Network Flows

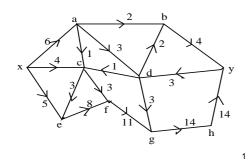
A Network is a digraph D = (V, A) plus 2 distinguished vertices, a source x and a sink y. Notation: if $f : A \to \mathbf{R}$ then for $S, T \subseteq V$,

$$f(S,T) = \sum_{(u,v) \in A \cap (S \times T)} f(u,v)$$

f is a flow from x to y if

$$f(v,V) - f(V,v) = 0$$

for all $v \in V, v \neq x, y$ – conservation of flow.



f(x, V) - f(V, x) is the *net* flow out of x.

f(V, y) - f(y, V) is the *net* flow into y.

The common value is called the value \boldsymbol{v}_f of the flow f.

A feasible flow which maximises v_f is called a *maximum flow*.

3

4

Arc *a* has capacity $c(a) \ge 0$.

A flow is feasible if

$$0 \le f(a) \le c(a)$$
 $a \in A$.

Lemma 1 If f is a flow from x to y then

$$f(x, V) - f(V, x) = f(V, y) - f(y, V).$$

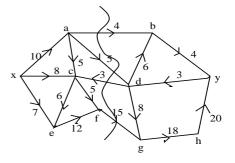
Proof

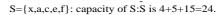
$$0 = f(V, V) - f(V, V)$$

= $[f(x, V) + f(y, V)] - [f(V, x) + f(V, y)] +$
+ $\sum_{v \neq x, y} (f(v, V) - f(V, v))$
= $[f(x, V) + f(y, V)] - [f(V, x) + f(V, y)].$

Cuts

Let $x \in S \subseteq V$ and $y \in \overline{S} = V \setminus S$. The set of arcs $S : \overline{S} = A \cap (S \times \overline{S})$ is called an x, y cut.





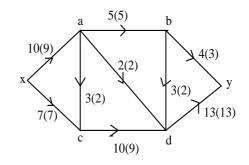
 $S: \overline{S}$ has capacity $c(S, \overline{S})$.

f-augmenting paths

Let f be a feasible flow. A path $P = (x_0 = x, x_1, \dots, x_k = y)$ from x to y in the underlying graph G(D) is f-augmenting if

$$x_i x_{i+1} \in A$$
 implies that $f(x_i x_{i+1}) < c(x_i x_{i+1})$.
(2)

$$x_{i+1}x_i \in A$$
 implies that $f(x_{i+1}x_i) > 0.$ (3)



x,a,c,d,b,y is f-augmenting

7

8

Flow f saturates arc a if f(a) = c(a).

Lemma 3 If flow f^* and x, y cut $S^* : \overline{S}^*$ are such that

Lemma 2 If f is a feasible flow and $S : \overline{S}$ is an x, y

 $v_f \leq c(S : \overline{S}).$

 $= \sum_{v \in S} f(v, V) - \sum_{v \in S} f(V, v)$ $= f(S, S) + f(S, \overline{S}) - f(S, S) - f(\overline{S}, S)$

(1)

5

 $v_f = f(x, V) - f(V, x)$

 $\leq c(S:\overline{S}).$

 $= f(S,\overline{S}) - f(\overline{S},S)$

cut then

Proof

(i) f^* saturates every arc of S^* : \overline{S}^* .

(ii) $f^*(a) = 0$ for every $a \in \overline{S}^*$: S^* .

then

(a) $v_{f^*} = c(S^* : \overline{S}^*).$

(b) f^* is a maximum flow.

(c) S^* : \overline{S}^* is a minumum capacity cut.

Proof (a) follows from (i), (ii) and (1). Now let *f* be any feasible flow and let $S : \overline{S}$ be any x, y cut. Then

$$v_f \leq c(S^* : \overline{S}^*) = v_{f^*} \leq c(S : \overline{S}).$$

Theorem 1 f is a maximum flow iff if there are no f-augmenting paths.

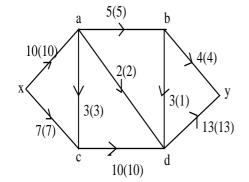
Proof If: Suppose $P = (x_0 = x, x_1, \dots, x_k = y)$ is an *f*-augmenting path. let

$$\theta = \min \begin{cases} c(x_i x_{i+1}) - f(x_i x_{i+1}) & x_i x_{i+1} \in A \\ f(x_{i+1} x_i) & x_{i+1} x_i \in A \\ \end{cases}$$
(4)

Then $\theta > 0$. Define f' by

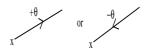
$$f'(a) = \begin{cases} f(x_i x_{i+1}) + \theta & a = x_i x_{i+1} \in A \\ f(x_{i+1} x_i) - \theta & a = x_{i+1} x_i \in A \\ f(a) & \text{otherwise} \end{cases}$$

n b .



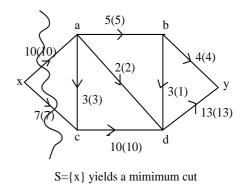
 $v \notin P \Rightarrow f'(v, V) = f(v, V)$ and f'(V, v) = f(V, v)

(iii) $v_{f'} = v_f + \theta > v_f$.

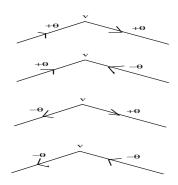


Only if: Suppose there are no *f*-augmenting paths. let

 $S = \{ u \in V : \exists a \text{ path } P_u = (x_0 = x, x_1, \dots, x_k = u) \text{ in } \}$



11



Then (i) $x \in S$ and $y \notin S$

(ii) $a = uv \in S : \overline{S}$ implies f(a) = c(a). If f(a) < c(a) then (P_u, v) satisfies (2),(3) and so $v \in S$ – contradiction.

(iii) $a = vu \in \overline{S}$: *S* implies f(a) = 0. If f(a) > 0 then (P_u, v) satisfies (2),(3) and so $v \in S$ – contradiction.

It follows from Lemma 3 that f is a maximum flow (and $S : \overline{S}$ is a minimum cut).

10

9

Max-Flow Min-Cut Theorem

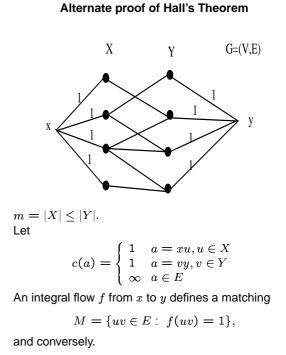
Theorem 2

$$\max_{f} v_{f} = \min_{S} c(S : \overline{S}).$$
(6)

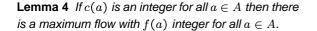
Proof Lemma 2 shows that the LHS of (6) is at most the RHS.

Suppose *f* is a maximum flow. Let *S* be as defined in (5). *f* has no *f*-augmenting paths and so $v_f = c(S : \overline{S})$.

13



15



Proof Start with the feasible flow f = 0. Repeatedly find flow augmenting paths until a maximum flow is reached. We can argue inductively that *f* stays integer throughout. This is because θ of (4) will be integer if *f* and *c* are.

Let $S : \overline{S}$ be an x, y cut and let

$$S_1 = S \cap X, \, S_2 = S \cap Y.$$

If $\exists u \in S_1$ and $v \in Y \setminus X_2$ such that $uv \in E$ then

$$c(S:\overline{S}) \ge c(uv) = \infty$$

So

$$c(S:\overline{S}) < \infty \text{ iff } N(S_1) \subseteq S_2.$$

In which case

$$c(S:\bar{S}) = (|X| - |S_1|) + |S_2|.$$

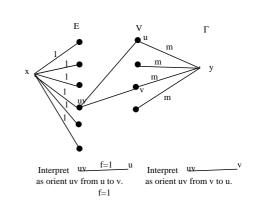
By the Max-Flow Min-Cut Theorem

 $\max\{|M|\} = \min_{\substack{S_1 \subseteq X \\ N(S_1) \subseteq S_2 \subseteq Y}} (|X| - |S_1|) + |S_2|$ = $\min_{S_1 \subseteq X} (|X| - |S_1|) + |N(S_1)|$

Thus there exists a matching of size |X| iff

 $|X| - |S_1| + |N(S_1)| \ge |X|$

for all $S_1 \subseteq X$, which is Hall's theorem.



G is *m*-orientable iff there exists a flow of value m|V|.

19

20

17

A graph G is m-orientable if there is an orientation D of G with $\delta^+(D) \ge m$. $(\delta^+(D) = \min\{d^+(v) : v \in V\})$.

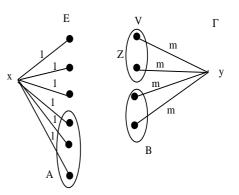
For $S \subseteq V$ let I(S) denote the number of edges of G with at least one end in S.

Theorem 3 *G* is *m*-orientable iff $\iota(S) \ge m|S|$ for all $S \subseteq V$.

Proof Only if: Suppose that *D* is an orientation of *G* with $\delta^+ \ge m$. Then

$$|(S) \ge \sum_{v \in S} d^+(S) \ge m|S|$$

Suppose the maximum flow value is < m|V|. Let S: \overline{S} be a minimum cut in Γ . Let $A = S \cap E$ and $B = S \cap V$.



There are no edges from A to Z in Γ else $c(S:\bar{S})=\infty.$ So

$$egin{array}{rcl} {f l}(Z)&\leq&|E|-|A|\ |E|-|A|+m|B|&<&m|V|\ {f and}\ {f l}(Z)< m|Z|.\end{array}$$

Menger's Theorems

In the following $x, y \in V$.

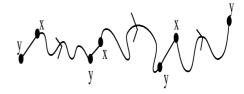
Theorem 4 The maximum number of arc disjoint directed paths joining x and y in a digraph D equals the minimum number of arcs whose deletion destroys all directed x, y paths.

Theorem 5 The maximum number of internally vertex disjoint directed paths joining x and y in a digraph D equals the minimum number of vertices ($\neq x, y$) whose deletion destroys all directed x, y paths.

Theorem 6 The maximum number of edge disjoint paths joining x and y in a graph G equals the minimum number of edges whose deletion destroys all x, y paths.

Theorem 7 The maximum number of internally vertex disjoint paths joining x and y in a graph D equals the minimum number of vertices ($\neq x, y$) whose deletion destroys all x, y paths.

21



(b) Let $S : \overline{S}$ be an x, y cut in N. $S : \overline{S}$ meets every x, y path and so deleting $S : \overline{S}$ destroys all x, y paths and $c(S : \overline{S}) = |S : \overline{S}| \ge m_2^*$.

On the other hand, if X is any set of arcs which meet every x, y path, let $S = \{v : v \text{ is reachable from} x$ by a directed path in $D - X\}$. Then $y \in \overline{S}$ and $X \supseteq S : \overline{S}$. (If there is an arc $uv \notin X, u \in S, v \in \overline{S}$ then v is reachable from x in D - X, contradiction.) Thus $|X| \ge c(S : \overline{S})$ which implies m_2^* is at least the minimum capacity of a cut. \Box

Theorem 4 follows from the above lemma and the Max-Flow Min-Cut theorem.

23

Lemma 5 Let *N* be a network in which each arc has capacity 1. Let f^* be a maximum flow and S^* : \overline{S}^* a minimum cut.

(a) v_{f^*} is the maximum number m_1^* , of arc disjoint directed x, y paths.

(b) $c(S^* : \overline{S}^*)$ is the minimum number m_2^* of arcs whose deletion destroys all directed x, y paths.

(a) If $P_1, P_2, \ldots, P_{m_1^*}$ is a set of arc disjoint directed x, y paths then we can send one unit of flow along each path. Thus $v_{f^*} \ge m_1^*$.

To prove $v_{f^*} \le m_1^*$ delete all arcs with $f^*(a) = 0$ to obtain arc set A^* . Note that $f^*(a) = 1$ for $A \in A^*$. Add $v_{f^*} yx$ arcs. The digraph $D^* = (V, A^*)$ has an Euler tour. Deleting the yx edges from the tour yields v_{f^*} arc disjoint directed x, y paths.

Lemma 6 Let

 m_1 be the maximum number of arc disjoint x, y directed paths in D(G).

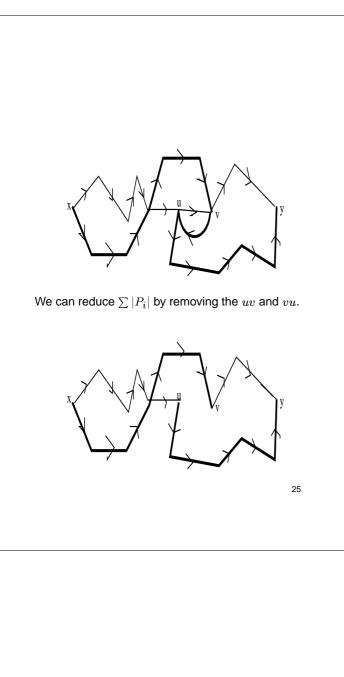
 m_2 be the maximum number of arc disjoint x, y directed paths in D(G) such that

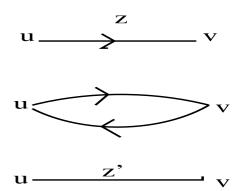
at most one of uv, vu can be used

as an edge in the set of paths. (7)

Then $m_1 = m_2$ *.*

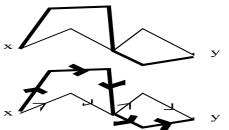
Proof Clearly $m_1 \ge m_2$. For the converse, let $P_1, P_2, \ldots, P_{m_1}$ be a collection of arc disjoint x, y directed paths and assume that $\sum |P_i|$ is as small as possible. We claim that (7) holds.





If Z covers all x, y paths in D(G) then Z' covers all x, y paths in G.

27

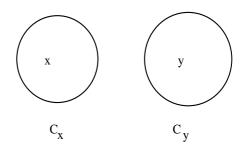


Proof of Theorem 6.

 $m = \max$. number of edge disjoint x, y paths in G

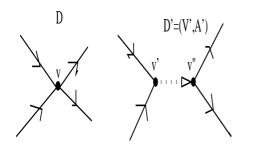
- $= m_2$ of Lemma 6
- $= m_1$ of Lemma 6
- $= \hat{m}_1$ (the minimum number of arcs whose deletion destroys all directed x, y paths in G(D)by Theorem 4)
- $\geq m' =$ minimum number of edges whose deletion destroys all x, y paths in G.

We finish by showing that $m' \geq \hat{m}_1$. Suppose that the deletion of X, |X| = m' destroys all x, y paths in G. X is minimal with this property. So G - X has two components.



Let $Y = \{uv : uv \in X, u \in C_x, v \in C_y\}$. Then |X| = |Y| and there are no directed x, y paths in D(G) - Y. Thus $m' \ge \hat{m}_1$. \Box

Proof of Theorem 5



Each vertex v of D becomes an arc a_v of D'. For $S \subseteq V$ let $A_S = \{a_v : v \in S\}$. (a) In the transformation $D \to D'$ node disjoint paths

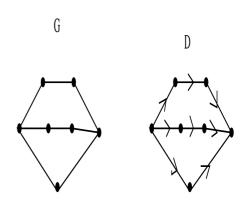
(b)

(i) Z covers all directed x, y paths in D implies A_Z covers all directed x, y paths in D'.

29

Proof of Theorem 7

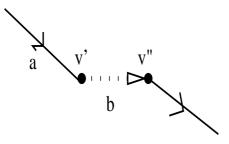
Node disjoint paths in G map to node disjoint paths in G(D).



 $X \subseteq V$ covers all x, y paths in G iff X covers all directed x, y paths in D.

31

(ii) Y covers all directed x, y paths in D', Y has as few arcs as possible, then we can assume $Y \subseteq A_Z$.



(Can always replace a by b.)

30