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The beginning

What Who When
Secret Sharing Shamir [23] (algebraic) 1979Blakley [3] (geometric)Multiparty Computation (MPC) Yao [25] 1982Veri�able SS (VSS) Chor, Goldwasser, 1985Micali, Awerbach [8]Information Dispersal Rabin [22] 1989Computational SS (CSS) Krawczyk [18] 1993Rational SS Halpern, Teague [16] 2004
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Access structure

1 P = fP1; : : : ;Png is the set of participants
2 the dealer generates the secret �s , and assigns share �i toparticipant Pi
3 A � P(P) is the collection of quali�ed or authorized subsetsof participants { quali�ed subsets, and only quali�ed subsets,should be able to recover the secret from their shares
4 B � P(P) is the collection of forbidden subsets { sets in Bshould not leak any information on the secret
5 (A;B) is the access structure of a secret sharing scheme

Clearly A must be upward closed, B be downward closed, and Aand B be disjoint.Only the minterms of A and the maxterms of B are listed.



CECC'08 L. Csirmaz: Secret Sharing Schemes 6 / 35De�nitions
Perfect and ramp structures, e�ciency

1 a scheme is perfect if unquali�ed subsets are forbidden, i.e.subsets not in A are in B: B = fX � P : P =2 Ag
in perfect schemes B is omitted

2 a scheme is ramp if it is not perfect
In a ramp scheme adding more and more participants to a forbidden set,more and more information about the secret might be released.

3 the e�ciency of a scheme is the ratio between the length inbits of the shares and that of the secret
4 the (worst case/average) information ratio R(A;B) is thein�mum of the (worst case/average) e�ciency of all schemesrealizing (A;B).
5 the information rate � (as usual) is just the inverse of this R
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The main goal

The Secret Sharing Paradigm
Given a structure (A;B) determine, or at least estimate, howe�ciently can it be realized. In other words, determine theinformation ratio R(A;B).
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Variants on Secret Sharing

Depending on the computational power of the participants we have
CSS participants (and the dealer) are computationally bounded
SS \no information leaked out" meant as in information theory
In plain secret sharing both the dealer and the players are honest.
VSS some of the players, including the dealer, may not follow theprotocol. Still, honest players should be able to recover thesecret and corrupted players should get no information on it.
When no secrecy is required we have
ID when there are no forbidden sets, the scheme (;;A) is dubbedinformation dispersal scheme.
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Formal de�nitions { statistical secret sharing

A secret sharing scheme is a collection of random variables: �sfor the secret, and �i for each participant with a jointdistribution.
The size of the secret �s is H(�s), and that of the i -th share�s is H(�i ), where H is the Shannon entropy.
A scheme realizes the structure (A;B) ifa) �s is determined by f�i : i 2 Ag for A 2 A, andb) �s is statistically independent of f�i : i 2 Bg for B 2 B.
The (worst case) information ratio of (A;B) is

R(A;B) = infS nmaxi H(i)
H(s) : S realizes (A;B)o

If A is perfect, then its information ratio is denoted by R(A).
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Example

In the (t; k ; n) threshold scheme there are n participants; subsetswith < t elements are forbidden, and subsets with � k elementsare authorized. (t = 0 is information dispersal.)
Theorem (Shamir [23])
The (t; k ; n) threshold scheme can be realized with ratio 1=(k � t).
Proof
Choose a random polynomial over the �nite �eld Fq as

p(x) = ak�1xk�1 + ak�2xk�2 + � � �+ a0
The secret is ha0; : : : ; ak�t�1i, and the i-th participant's share isp(i) 2 Fq for 1 � i � n.
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Good news | Bad news

Theorem (Ito, Saito & Nishizeki [17] { good news)
Every access structure can be realized by some secret sharingscheme.

Fact { bad news
Every general construction yields exponentially large shares(exponential in the number of participants).
Unsolved problem
Are exponentially large shares necessary, or can we get away withshare size linear in the number of participants?
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How large should a share be?

Theorem (Csirmaz [11])
There is an access structure with (average) ratio � O(n= log n).
Open Problem
Improve the O(n= log n) bound, at least by a factor of log n.
Hint: The above bound is a consequence of the Shannoninequalities for the entropy function. Try using non-Shannoninequalities of Zhang and Yeung [26]. from 1998.
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Ideal structures

Theorem (Folklore)
In a prefect structure each participant must remember at least asmuch information as there is in the secret: R(A) � 1.
De�nition
A is ideal if this amount is minimal, i.e. R(A) = 1.
Open Problem
Characterize ideal structures.
Theorem (Brickell & Davenport [5]; Beimel, Livne & Padr�o [1])
A is induced by a representable matroid =)=(= A is ideal =)=(= A isinduced by a matroid.
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The inf ?= min problem

R(A) is de�ned as the in�mum of the maximal relative share sizeover all schemes realizing A.
Theorem (Livne [19], Matu�s [21])
There exists an access structure A where the in�mum is not takenby any realization. Furthermore A can be chosen to be ideal.
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Perfect structures

Lots of perfect structures are known with ratio � 1:5 Thesigni�cance of the number 1:5 is shown by
Theorem (Marti-Farr�e & Padr�o [20])
If A is not induced by a matroid, then R(A) � 1:5.

A long standing open problem was solved quite recently:
Problem
Does there exist a structure with ratio strictly between 1 and 1:5?
Theorem (Beimel, Liven & Padr�o [1])
There is an access structure A (induced by the Vamos matroid)with 1:11 < R(A) � 1:33 : : : .
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Game theory assumes
participants are rational and
try to maximize their utility:! getting the secret is better than not getting it! the fewer of others get it, the better! it is a shame to remain silent (but not too much)

The result
never reveal a share, wait for the others to do it �rst
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Rational Secret Sharing

Theorem (Gordon & Katz [15], Halpern & Teague [16])
There exists a probabilistic protocol for secret reconstruction whereit is in the best interest of the participants to reveal their shares.
Proof (Idea).
Protocol Reconstruct yields ether ? or the real secret withcertain probability. When waiting for the others, I might get ? (i.e.nothing), but all others will know that I am not participating.
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Secret sharing on graphs

De�nitionvertices | participantsedges | minimal authorized setsR(G ) | ratio of this perfect structure
Examples
R(G ) � 1R(Kn) = 1 Shamir's (2; 2; n) threshold schemeR(Cn) = 1:5, R(Pn) = 1:5 (circle and path for n � 5)
Theorem (Stinson [24])
R(G ) � (d + 1)=2 where d is the maximum degree.
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Spectrum of R(G )

Theorem (Brickell & Stinson [6] { Capocelli & al [7] )
Either R(G ) = 1 and then G is a multipartite graph,or R(G ) � 1:5.
Theorem (Csirmaz & Tardos, 2006)
If G is a tree then R(G ) = 2� 1=k for some integer k � 2.
In fact, this is true for other graphs as well, see the next lecture.
Theorem (Csirmaz [12])
Let f0; 1gd be the edge graph of the d-dimensional cube. ThenR(f0; 1gd) = d=2.
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Spectrum of R(G )

The graph spectrum is the set of numbers R(G ) where G is agraph.
Known facts

1 1 and 1.5 is in it, but nothing in between2 2� 1=k and k=2 are in the spectrum
Open Problems

1 Find any value in the spectrum not listed above.2 Find another limit point in the spectrum.3 Show that there is no limit point below 2.4 Find any other gap in the spectrum, or show that there is none
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Going in�nite : : :

Shamir's construction for (2;1)-threshold system:Pick xi 2 F for each participant i , pick xs 2 F for the secret.Dealer chooses p(x) = ax + b according to a certain distribution.The secret is �s = p(xs), and i-th share is �i = p(si ).
Two shares determine p(x), thus the secret.
Open Problem
Do there exist an in�nite �eld F and a distribution on the linearfunctions so that �s and �j are independent?Can we also have all �i have the same distribution?
Remarks: � By Chor & Kushilevitz [9] F cannot be countable.� The Blakley & Swanson construction [4] is 
awed.
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Going in�nite : : :

What about strange threshold systems, such as
Problem
Does there exist an (in�nite,1) threshold scheme, i.e. where thesecret is determined by arbitrary in�nite collection of shares, butwhich is independent of any �nite collection?
Or, at least,
Problem
Does there exist a (�nite,co-�nite,1) ramp scheme, i.e. where thesecret is independent of any �nite collection of shares but which isdetermined by any co�nite collection (all but �nitely many) ofshares?
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In�nite graphs
De�nition
The ratio R(G ) of an in�nite graph G is the sup of R(G 0) for �nitespanned subgraphs of G ,
Theorem (Csirmaz [13, 14])

1 R(d-dimensional lattice) = d for d � 2.2 R(in�nite path) = 3=2.3 R(honeycomb lattice) = 2.
4 R(in�nite ladder) = 7=4.

Problem
Determine the ratio for the triangle lattice. It is between 2 and 2.4.
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Computational Secret Sharing

Method
1 encode the secret2 distribute it among participants using Information Dispersal3 distribute the key using unconditional secret sharing

Size of share (B�eguin & Cresti [2]
The best theoretically available: the sum of shares in each quali�edsubset must exceed the size of the secret, plus some �xed term forthe key.
Caveats
The access structure is not necessarily de�nable; security hassubtleties, and the \�xed term" can be quite large.
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