Graph Theory

1

Graph or Multi-Graph

а

 e_2

We allow loops and multiple edges. $G = (V, E.\psi)$

e₃

Eulerian Graphs

Can you draw the diagram below without taking your pen off the paper or going over the same line twice?

Bipartite Graphs

G is bipartite if $V = X \cup Y$ where *X* and *Y* are disjoint and every edge is of the form (x, y) where $x \in X$ and $y \in Y$.

In the diagram below, A,B,C,D are women and a,b,c,d are men. T here is an edge joining x and y iff x and y like each other. The red edges form a "perfect matching" enabling everybody to be paired with someone they like. Not all graphs will have perfect matching!

3

Vertex Colouring

Let $C = \{colours\}$. A vertex colouring of G is a map $f : V \to C$. We say that $v \in V$ gets coloured with f(v).

The colouring is proper iff $(a, b) \in E \Rightarrow f(a) \neq f(b)$.

The *Chromatic Number* $\chi(G)$ is the minimum number of colours in a proper colouring.

Application: $V = \{exams\}$. (a, b) is an edge iff there is some student who needs to take both exams. $\chi(G)$ is the minimum number of periods required in order that no student is scheduled to take two exams at once.

5

If $V' \subseteq V$ then

 $G[V'] = (V', \{(u, v) \in E : u, v \in V'\})$ is the subgraph of *G* induced by *V'*.

Subgraphs

G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$. G' is a spanning subgraph if V' = V.

Similarly, if $E_1 \subseteq E$ then $G[E_1] = (V_1, E_1)$ where $V_1 = \{v \in V_1 : \exists e \in E_1 \text{ such that } v \in e\}$ is also induced (by E_1).

 $E_1 = \{(a,b), (a,d)\}$

7

Isomorphism for Simple Graphs

Breadth First Search – BFS

Walks and powers of matrices

Theorem 2 $A^k(v, w)$ = number of walks of length k from v to w with k edges.

Proof By induction on k. Trivially true for k = 1. Assume true for some $k \ge 1$.

Let $N_t(v, w)$ be the number of walks from v to w with t edges.

Let $N_t(v, w; u)$ be the number of walks from v to wwith t edges whose penultimate vertex is u. PSfrag replacements

21

$$A_0 = \{v\}$$
 and $v \sim w \leftrightarrow d(v, w) < \infty$.

23

In BFS we construct A_0, A_1, A_2, \ldots , by

 $A_{t+1} = \{ w \notin A_0 \cup A_1 \cup \dots \cup A_t : \exists \text{ an edge} \\ (u, w) \text{ such that } u \in A_t \}.$

Note : no edges
$$(a, b)$$
 between A_k and A_ℓ
for $\ell - k \ge 2$, else $w \in A_{k+1} \ne A_\ell$.
(1)

In this way we can find all vertices in the same component C as v.

By repeating for $v' \notin C$ we find another component etc.

$$N_{k+1}(v,w) = \sum_{u \in V} N_{k+1}(v,w;u)$$

= $\sum_{u \in V} N_k(v,u)A(u,w)$
= $\sum_{u \in V} A^k(v,u)A(u,w)$ induction
= $A^{k+1}(v,w).$

22

Characterisation of bipartite graphs

Theorem 3 *G* is bipartite \leftrightarrow *G* has no cycles of odd length.

Suppose $C = (u_1, u_2, \ldots, u_k, u_1)$ is a cycle. Suppose $u_1 \in X$. Then $u_2 \in Y, u_3 \in X, \ldots, u_k \in Y$ implies k is even.

 \leftarrow Assume G is connected, else apply following argument to each component.

Choose $v \in V$ and construct A_0, A_1, A_2, \ldots , by BFS.

 $X = A_0 \cup A_2 \cup A_4 \cup \cdots$ and $Y = A_1 \cup A_3 \cup A_5 \cup \cdots$

25

We need only show that *X* and *Y* contain no edges and then all edges must join *X* and *Y*. Suppose *X* contains edge (a, b) where $a \in A_k$ and $b \in A_{\ell}$.

(i) If $k \neq \ell$ then $|k - \ell| \ge 2$ which contradicts (1) (ii) $k = \ell$:

frag replacements

v _____v_j

There exist paths $(v = v_0, v_1, v_2, \dots, v_k = a)$ and $(v = w_0, w_1, w_2, \dots, w_k = b)$.

Let $j = \max\{t : v_t = w_t\}.$

 $(v_j,v_{j+1},\ldots,v_k,w_k,w_{k-1},\ldots,w_j)$

is an odd cycle – length 2(k - j) + 1 – contradiction.

a