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Abstract

A perfect secret sharing scheme based on a graph G is a randomized distribution of a secret
among the vertices of the graph so that the secret can be recovered from the information
assigned to vertices at the endpoints of any edge, while the total information assigned to an
independent set of vertices is independent (in statistical sense) of the secret itself.

The efficiency of a scheme is measured by the amount of information the most heavily
loaded vertex receives divided by the amount of information in the secret itself. The (worst
case) information ratio of G is the infimum of this number. We calculate the best lower bound
on the information ratio for an infinite family of graphs the celebrated entropy method can
give.

We argue that all existing constructions for secret sharing schemes are special cases of the
generalized vector space construction. We give direct constructions of this type for the first
two members of the family, and show that for the other members no construction exists which
would match the bound yielded by the entropy method.

1 Introduction

Secret sharing has been investigated in several papers [1, 2, 5, 7, 14, 16, 17, 18, 22] as well as
schemes based on graphs [4, 6, 8, 9, 12, 13] just to mention a few. Subsets of the participants
are split into qualified and unqualified ones. A qualified subset can recover the secret, while the
total information an unqualified subset has should be (statistically) independent of it. When the
scheme is based on a graph, then the participants are the vertices of the graph, and a collection
of vertices is qualified if it contains an edge.

The most important property of a scheme is its efficiency, namely how many bits the most
heavily loaded participant must remember for each bit in the secret. The (worst case) information
ratio of a graph G is the infimum of the efficiency of all schemes based on G. In the literature the
inverse of this number is used and called the information rate of G in resemblance to the coding
efficiency on noisy channels.

Determining the information ratio for a simple graph could be a very difficult problem cf.
[9, 12, 13]. Nevertheless, the ratio was determined exactly for several infinite families of graphs
in the above references. Interestingly, all these ratios are of the form 2 − 1/k or k/2 for some
positive integer k, and it is an open problem to find a graph with ratio different from these values.
In this paper we investigate another infinity family of graphs. We establish the best lower bound
the entropy method can give, and show that present-day techniques cannot reach this bound. We
formulate an open problem and some conjectures as well.

1.1 Basic notions

In the paper we use the standard techniques and notions, see [4, 6, 8]. For the sake of the reader
we briefly repeat some of the definitions.

Let G be a graph. A secret sharing scheme on G is a collection of random variables ξv for all
vertices v in G, plus the special random variable ξs. The value of this latter one is the secret, that
of the others are the shares. The random variables form a joint distribution. The dealer draws
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from this distribution, and sends the value ξv to the participant v ∈ G, while keeps the value of ξs
secret.

The secret sharing scheme is perfect if whenever v, w is an edge in G then ξv and ξw together
determine the secret uniquely; while if A is an independent set of vertices (i.e. no edge exist between
vertices in A), then the collection {ξv : v ∈ A} is statistically independent from ξs, i.e. the totality
of shares this collection has provides zero information about the secret.

Using the usual (Shannon) entropy [11], A determines B iff the entropy of A and AB are the
same, while A and B are statistically independent iff the entropy of AB is the sum of the entropies
of A and B. (Here and in the sequel we write AB in place of A ∪ B.) The Shannon entropy of
A, denoted as H(A), is roughly the number of independent bits necessary to encode the value of
A. Applying this notion to the secret sharing we see that the size of the share assigned to the
participant v ∈ G is the entropy of ξv, and the size of the secret is H(ξs). Thus the information
ratio of the graph G is

R(G) = inf
{

maxv∈G H(ξv)
H(ξs)

}
, (1)

where the infimum is taken over all perfect schemes on G.

1.2 Proving a lower bound

Let the distribution {ξs, ξv} be any perfect secret sharing scheme on G. Consider the real-valued
function f which assigns the value

f(A) =
H({ξv : v ∈ A})

H(ξs)
(2)

to the subset A of the vertices. Using standard properties of the entropy function [11, 20, 24], this
f has certain properties, namely

(a) f(A) ≥ 0, f(∅) = 0 positivity,
(b) f(B) ≥ f(A) when B ⊇ A monotonicity,
(c) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) submodularity.

Furthermore, H(ξs∪{ξv : v ∈ A}) is equal to H({ξv : v ∈ A}) if A determines the secret, i.e. when
A contains an edge; and is equal to the sum of H(ξs) and H({ξv : v ∈ A}) when A is independent.
This observation leads us to

(d) f(B) ≥ f(A) + 1
when B ⊆ A, A is independent and B is not

(e) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) + 1
when A ∩B are independent but A, B are not.

Properties (d) and (e) are called strict monotonicity and strict submodularity, respectively.
Unfortunately properties (a)–(e) do not characterize the real-valued functions which can be

got from perfect secret sharing schemes. They satisfy further non Shannon-type inequalities [24]
as well, and no complete characterization is known up to now [20]. Even for the case of four
(dependent) random variables we do not have a complete description of the 15 dimensional cone
spanned by the entropies of the different subsets of the variables [20].

Now we can describe the celebrated entropy method [4, 6, 8]. Take any real-valued function f
which satisfies properties (a)–(e) above (and maybe further inequalities which are always true for
the entropy function). Suppose we show for some real number r that for all of such functions f ,
maxv∈G f(v) ≥ r. Then the information ratio R(G) of G defined in (1) is at least r.

Observe that properties (a)–(e) are linear inequalities (and, in fact, all further known properties
of the entropy are), thus determining the best lower bound is, in fact, an LP problem [10]. The only
problem is that both the number of variables and the number of constrains grow exponentially
with the size of the graph, which makes the LP problem unsolvable even for relatively small
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graphs. We remark for the interested reader that the system of conditions given by (a)–(e) is
overdetermined. Even after reducing the conditions [20], the system remains ill-posed which
makes further complications.

1.3 Proving an upper bound

Typically upper bounds come easily: one has to find an appropriate scheme which realizes the
given bound. There are constructions based on some algebraic structure (mainly vector spaces
over finite fields) [1, 13, 12, 21], or on geometry (finite projective geometry) [3]. The celebrated,
and incredibly effective construction of Stintson [22] can be used to build a scheme from other
smaller schemes. van Dijk and al [13] used a slightly different method where the intermediate
schemes are not necessarily perfect. Nevertheless, all presently known constructions [1, 5, 17]
(even the ones arising from van Dijk’s construction or from span programs) are special cases of
the following general one.

Let F be a vector space (sometimes a weaker structure, such as a module suffices), and assign
(non-trivial) linear subspaces of F both to the participants and the secret: let Lv be the subspace
assigned to v ∈ G and Ls be the subspace assigned to the secret. These subspaces should have the
following property: if vw is an edge in G, then the linear span of Lv and Lw should contain (as
a subspace) Ls. If, on the other hand, {v1, . . . , vk} is an independent set (this is always the case
when k = 1), then the intersection of the linear span of {Lv1 , . . . , Lvk

} and Ls must be trivial, i.e.
the single element subspace {0}.

The dealer chooses an element from F uniformly (here we must assume that F is finite). The
secret, i.e. the value of ξs is the orthogonal projection of this random element on Ls. The share
of participant v ∈ G is the orthogonal projection of the dealer’s element on Lv.

Now, if vw is an edge, then using elementary linear algebra, the secret can be expressed as an
appropriate linear combination of the shares. On the other hand, if {v1, . . . , vk} is an independent
subset of vertices, then the linear span of {Lv1 , . . . , Lvk

} and the subspace Ls intersect in the zero
vector, thus projection on the first one gives no information at all on the value of projection on
the other. (This is the second point where the finiteness of F plays a crucial role.)

The amount of information (i.e. entropy) in the secret is proportional to the dimension of Ls,
and the information v gets is proportional to dim(Lv). Thus the ratio of this construction is

maxv∈G dim(Lv)
dim(Ls)

.

The total randomness the dealer needs to produce the shares is proportional to the dimension of
the whole vector space F.

Looking at this construction more carefully, the function f defined in (2) takes the same value
as the ratio of the dimensions of the corresponding subspaces:

f(A) =
H({ξv : v ∈ A})

H(ξs)
=

dim(〈Lv : v ∈ A〉)
dim(Ls)

Linear subspaces of a vector space form a matroid [23]. However not all matroids can be represented
this way. Matroids arising from linear subspaces satisfy the so-called Ingleton inequality [15], which
not all matroids, and not all functions arising from entropy, do:

(f) f(AC) + f(AD) + f(BC) + f(BD) + f(CD) ≥
f(C) + f(D) + f(ACD) + f(BCD) + f(AB) . (3)

In particular, this inequality is not a consequence of the inequalities (a)–(e) discussed above, but
it always holds for all existing secret sharing constructions.
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2 The graph family

One of the smallest graphs where no exact information ratio was known for a long time [12] is the
following. It has six vertices, v1, v2, v3, and w1, w2, w3. The first three vertices form a triangle,
furthermore only vi and wi are connected.

Using the entropy method sketched in section 1.2, an LP package was used to get the optimal
bound for this graph, which turned out to be 7/4. There is an easy construction with ratio 2 using
Stinson’s decomposition method [22], but the exact value was not known for some time. The first
published construction with ratio 7/4 can be found in [13]. This graph is clearly an element of
the following infinite family of graphs:

Let Gn have vertices v1, . . ., vn and w1, . . ., wn. The edges are vivj for each pair i and j,
furthermore only vi and wi are connected. That is, Gn is a complete graph on n vertices and each
vertex is connected to an extra vertex from an independent set of size n. The above graph is G3,
while G2 is the path of length 4 (a complete graph on 2 vertices, plus two additional vertices).
The information ratio of G2 is 3/2 [4], while that of G3 is 7/4. Using an LP package we found
that the entropy method yields the lower bound 15/8 for G4. This data supported the conjecture
that the ratio of Gn is at least (2n− 1)/2n−1 = 2− 1/2n−1. In section 3 we show that indeed this
is the case, and, furthermore, this is the best value what the entropy method can give.

In section 4 we give a novel construction forG3 which matches the lower bound, finally in section
5 we show that there exists no similar construction which would work for G4, and, consequently,
for other graphs in this family. In the last section we discuss the intuition that no vector-space
construction can exist in general for this graph family. We also list some open problems.

3 Lower bound for Gn

Let Gn be the graph defined above. Among its 2n vertices v1, . . . , vn form a complete graph, while
the vertex wi is connected to vi only. The set of vertices {v1, . . . , vn} is denoted by V , while set
of the other is denoted by W , where W is an independent set (i.e. it contains no edges).

As explained in section 1.2, let f be a real function assigning non-negative values to subsets
of vertices so that f satisfies properties (a)–(e) listed there. Our goal is to give the best possible
lower estimate for maxv∈V ∪W f(v). We start with a lemma. As customary, we leave out the {}
and ∪ signs, and write, e.g., vX for the set {v} ∪X.

Lemma 1 Let X be a subset of W , w ∈W −X, a, b ∈ V so that a is not connected to any vertex
in X ∪ {w}, while b is connected to w. Then

f(aX)− f(X) + f(bX)− f(X) ≥ f(awX)− f(wX) + 2.

Proof Observe that awX is independent, while abwX is not. Thus property (d) gives

f(abwX) ≥ f(awX) + 1.

As bX is independent, abX and bwX are not, the strict submodularity property (e) gives the first
line below. Other lines are instances of the submodularity property (b):

f(abX) + f(bwX) ≥ f(bX) + f(abwX) + 1
f(aX) + f(bX) ≥ f(abX) + f(X)
f(wX) + f(bX) ≥ f(X) + f(bwX)

Adding up these inequalities we get the claim of the lemma. �

Using the lemma with X as the empty set we get

f(v2) + f(v1) ≥ f(v2w1)− f(w1) + 2,
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and similarly
f(v3) + f(v1) ≥ f(v3w1)− f(w1) + 2.

Adding these up and using the lemma again with X = {w1} we have

f(v3) + f(v2) + 2f(v1) ≥ f(v3w2w1)− f(w2w1) + 2 · 2 + 2.

Similar reasoning gives

f(v4) + f(v2) + 2f(v1) ≥ f(v4w2w1)− f(w2w1) + 2 · 2 + 2,

or, one can argue, the conditions are invariant under swapping v3 and v4 and w3 and w4 (and
keeping all other vertices fixed), thus all results are also invariant for this variable change. Applying
the lemma again we arrive at

f(v4) + f(v3) + 2f(v2) + 4f(v1) ≥ f(v4w3w2w1)− f(w3w2w1) + 2 · 22 + 2 · 2 + 2.

Here we can replace v4 by v5, and continue the same way until there are no more vertices in V :

f(vn) + f(vn−1) + 2f(vn−2) + 22f(vn−3) + . . .+ 2n−3f(v2) + 2n−2f(v1) ≥
≥ f(vnwn−1 . . . w2w1)− f(wn−1 . . . w2w1) + 2(2n−1 − 1).

Let Y = {wn−1, . . . , w2, w1}, then

f(vnY )− f(Y ) ≥ f(vnwnY )− f(wnY ) ≥ 1.

Here the first inequality is an equivalent form of submodularity (c), while the second one is the
strict monotonicity property (d). Consequently

f(vn) + f(vn−1) + 2f(vn−2) + . . .+ 2n−2f(v1) ≥ 2n − 1.

By symmetry the same inequality is valid for all circular shifts of the vertices. There are n
such instances all together, adding them up each f(vi) will have coefficient

1 + 1 + 2 + 4 + . . .+ 2n−2 = 2n−1,

consequently the sum is

2n−1
(
f(v1) + f(v2) + . . .+ f(vn)

)
≥ n(2n − 1). (4)

Therefore not all of the values f(vi) can be smaller than (2n − 1)/2n−1 = 2− 2−n+1. That is, we
have proved the following

Theorem 2 The ratio of the graph Gn is at least 2− 2−n+1. �

In section 5 we shall need the following result which can be proved analogously.

Lemma 3 Suppose n ≥ 4. For some 3 ≤ k ≤ n we have

f(vkw2w1)− f(w2w1) ≥ 2− 2−n+3.

Proof Let us denote the value f(vkw2w1)− f(w2w1) by ak. As in the previous proof, Lemma 1
gives

a4 + a3 ≥ f(v4w3w2w1)− f(w3w2w1) + 2,

and also
a5 + a3 ≥ f(v5w3w2w1)− f(w3w2w1) + 2.
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Adding these up and applying the lemma again we get

a5 + a4 + 2a3 ≥ f(v5w4w3w2w1)− f(w4w3w2w1) + 2 · 2 + 2.

Continuing as above, we get

an + an−1 + 2an−2 + . . .+ 2n−5a4 + 2n−4a3 ≥
≥ f(vnwn−1 . . . w2w1)− f(wn−1 . . . w2w1) + 2n−2 − 2 ≥
≥ 1 + 2n−2 − 2 = 2n−2 − 1.

Making a cyclic shift of the vertices vk, . . ., v3, we get

a3 + an + 2an−1 + . . .+ 2n−5a5 + 2n−4a4 ≥ 2n−2 − 1.

Adding up all of these n− 2 inequalities,

2n−3
(
an + an−1 + . . .+ a3

)
≥ (n− 2)

(
2n−2 − 1

)
from where the claim of the lemma follows. �

The lower bound in Theorem 2 is the best possible one what the entropy method sketched in
section 1.2 can give. To show it we present a function f with properties (a)–(e) which, in addition,
satisfies f(v) ≤ 2 − 2−n+1 for all vertices v in the graph. In fact, we’ll have equality for vertices
in V , while f(w) = 1 for vertices of degree one.

This function f should be defined for all subsets of the vertices. Let the set of vertices of Gn be
V ∪W . With each A ⊆ V ∪W we associate three non-negative integers iA, jA and kA as follows.
A contains exactly jA pairs viwi where vi and wi are connected, vi ∈ V and wi ∈W . Apart from
these vertices there are iA vertices of A in V , and kA vertices of A in W .

Now |A| = iA + 2jA + kA, and A is independent iff iA ≤ 1 and jA = 0. Let furthermore
`A = iA + jA + kA, obviously `A ≤ n. Define the function f on all subsets of the vertices as
follows:

f(A) =


`A if iA + jA = 0,
`A + 1− 2−n+`A if iA + jA > 0 and A is independent,
`A + 2− 2−n+`A otherwise.

(5)

It is a tedious but otherwise trivial task to check that indeed this f satisfies properties (a)–(e) for
all subsets of the vertices. When A = {v} and v is a V , then iA = 1, jA = kA = 0, thus `A = 1
and f(v) = 1 + 1 − 2−n+1. Similarly, if A = {w} with w ∈ W then iA = jA = 0, kA = 1, thus
f(w) = 1 (first case of the definition in (5)).

4 A novel construction

In this section we give a construction which matches the corresponding lower bound for the graphs
G2 and G3, and show how to generalize it for arbitrary n to yield the upper bound 2.

Our construction follows the idea outlined in section 1.3. Namely, we start with a high-
dimensional vector space F, and assign linear subspaces to the vertices and the secret so that

• if v and w are connected, then the linear span of the subspaces Lv and Lw contain the
subspace Ls assigned to the secret, and

• whenever {v1, . . . , vk} is an independent set then the linear span of {Lv1 , . . . , Lvk
} intersects

Ls in the null space {0}.
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Having such subspaces, we can construct a perfect secret sharing scheme with ratio

maxv∈G dim(Lv)
dim(Ls)

.

In our case the graph Gn has vertices vi and wi for 1 ≤ i ≤ n, where V = {v1, . . . , vn} is a
complete graph, while {w1 . . . , wn} is empty (i.e. independent). F will have dimension d(n + 1),
and all subspaces will be given as the linear span of certain vectors.

Each element in F is a vector with d(n+ 1) coordinates. We split these coordinates into n+ 1
groups of coordinates d each. We define k vectors from F as a sequence of n+ 1 matrices each of
size k × d. As usually, I = Id is the unit d× d matrix: it has 1 in the diagonal elements and zero
elsewhere.

The secret is assigned the subspace spanned by the d vectors of the form I, . . . , I, I:

Ls = (I, . . . , I, I)

where we have exactly n + 1 unit matrices here. As these vectors are linearly independent, the
dimension of Ls is d.

Vertices in the independent set {w1, . . . , wn} will be assigned a subspace generated by the d
vectors

Lwi
= (0, . . . , 0, I, 0, . . . , 0, 0)

where the only I block is at the i-th position. Here dim(Lwi
) = d again, and the linear span of

all subspaces Lwi contain those vectors where all coordinates in the last, (n+ 1)-st block are zero.
As any non-trivial linear combination of Ls has non-zero coordinate in each block, consequently

〈Lw1 , . . . , Lwn
〉 ∩ Ls = {0},

thus satisfying the second requirement for the independent set W .
Next we assign linear spaces to the remaining vertices vi. These subspaces should satisfy the

following requirements:

1. the span of Lvi
and Lwi

must contain Ls,

2. the span of Lvi
with {Lwj

: j 6= i} should avoid Ls, finally

3. the span of two different Lvi
and Lvj

should contain Ls again.

To satisfy the first condition we include in Lvi
the vectors

(I, . . . , I, 0, I, . . . , I, I)

where only the i-th block is zero. The sum of the j-th vector from Lwi
and the j-th vector from

Lvi gives the generating elements of Ls, i.e. the linear span of Lvi and Lvi contains Ls as required.
To satisfy the second condition, we stipulate that all vectors in Lvi should have zero coordinate

in the i-th block. Then the linear span of Lvi
with all other Lwj

’s with j 6= i has zero coordinate
in this block, consequently contains only the all zero element from Ls.

The difficulty comes with the third condition. First, we show how to add d further vectors to
each Lvi to satisfy it. Then we show how to reduce the number of added vectors when n = 2 or
n = 3.

Let M1, M2, . . ., Mn be d × d matrices so that Mi −Mj has full rank whenever i 6= j. This
is the case, for example, when we choose Mi = λiI for different constants λi. We add to the
generating set of Lvi

the vectors

(Mi −M0,Mi −M1, . . . ,Mi −Mi−1, 0,Mi −Mi+1, . . . ,Mi −Mn,Mi) .

As the i-th block is all zero, the second condition holds. To check that the third condition holds
as well, observe that the difference of the latter d vectors assigned to vi and vj is

(Mi −Mj ,Mi −Mj , . . . ,Mi −Mj ,Mi −Mj) ,
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and since Mi −Mj has full rank, the linear span of these vectors contain the generating vectors
of Ls as well.

In this construction each Lvi
is generated by 2d linearly independent vectors, thus dim(Lvi

) =
2d, while dim(Ls) = d, which shows that it has ratio 2.

To reduce the dimension of Lvi
we look at the first d generating vectors more carefully:

(I, . . . , I, 0, I, . . . , I, I) .

The linear span of Lvi
and Lvj

must contain all vectors in the generating set of Ls, i.e. the vectors

(I, . . . , I, I, I, . . . , I, I) ,

which happens iff it contains the vectors

(0, . . . , 0, I, 0, . . . , 0, 0)

where the only I occurs at the i-th position. Now the linear span of Lvi and Lvj definitely contains

(0, . . . , 0, I, 0, . . . , 0,−I, 0, . . . , 0, 0)

where I is at the i-th block, and −I is at the j-th block. Then it also contains the vectors of the
form

(0, . . . , 0,x, 0, . . . , 0,−x, 0, . . . , 0, 0)

for an arbitrary d-dimensional vector x, which means that in the linear span we can move the
content of the i-th block into the j-th block, effectively zeroing all elements in one of the block.
We shall use this observation to reduce the dimension of Lvi .

4.1 The case of n = 2

When n = 2 we will choose d = 2 and the linearly independent 2-dimensional vectors x and y.
The vectors which span the subspaces Lv1 and Lv2 , respectively, are(

0, 0, 0, 1, 0, 1
)(

0, 0, 1, 0, 1, 0
)(

0, 0, x, 0, 0
)

(
0, 1, 0, 0, 0, 1

)(
1, 0, 0, 0, 1, 0

)(
y, 0, 0, 0, 0

)
It is clear that both spaces have dimension 3, moreover their linear span contains the vectors
(I,−I, 0) and (0,x, 0), thus also the vector (x, 0, 0) as explained above. This together the vector
(y, 0, 0) from v2’ set gives all vectors in the linear span of (I, 0, 0), as was required.

4.2 The case of n = 3

In this case we choose d = 4 and six 4-dimensional vectors x1, . . ., x6 such that any four of them
has full rank. The subspaces assigned to v1, v2 and v3 are generated by seven vectors as follows:(

0 I I I
)(

0 x2 0 0
)(

0 0 x4 0
)(

0 x5 x6 0
)

(
I 0 I I

)(
x1 0 0 0

)(
x3 0 x4 0

)(
0 0 x6 0

)
(

I I 0 I
)(

x1 x2 0 0
)(

x3 0 0 0
)(

0 x5 0 0
)

This construction has ratio 7/4, and it works indeed. For example, in the linear span of Lv1 ∪Lv2

we have the four vectors (x1, 0, 0, 0), (0,x2, 0, 0), (x3, 0, 0, 0) and (0,x5, 0, 0). Indeed the first two
are explicitly given, the third and fourth ones can be got as the difference of one-one vectors from
the assigned subspaces:

(x3, 0, 0, 0) = (x3, 0,x4, 0)− (0, 0,x4, 0)

(0,x5, 0, 0) = (0,x5,x6, 0)− (0, 0,x6, 0)
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As (I,−I, 0, 0) is also in the span, so is (x2,−x2, 0, 0) and then (x2,−x2, 0, 0) + (0,x2, 0, 0) =
(x2, 0, 0, 0) is there as well. Consequently all vectors (x1, 0, 0, 0), (x2, 0, 0, 0), (x3, 0, 0, 0) and
(x5, 0, 0, 0) are in the linear span of Lv1 ∪Lv2 , thus there are all vectors of the form (I, 0, 0, 0), as
was required.

5 Impossibility of tight vector space construction

The Ingleton inequality (f) cited in section 1.3 holds for all representable matroids, and, in general,
for all secret sharing schemes based on the general construction outlined in sections 1.3 and 4, see
[15] . For the sake of the reader we repeat the inequality here:

(f) f(AC) + f(AD) + f(BC) + f(BD) + f(CD) ≥
f(C) + f(D) + f(ACD) + f(BCD) + f(AB) .

Using this inequality we can check that the bound 2−2−n+1 got in Theorem 2 in not achievable
by a vector space construction for n ≥ 4. Should such a construction exist, the extremal point of
the LP problem given in (5) would satisfy the Ingleton inequality (f) as well, which it does not.
Apply (f) with the following cast:

A = v2w1, B = v3w1, C = v1w1, D = w1w4

where, as usual, vi ∈ V , wi ∈W and vi and wi are connected. The left hand side value of (f) is

(4− 2−n+2) + (4− 2−n+3) + (4− 2−n+2) + (4− 2−n+3) + (4− 2−n+2) =
= 20− 14 · 2−n+1,

which is computed from values given in (5), while the value of the right hand side of (f) is

(3− 2−n+1) + 2 + (5− 2−n+3) + (5− 2−n+3) + (5− 2−n+3) =
= 20− 13 · 2−n+1.

Consequently the value of the left hand side of (f) does not exceed that of the right hand side,
i.e. the Ingleton inequality does not hold for this case.

Unfortunately we are not done. Equation (5) gives a feasible solution of the LP problem defined
by all conditions in (a)–(e), and by the result in section 3 the solution (5) is on the boundary.
Showing that this point does not satisfy a particular instance of the Ingleton inequality does not
necessarily mean that another extremal solution wouldn’t do it. So we prove the following stronger
statement:

Theorem 4 Let n ≥ 4 and suppose the perfect secret sharing scheme on Gn is based on a vector
space construction. Then the ratio is at least 2− 2−n+1 + 0.2 · 2−n+1, i.e. exceeds the lower bound
of Theorem 2 by 0.2 · 2−n+1.

Proof Let f be any real valued function satisfying conditions (a)–(e) and all instances of the
Ingleton inequality (f) where the subsets might contain the secret as well. We show that in this
case f(v) ≥ 2− 0.8 · 2−n+1 for some vertex v which proves the Theorem.

As in section 3 the vertices of Gn are denoted by vi, wi for 1 ≤ i ≤ n so that vi and wi are
connected, the subset {v1, . . . , vn} is a complete graph, while {w1, . . . , wn} is empty.

By Lemma 3 we may assume that

f(v3w2w1)− f(w2w1) ≥ 2− 2−n+3 (6)

by relabeling the vertices if necessary. Let moreover v◦, w◦ be the vertices v4, w4, respectively.

Claim 5 f(v1v◦) + f(w1w◦) ≥ f(v1w1w◦) + 2.
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Proof The claim follows from the following sequence of inequalities:

f(v1v◦)
(1)

≥ f(v1v◦) +
(
f(v◦w◦)− f(v◦)− f(w◦)

)
≥

(2)

≥ f(v1v◦) +
(
f(v1v◦w◦)− f(v1v◦) + 1

)
− f(w◦) =

= f(v1v◦w◦)− f(w◦) + 1 ≥
(3)

≥
(
f(v1w◦) + 1

)
− f(w◦) + 1 ≥

(4)

≥ f(v1w1v◦)− f(w1w◦) + 2.

Here (1) follows from the submodular property f(v◦) + f(w◦) ≥ f(v◦w◦); (2) is the strict sub-
modularity as both v1v◦ and v◦w◦ are edges; (3) is strict monotonicity using that v1v◦ is and
edge and v1w◦ is empty, finally (4) is the submodularity. �

Claim 6 f(v3v2w1)− f(w1) ≥ 4− 2−n+3.

Proof Similarly as before, this is a consequence of the following sequence of inequalities:

f(v3v2w1)− f(w1) =

=
(
f(v3v2w1)− f(v2w1)

)
+
(
f(v2w1)− f(w1)

)
≥

(1)

≥
(
f(v3v2w2w1)− f(v2w2w1) + 1

)
+
(
f(v2w2w1)− f(w2w1)

)
=

= f(v3v2w2w1)− f(w2w1) + 1 =

=
(
f(v3v2w2w1)− f(v3w2w1)

)
+
(
f(v3w2w1)− f(w2w1)

)
+ 1 ≥

(2)

≥ 1 +
(
2− 2−n+3

)
+ 1.

At (1) we applied strict submodularity and submodularity, while (2) follows from the choice of the
indices of the vertices (cf. (6)), and from the strict monotonicity. �

Turning to the proof of the Theorem, we shall use a single instance of the Ingleton inequality
(f) for the same case as at the beginning of this section, namely

A = v2w1, B = v3w1, C = v1w4, D = w1w4,

and then (f) becomes

f(v2v1w1) + f(v2w1w◦) + f(v3v1w1) + f(v3w1w◦) + f(v1w1w◦) ≥
≥ f(v1w1) + f(w1w◦) + f(v2v1w1w◦) + f(v3v1w1w◦) + f(v3v2w1).

We continue with a series of inequalities which will be added to this one:

f(v2v1w1w◦)
(1)

≥ f(v2w1w◦) + 1

f(v3v1w1w◦)
(1)

≥ f(v3w1w◦) + 1

f(v1w1) + f(v2v1)
(2)

≥ f(v1) + f(v2v1w1) + 1

f(v1w1) + f(v3v1)
(2)

≥ f(v1) + f(v3v1w1) + 1

f(v1) + f(w1) ≥ f(v1w1)

f(v1v◦) + f(w1w◦)
(3)

≥ f(v1w1w◦) + 2

f(v3v2w1)
(4)

≥ f(w1) + 4− 2−n+3
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Here (1) is strict monotonicity, (2) is strict submodularity, (3) comes from Claim 5, and (4) comes
from Claim 6. The sum is

f(v2v1) + f(v3v1) + f(v1v◦) ≥ f(v1) + 10− 2−n+3.

From here, using that f(vivj) ≥ f(vi) + f(vj), we arrive at

2f(v1) + f(v2) + f(v3) + f(v◦) ≥ 10− 2−n+3 = 10− 4 · 2−n+1.

It means that not all of the values f(v1), f(v2), f(v3), f(v◦) can be below 2− 0.8 · 2−n+1, proving
the Theorem. �

6 Conclusion

We defined an sequence of graphs Gn, and considered perfect secret sharing schemes based on
them. We established the best lower bound on the efficiency of the schemes the entropy method
can give, and matched that lower bound for G2 and G3 by a novel construction. We also proved in
Theorem 4 that no similar construction exists for other members of the family: any secret sharing
scheme for Gn based on linear construction must have a strictly larger rate than the entropy
method gives.

As all presently known constructions are based on some linear coding, they are subject to our
result. Without breakthrough new results we cannot hope for a construction, even for G4, which
would match the lower bound 2− 2−n+1.

Problem 7 Show that R(G4) > 2 − 2−n+1, i.e. there is no perfect secret sharing scheme on G4

which would match the entropy bound.

There are further, non-Shannon type inequalities, cf. [24], which the function f in section 1.2
must satisfy beyond (a)–(e) enlisted there. The extremal point found in (5) satisfies these extra
inequalities as well, thus they do not help in solving Problem 7 as they did in [1].

In section 4 we showed how to construct a scheme with ratio 2 for arbitrary n. Our result in
Theorem 4 indicates, that any vector space construction must have higher ratio than the absolutely
minimum given by the entropy method. This ratio, however, is still below 2, but we were unable
to construct any such scheme in general. It is not hard to see that the scheme must follow the
pattern outlined there, namely subspaces assigned to the 1-degree vertices can be assumed to be
pairwise orthogonal, have similar connection to the secret subspace, and subspaces assigned to
other vertices must follow similar pattern as well.

Also, if the ratio is below 2 then it is exponentially close to 2, which means that the vector
space dimension must also be exponential (in n). But this contradicts to the intuition that we
do not need more dimensions than the number of minimal qualified subsets multiplied by the
dimension of the secret, which is definitely below n3.

Problem 8 Find a perfect secret sharing scheme on Gn, n ≥ 4 with ratio strictly below 2, or
show that no such a scheme exists.
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