above lemma and the

Max-Flow Min-Cut theorem.
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Lemmab5 Let N be a network in which each arc has
capacity 1. Let f* be a maximum flow and S* : §* a
minimum cut.

(@) vpr is the maximum number mj, of arc disjoint
directed z, y paths.

(b) c(S* : §*) is the minimum number m¥ of arcs
whose deletion destroys all directed z, y paths.

(@) If P, Po,... ,mei is a set of arc disjoint directed
z,y paths then we can send one unit of flow along
each path. Thus v« > m7.

To prove vy« < m7 delete all arcs with f*(a) = Oto
obtain arc set A*. Note that f*(a) = 1 for A € A*.
Add v« yx arcs. The digraph D* = (V, A*) has an
Euler tour. Deleting the yx edges from the tour yields
vy« arc disjoint directed =z, y paths.
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Lemma6 Let

m1 be the maximum number of arc disjoint z,y di-
rected paths in D(G).

mo be the maximum number of arc disjoint z,y di-
rected paths in D(G) such that

at most one of uv, vu can be used
as an edge in the set of paths. (7)

Then mi1 = mjp.

Proof Clearly my > mo. For the converse, let
Py, P>,...,Pn, beacollection of arc disjoint z, y di-
rected paths and assume that 3 |P;| is as small as
possible. We claim that (7) holds.
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We can reduce " | P;| by removing the wv and vu.

me
25

Z
u N A\V4
=
u \V
ul Z 1 \/

If Z covers all z,y paths in D(G) then Z’ covers all
z,y paths in G.
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Proof of Theorem 6.

m = max. number of edge disjoint z, y paths in G

= my of Lemma 6

= my of Lemma 6

= 77 (the minimum number of arcs whose deletion
destroys all directed z, y paths in G(D)
by Theorem 4)

> m/ = minimum number of edges whose deletion
destroys all z, y paths in G.
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We finish by showing that m’ > my. Suppose that
the deletion of X, | X| = m’' destroys all z,y paths in
G. X is minimal with this property. So G — X has two
components.

S cy
LetY = {uv : wv € X,u € Cg,v € Cy}. Then

|X| = |Y| and there are no directed z,y paths in
D(G) =Y. Thus m/ > m;y. O
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Proof of Theorem 5

Each vertex v of D becomes an arc a, of D’. For
SCVlietAg ={ay: veE S}

(@) In the transformation D — D' node disjoint paths
correspond to arc disjoint paths.

(b)

(i) Z covers all directed z,y paths in D implies Ay
covers all directed z,y paths in D’.
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Proof of Theorem 7

Node disjoint paths in G map to node disjoint paths in
G(D).

X C V covers all z,y paths in G iff X covers all di-
rected z, y paths in D. |
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(i) Y covers all directed z, y paths in D, Y has as few
arcs as possible, then we can assume Y C A.

(Can always replace a by b.)
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