Directed graphs

Digraph D = (V, A).
V={vertices}, A={arcs}

V={ab,...h}, A={(ab),(b,d),...}

(2 arcs with endpoints (c,d))

Thus a digraph is a graph with oriented edges.
D is strict if there are no loops or repeated edges.

Graph G: an orientation of G is obtained by replacing
each edge {a, b} by (a,b) or (b,a).

G Orientation of G

There are 2|%! distinct orientations of G.

Digraph D: G(D) is the underlying graph obtained by
replaced each arc (a, b) by an edge {a, b}.

The graph underlying the digraph on previous dlide

Walks, trails, paths, cycles now have directed coun-
terparts.

Directed Walk: (c,d,ef,a,b,g,f).
Directed Path: (a,b,g,f).
Directed Cycle: (g,a,b,a)

(ef,g,a) isnot adirected walk -- thereis
no arc (f,g).




The indegree dp,(v) of vertex v is the number of arcs
(z,v),z € V. The outdegree d$(v) of vertex v is the
number of arcs (v,z),z € V.
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Note that since each arc contributes one to a vertex
outdegree and one to a vertex indegree,

Y dt @)=Y d(v) = Al
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A graph is strongly connected if it has one strong com-
ponent i.e. if there is a directed walk between each
pair of vertices.

ForasetS CV let
Nt ={w¢ S: e Sst(v,w) € A)}.

N7 (S)={w¢S: Fve Sst(w,v) € A)}.

Theorem 1 D is strongly connected iff there does not
exist S C V, S # 0,V such that Nt (S) = 0.

Proof Only if: suppose there is such an S and
z € S,y € V\ S and suppose there is a directed
walk W from z to y. Let (vi = z,vp,...,v, = ¥)
be the sequence of vertices traversed by W. Let v;
be the first vertex of this sequence which is not in S.
Then v; € N1(S), contradiction, since arc (v;_1,v;)
exists.

Strong Connectivity or Diconnectivity

Given digraph D we define the relation ~ on V by
v ~ w iff there is a directed walk from v to w and a
directed walk from w to v.

This is an equivalence relation (proof same as directed
case) and the equivalence classes are called strong
components or dicomponents.

Here the strong components are

{a,b,9},{c},{d},{e, f, h}.

If: suppose that D is not strongly connected and that
there is no directed walk from z to y. Let S = {v €
V . Jadirected walk from z to v}.

S#Paszxe SandS#Vasy¢sS.
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Then N1t(S) = 0. If z € NT(S) then there exists
w € S such that (w,z) € A. But then since w €
S there is a directed walk from z to w which can be
extended to z, contradicting the fact that z ¢ S. m|




A Directed Acyclic Graph (DAG) is a digraph without
any directed cycles.

Lemmal If D is a DAG then D has at least one
source (vertex of indegree 0) and at least one sink
(vertex of outdegree 0).

Proof Let P = (v1,vo,...,v) be adirected path
of maximum length in D. Then v1 is a source and vy,
is a sink.

Theorem 2 D has a topological ordering iff D is a
DAG.

Proof Only if: Suppose there is a topological or-
dering and a directed cycle v;,, v;,, - .., v;,. Then

1] <ig < -0 < g <11

which is absurd.

if: By induction on v. Suppose that D is a DAG.
The result is true for v = 1 since D has no loops.
Suppose that v > 1, v, is any sink of D and let
D' =D —u,.

D' is a DAG and has a topological ordering v, vo, . ..,
v,_1, induction. v1,vy,..., vy, iS a topological order-
ing of D. For if there is an edge v;v; with ¢ > j then
(i) it cannot be in D’ and (ii) ¢ # v since v, is a sink.

|
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Suppose for example that there is an edge zv1. Then
either

(@) z ¢ {vo,v3,...,v;}. Butthen (z, P) is a longer
directed path than P — contradiction.

(b) £ = v; for some i = 1 and D contains the cycle
V1,V2,...,V;, V1. O

A topological ordering w1, vy, ..., vy Of the vertex set
of a digraph D is one in which

vvj € Aimplies i < j.
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Theorem 3 Let G = G(D). Then D contains a di-
rected path of length x(G) — 1.

Proof Let D = (V, A) and A’ C A be a minimal
set of edges such that D’ = D — A is a DAG.

Let k& be the length of the longest directed path in D’.
Define c(v)=length of longest path from v in D’.

c(v) € {0,1,2,...,k}. Weclaimthat c(v) is a proper
colouring of G, proving the theorem.
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Note first that if D’ contains a path P = (z1,z5,...,z})
then

o(z1) > e(zg) + k- 1. @

(We can add the longest path @ from z, to P to create
a path (P, Q). This uses the fact that D’ is a DAG.)

Suppose c is not a proper colouring of G and there
exists an edge vw € G with ¢(v) = e¢(w). Suppose
vw € Ai.e. itis directed from v to w.

Case 1: vw ¢ A’. (1) implies c(v) > c(w) + 1 -
contradiction.

Case 2: vw € A’. There is a cycle in D' + vw which
contains vw, by the minimality of A’. Suppose that
C has £ > 2 edges. Then (1) implies that c(w) >
c(v) +¢—1. ad
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Theorem 4 If D is a strongly connected tournament
with » > 3 then D contains a directed cycle of size &k
forall 3 <k<w.

Proof By induction on k.

k=3.

Choosev € VandletS = NT(V), T = N—(v) =
VA (Su{o}).

X y

=N (v) T=N " (v)
S # 0 since D is strongly connected. Similarly, S 7%=
V\ {v}else NT(V\ {v}) = 0.

Thus Nt(S) #0. v ¢ Nt(S)andso NtT(S) =T.
Thus 3z € S,y € T with zy € A.
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Tournaments

A tournament is an orientation of a complete graph
K.

1,2,5,4,3 is adirected Hamilton Path

Corollary 1 Atournament T contains a directed Hamil-
ton path.

Proof x(G(T)) = n. Now apply Theorem 3. O
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Suppose now that there exists a directed cycle C =
(’1)1,1)2, R 7Uk7v1)

Case 1: Fw ¢ C and i # j such thatv,w € A, wv; €
A.
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It follows that there exists £ with vyw € A, wvpyq €
A.

C'= (w,vp41,---,v4v1,-- -, w) isacycle of length
k+1.

S = @ implies T = @ (and C is a Hamilton cycle) or
Nt (T) =0.
T = () implies NT(C) = 0.

Thus we can assume
S, T # 0 and NT(T) # 0.
Nt(T)nC=0pandso NT(T)NnS # 0.

Thus 3z € T,y € S such that zy € A.

17

The cycle (v1,z,y,v3, .- .,vE,v1) is a cycle of length
k+ 1.
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Case 2V \ C = SUT where

w e S implies wy; € A, 1 <i<k.
weT implies vywe A, 1<i<k.
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Robbin’s Theorem

Theorem 5 A connected graph G has an orientation
which is strongly connected iff G is 2-edge connected.

Only if: Suppose that G has a cut edge e = zy.

If we orient e from z to y (resp. y to z) then there is
no directed path from y to z (resp. = to y).
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If: Suppose G is 2-edge connected. It contains a cy-
cle C which we can orient to produce a directed cycle.

At a general stage of the process we have a set of
vertices S D C and an orientation of the edges of
G[S] which is strongly connected.

If S# V choosez € S,y ¢ S.
There are 2 edge disjoint paths Py, P, joining y to z.
Let a; be the first vertex of P; whichisin S.
Orient Py[y,a1] fromytoaq.
Orient Ps[y, as] from as to y.
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Directed Euler Tours

An Euler tour of a digraph D is a directed walk which
traverses each arc of D exactly once.

Theorem 6 A digraph D has an Euler tour iff G(D)
is connected and d+ (v) = d~(v) forallv € V.

Proof This is similar to the undirected case.

If: Suppose W = (v1,v2,...,Um,v1)

(m = |A|) is an Euler Tour. Fix v € V. Whenever W
visits v it enters through a new arc and leaves through
a new arc. Thus each visit requires one entering arc
and one leaving arc. Thus dt(v) = d~(v).

Only if: We use induction on the number of arcs. D is
not a DAG as it has no sources or sinks. Thus it must
have a directed cycle C. Now remove the edges of C.
Each component C; of G(D — C) satisfies the degree
conditions and so contains an Euler tour W;. Now, as
in the undirected case, go round the cycle C and the
first time you vist C; add the tour W;. This produces
an Euler tour of the whole digraph D.
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Claim: The subgraph G[S U P; U P5] is strongly con-
nected.

Let S’ = S U P; U P,. We must show that there is a
directed path from o to 3 for all o, B € S'.

() o, B € S: F adirected path fromato gin S.
(ilae S, Be P \S: Gofromatoasins, fromas
to y on P, from y to 3 along P;.

(il e S, B e P\ S: Gofromatoasin S, fromas
to B on Ps.

(ivya € P\ S, B€S: Gofromatoa; on Py, from
aitogin S.

VM aeP\S, B€S: Gofromatoyon Py, fromy
toaq on Py, fromaq to Bin S.

Continuing in this way we can orient the whole graph.
O
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As a simple application of the previous theorem we
consider the following problem. A 0-1 sequence z =
(z1,72,...,Tm) has proprty Py if for every 0-1 se-
guence y = (y1,¥2, ---,¥yn there is an index k£ such
that T = ylva“k—}—l = Y2,... ,Ek+n_1 = Yn. Here
Tp = Typyp1—¢ ift >m.

Note that we must have m > 2™ in order to have a
distinct k for each possible x.

Theorem 7 There exists a sequence of length 2™ with
property P,

Proof Define the digraph D,, with vertex set
{0,1}»—1 and 2" directed arcs of the form
((p1,P2,---,Pn-1), (P2, P35 ---,Pn)).

G(Dy,) is connected as we can join (p1,p2,--.,Pp—1)
to (¢1,92;---,9n—1) by the path (p1,p2, ..., Pr-1),

(p21p3 ceyPn—1, ql)v (p37p47 ve-3Pn-1,91, q2)1 RN}
(¢1,92,.--,q,—1). Each vertex of D, has indegree

and outdegree 2 and so it has an Euler tour W.
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Suppose that W visits the vertices of Dy, in the se-
quence (v1,vs,...,von . Let z; be the first bit of
v;. We claim that z1,z»,...,xzon has property Pp.
Givearc ((p1,p2; - --,Pn—1), (P2,P3, - -.,pn)) the la-
bel (p1,p2,...,pn). No other arc has this label.

Given (y1,¥2,---,yn) let k be such that (v, vg41)
has this label. Then vy, = (y1,%2,.--,yn_1) and
V1 = (¥2,93,---,yn) and then zp, = y1, 7541 =
Y2, -+ Thtn—1 = Yn. o
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