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Abstract

A convex set is inscribed into a rectangle with sides a and 1/a so that
the convex set has points on all four sides of the rectangle. By “round-
ing” we mean the composition of two orthogonal linear transformations
parallel to the edges of the rectangle, which makes a unit square out of
the rectangle. The transformation also applied to the convex set, which
now has the same area, and is inscribed into a square. One would expect
this transformation to decrease the perimeter of the convex set as well.
Interestingly, this is not always the case. For each a we determine the
largest and smallest possible increase of the perimeter.

1 Introduction

A (closed) convex set K is inscribed into the rectangle ABCD if K has points
on all sides of the rectangle. Suppose that the sides of the rectangle are AB = a
and BC = 1/a; thus its area is 1. We “round” the rectangle by squeezing in one
direction, and stretching in the other one until it becomes a unit square. If we
choose the coordinate axes on two sides of the rectangle, then this is achieved
by the linear map ϕa(x, y) = (x/a, ya). Now the image K ′ = ϕ(K) is inscribed
into the unit square ϕ(ABCD). As K and K ′ have the same area, it is natural
to expect that K ′ has smaller perimeter. Interestingly, this is not always the
case. We determine the infimum and the supremum of the difference

∆a(K) = perimeter(K)− perimeter(K ′)

as K runs over all convex sets inscribed into ABCD. Denote these values by
M(a), and m(a), respectively:

M(a) = sup
K

∆a(K)

m(a) = inf
K

∆a(K).

For values of a close to 1 the value of m(a) is negative, which shows that
the perimeter may indeed increase. The infimum and supremum are actually
taken, and we determine the extremal sets as well.

∗Central European University, Budapest
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The problem arose when in a geometric construction of [1] we wanted to
estimate the error term. The construction used the “rounded” image of a convex
d-dimensional body, and the error term was a function of the surface of the
body after applying the rounding transformation. We wished to transfer the
estimate using the surface of the original body. Results of this paper show
that in dimension 2 we can do it by losing a small factor only. For higher
dimensions we were unable even to give estimates beyond some trivial facts.
For the interested reader we recall the construction in the Appendix.

To state the result let us define the function Ga(x) for positive values of the
parameter a as

Ga(x) =

(
1− 1√

1 + x2

)
−
(
a− a3√

a4 + x2

)
.

Observe that Ga(0) = 0. For each a > 0, a 6= 1 there exists a unique positive
root of Ga(x).

Theorem 1 Let ABCD be a rectangle with sides AB = a and BC = 1/a,
where a > 1. Let λ be the positive root of G1/a(x), and let λ′ be the positive root
of Ga(x). Choose X be on the line segment AB so that BC/BX = λ (it will
always be an internal point of AB), and choose X ′ on BC, if possible, so that
AB/BX ′ = λ′.

The infimum m(a) is attained by the parallelogram AXCY . The supremum
M(a) is attained by the parallelogram AX ′CY ′ if X ′ exists, and by the diagonal
AC otherwise. The two cases are distinguished whether a is below (parallelo-
gram) or above (diagonal) of the larger root (≈ 3.048 . . .) of Ga(a2) = 0.

The paper is organized as follows. The next section explains our strategy to
reach the result. Section 3 shows that any extremal configuration is a polygon
with at most eight vertices. Section 4 enlists all cases which should be investi-
gated. The result of sections 6 and of 7 are of independent interest: what is the
case if K is a quadrangle or a triangle. Finally section 8 sums up the results.

2 How to attack the problem

Let ABCD be a rectangle ABCD with sides AB = CD = a and AD = BC =
1/a, and let K be a closed convex set inscribed into the rectangle. The linear
map ϕ = ϕa defined in the previous section makes a unit square out of the
rectangle. Our aim is to determine the infimum of the difference

∆a(K) = perimeter(K)− perimeter(ϕ(K))

when K runs over all closed convex sets inscribed into ABCD. For every such K
we can find an inscribed polygon K1 such that the perimeters of K and K1, and
the perimeters of ϕ(K) and ϕ(K1) are arbitrarily close simultaneously. Thus
the infimum (and the supremum) of ∆a(K) taken for inscribed convex polygons
only is the same as that for all convex sets.
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Inscribed convex polygons with at most n vertices form a compact ensemble,
thus among them both the infimum and the supremum is taken. We refer to
such polygons as extremal ones. Now take an extremal polygon K, and suppose
that, say B is not a vertex in it. Then looking from B, K has a first point X
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Figure 1: An inscribed convex polygon

on BA, and a first point Y on BC. The (shorter) XY arc of K is the graph
of a convex function. We use methods from variational calculus to show that
this arc might consist of at most two straight line segments. Further calculation
shows that, in fact, it must be a single segment.

As a conclusion, an extremal polygon has at most eight vertices: at most
two on each side of the rectangle. We further reduce this by showing that an
extremal polygon cannot have two vertices on adjacent sides of the rectangle.
Thus all such polygons have at most six vertices, consequently the infimum and
the supremum of the difference ∆a(K) is attained by such polygons.

Next we classify the candidate extremal polygons according to the number of
vertices, and according whether among their vertices they have internal points
of the edges of the rectangle, or not. To simplify the classification, we look at
the inverse problem, namely the polygon is inscribed into the unit square, which
is then distorted by the inverse transformation ϕ−1a . Also, we can flip the square
across its diagonal, when a should be replaced by 1/a. We investigate in detail
three intriguing cases: when the polygon is a hexagon, quadrangle or triangle,
and is in the most general position. Results achieved during this investigation
show that in each remaining group there are at most two extremal candidates.
Finally we use a computer program to pick up the extremal polygons for different
values of a.

3 Reduction to 8 points

As explained in the previous section, here we consider the following scenario.
The continuous convex function f(x) is defined on the interval [0, 1]. It consist
of straight line segments only, and its derivative at 0 is positive.

We stretch the graph of f by a in the x direction, and by 1/a in the y

3



direction. The resulting graph is defined by the function

fa(x) =
f(x/a)

a
,

and, of course f(x) = f1(x). The length of the full arc of fa is

Ia(f) =

∫ a

0

√
1 + f ′a

2(x) dx =
1

a

∫ 1

0

√
a4 + f ′2(x) dx.

Our goal is to determine the function f so that Da(f) = Ia(f) − I1(f) cannot
be increased (or decreased) by slight modification of f . When this is the case,
f is called stationary.

Theorem 2 A stationary function consists of a single line segment only.

If we prove this theorem we are done: no extremal polygon can have internal
points in ABCD. It follows immediately from the theorem as it is stated, and
by substituting 1/a for a.

Proof We start with two lemmas which will be used in the proof, and will be
used later as well. To state the lemmas we choose a to be a positive number
different from 1, and we let

h(x) =
x

a
√
a4 + x2

− x√
1 + x2

.

2 4 6 8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2 4 6 8

-0.2

-0.15

-0.1

-0.05

Figure 2: h(x) for a = 0.8 and a = 1.2

Lemma 1 For 0 ≤ x the function h(x) takes every value at most twice.

Proof The claim follows from the fact that h′(x) takes zero only at x = a,
since then h is monotone in the intervals (0, a) and (a,∞).

Define the function g(x) as

g(x) =
1√

1 + x2
− a3√

a4 + x2
.
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Lemma 2 There are no two different values λ1 and λ2 such that h(λ1) = h(λ2)
and g(λ1) = g(λ2) holds simultaneously.

Proof Would this be the case, g(λ1) − ah(λ1) = g(λ2) − ah(λ2) also holds.
Thus we are done if we show that g(x)−ah(x) is strictly increasing when a > 1,
and strictly decreasing when a < 1. To this end, we compute the derivative of
this difference, and check that it always has the same sign:

g′(x)− ah′(x) =

= − x(
1 + x2

)3/2 +
a3x(

a4 + x2
)3/2 − a4(

a4 + x2
)3/2 +

a(
1 + x2

)3/2
= (a− x)

(
1(

1 + x2
)3/2 − a3(

a4 + x2
)3/2

)

= (a− x)

(
a4 + x2

)3 − a6(a+ x2
)3(

1 + x2
)3/2(

a4 + x2
)3/2((

a4 + x2
)3/2

+ a3
(
a+ x2

)3/2)
The denominator is always positive, the enumerator can be factored as follows:

(a− x)(x2 − a2)
(
x4(1− a6) + a2x2(1 + 3a2 − 3a4 − a6) + a4(1− a6)

)
.

The last term has discriminant(
1 + 3a2 − 3a4 − a6

)2 − 4
(
1− a6

)(
1− a6

)
= −

(
1− a2

)4(
2 + 5a2 + 2a4

)
which is negative, thus the last term always has the same sign as the leading
factor 1− a6. The whole product is non-negative if a > 1, not positive if a < 1,
and is zero for x = a only, as was claimed.
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Figure 3: g(x) for a = 0.8 and a = 1.2

Now we are ready to prove the theorem. First choose a function s(x) so that
for small enough values for ε, f +εs is still convex, moreover s(0) = s(1) = 0. If
f is a stationary solution of the problem, then the ε-derivative of the difference
Ia(f + εs)− I1(f + εs) must be zero at ε = 0. Now

∂

∂ε
Ia(f + εs)

∣∣∣∣
ε=0

=

∫ 1

0

f ′(x)s′(x)

a
√
a4 + f ′2(x)

dx
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thus for all feasible functions s as above we must have

(1) 0 =

∫ 1

0

 f ′(x)

a
√
a4 + f ′2(x)

− f ′(x)√
1 + f ′2(x)

 s′(x) dx =

∫ 1

0

H(x)s′(x) dx.

Now f ′(x) is piecewise constant, and doesn’t take the value 0. Therefore H(x) is
also piecewise constant. Now suppose H(x) takes two different values, say h1 on
the interval (b, c) and h2 on the interval (c, d). Define the function s′(x) so that
it is zero for values less than b and greater than d, takes constant negative value
on (b, c), and constant positive value on (c, d) such that its integral on (0, 1)
vanishes. Then f + εs is convex for small enough values of ε, as f ′(x) + εs′(x)
is increasing. However, the integral in (1) is not zero in this case.

Consequently for all stationary functions f , H(x) must be constant. By
Lemma 1 the function H(x) takes the same value at no more than two different
values of f ′(x). It means that the graph of f might have at most two different
slopes, that is, f is either a single segment, or consist of two joining segments
only.

Our second task is to exclude the possibility of two segments. Suppose the
two segments join at (x, y), and for the simplicity we denote f(1) by v. Then
the change of the arc length is

D(x, y) =

√
a2x2 +

y2

a2
+

√
a2(1− x)2 +

(v − y)2

a2
−

−
√
x2 + y2 −

√
(1− x)2 + (v − y)2,

and it must have zero partial derivative by both x and y:

0 =
∂D

∂x
=

a2x√
a2x2 +

y2

a2

− a2(1− x)√
a2(1− x)2 +

(v − y)2

a2

−

− x√
x2 + y2

+
1− x√

(1− x)2 + (v − y)2
,

0 =
∂D

∂y
=

y

a2
√
a2x2 +

y2

a2

− v − y

a2
√
a2(1− x)2 +

(v − y)2

a2

−

− y√
x2 + y2

+
v − y√

(1− x)2 + (v − y)2
.

Let the slopes be y/x = λ1, and (v− y)/(1−x) = λ2. Substituting these values
into the above equations we get

0 = − 1√
1 + λ21

+
1√

1 + λ22
+

a3√
a4 + λ21

− a3√
a4 + λ22

0 = − λ1√
1 + λ21

+
λ2√

1 + λ22
+

λ1

a
√
a4 + λ21

− λ2

a
√
a4 + λ22

.
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That is, λ1 and λ2 satisfy g(λ1) = g(λ2) and h(λ1) = h(λ2), which is impossible
by Lemma 2. This proves the theorem.

4 Listing of cases

To simplify the presentation we consider the inverse problem, as was explained
in section 2. We start from a unit square, and apply the inverse transformation
ϕ−1a = ϕ1/a. In this case only the sign of the difference

∆a(K) = perimeter(K)− perimeter(ϕ1/a(K))

changes, thus extremal polygons remain extremal ones. Also, we can flip the
square across its diagonal, which amounts to substituting 1/a for a.

We proved in the previous section that an extremal polygon has no vertex
inside the square, consequently it has at most eight vertices. Now we show that
it cannot have two vertices on each of two adjacent sides. Indeed, suppose this
is the case (see figure 4). Replace the cord of length z by the parallel segment of
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Figure 4: Vertices on two adjacent sides

length (1 + λ)z where λ has small absolute value. The perimeter of K changes
by

(1 + λ)z − z − λx− λy = λ(z − x− y).

Looking at ϕa(K) we see that its perimeter changes by λ(z′ − ax− y/a). Thus
∆a(K) changes by

λ(z − x− y − z′ + ax− y/a).

As K is stationary, we should not be able to choose λ small enough so that this
change takes both positive and negative values. This means that the coefficient
of λ must be zero. In this case we can choose λ = −1 without affecting the
difference; that is, we may drag the hypotenuse into the corner.

Depending on how many vertices K has and how many of them are in the
corners of the square, we can classify the possible extremal polygons into nine-
teen classes. Figure 5 shows typical element for all but one of this classification;
the missing case consists of a single diagonal. The cases are denoted by one
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Figure 5: Classification of extremal polygons

or two digits: the first one gives the number of vertices, and the second one
refers to the subcase. We investigate the configurations 6 and 4.1 in detail. The
results will help us to clarify the situation in other cases as well.

5 The hexagonal case

There is only one possible arrangement with six vertices: two opposite sides
of the square contain two vertices, and the other two contains one–one vertex.
Consider two joining edges of K one of which lies on the side of the square. As
we have an extremal configuration, the vertex joining these edges is in a stable
position. This property is exploited further.

-
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• •

• v

0 t 1

Figure 6: Two vertices on a single side

We return to the model in section 3. The two joining segments form the
graph of a function f(x) defined on the unit interval [0, 1] as depicted on figure
6. f starts with a horizontal segment and it is zero up to t; then climbs up
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linearly to the value f(1) = v. By assumption f is stationary. It means that
varying the break point t slightly, the arc length difference D = Ia(f) − I1(f)
cannot both increase and decrease. In other words, this difference, as a function
of t, has zero derivative.

Lemma 3 Suppose that f is stationary. Then the slope of the second segment is
determined uniquely by the value of a. Moreover the difference D, as a function
of t, attains a maximal value when a < 1, and a minimal value when a > 1.

Proof The arc length difference D = Ia(f)− I1(f), as a function of t, can be
written as follows:

D(t) = at+

√
a2(1− t)2 +

v2

a2
− t−

√
(1− t)2 + v2.

As explained above, this function has zero derivative at t:

0 = D′(t) = a− a2(1− t)√
a2(1− t)2 +

v2

a2

− 1 +
1− t√

(1− t)2 + v2

Substituting λ for the slope v/(1− t) we get that λ satisfies

1− a =
1√

1 + λ2
− a3√

a4 + λ2
= g(λ).

The derivative of g vanishes only at a, consequently g is strictly monotone for
values less than a; and also for values greater than a. As g(0) = 1 − a, it can
take this value only once, and only when λ > a.

Therefore D′(t) vanishes at most in a single place only, say at t0. This is
not a zero of even order, as g(λ) crosses the value 1−a. (In fact, this is a single
zero.) As the sign of D′(1) = a−1 is positive or negative depending on whether
a < 1 or a > 1, at t0 the function D′(t) changes from positive to negative in the
first case, and from negative to positive in the second. This means D(t) has a
maximum in the first case, and a minimum in the second, as was claimed.

By the lemma the opposite sides of an optimal hexagon K are parallel, and
form the same angle with the opposite sides of the rectangle. In this case the
perimeter of K equals to the perimeter of the parallelogram depicted on figure
7; and the same is true for ϕ(K). Consequently en extremal hexagon cannot
yield better values than a parallelogram in case 4.6.

The same reasoning shows that extremal values of case 5.2 are also included
in case 4.6. Case 5.4 reduces either to 4.5 or 4.8 as the “tip” on the right
hand side can be moved vertically while keeping the edges starting from the tip
parallel to their original direction without affecting the perimeter. Finally in
case 4.7 the bottom segment can be “flipped” without affecting the perimeter,
thus this case is also reduced to 4.6.

If the extremal polygon maximizes ∆a then it might have an initial segment
on a side of the square only if that side shrinks (a < 1), and not on side
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Figure 7: The hexagonal case

which expands. Similarly, if the extremal polygon minimizes ∆a, then such a
configuration may occur only on sides which expand. This shows that cases 5.3
and 4.4 cannot occur at all.

Finally, in cases 4.6 we have two possible configurations, depending on
whether the parallel sides of the extremal polygon are stretched by a or by
1/a.

6 The quadrangle case

In this section we consider the case when the extremal polygon K is a quad-
rangle. The most general situation is when the vertices are interior points on
the sides of the square, that is, case 4.1. Picking any vertex, let us denote the
slopes of the two segments starting from that vertex by λ1 and λ2. First we
give a necessary condition these values must always satisfy.

Lemma 4 Consider a vertex of the extremal polygon K which is an internal
point on an edge of the square. The slopes λ1 and λ2 of the two joining segments
satisfy the equation g(λ1) = g(λ2).

Proof As before, let the function f mimic the two joining segments, see figure
8. That is, f is defined on the unit interval, f(0) = v1, f(t) = 0, f(1) = v2, and
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Figure 8: Vertex in an internal point
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f is linear between 0 and t, as well as between t and 1. After stretching the
graph, the change in the arc length is

D(t) =

√
v21
a2

+ a2t2 +

√
v22
a2

+ a2(1− t)2 −
√
v21 + t2 −

√
v22 + (1− t)2.

This function has zero derivative at t; substituting λ1 for v1/t, and λ2 for
v2/(1− t) we get

0 =
a3√
a4 + λ21

− a3√
a4 + λ22

− 1√
1 + λ21

+
1√

1 + λ22
,

that is g(λ1) = g(λ2), as was claimed.

Lemma 5 Suppose λ1, λ2, and µ1, µ2 are positive numbers so that g(λ1) =
g(λ2), g(µ1) = g(µ2), h(λ1) = h(µ1), and h(λ2) = h(µ2). If λ1 6= λ2, then
µ1 = λ1 and µ2 = λ2.

Proof For the sake of simplicity we assume a < 1, the case a > 1 can be
handled similarly. From the proof of Lemma 2 we know that g(x) − ah(x) is
strictly decreasing. As g(a) − ah(a) = 0 it means that for x < a we have
g(x) > ah(x), and for x > a the value of g(x) is below that of ah(x). Also, as
λ1 and λ2 differ, and g takes the same value at these places, one of them must
be below a, and the other above a, say λ1 < a < λ2. Let λ′1 be the other place
(if it exists) where ah(λ1) = ah(λ′1). Then a < λ′1 and

ah(λ′1) = ah(λ1) < g(λ1) = g(λ2) < ah(λ2).

As h(x) is strictly decreasing for x > a, this gives λ′1 > λ2. Similarly, λ1 < λ′2 <
a where ah(λ′2) = ah(λ2) and λ′2 and λ2 differ.
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1λ1 λ2λ′

2

Figure 9: g(x) and ah(x) for a = 0.8

The same argument shows that g(x) may take the value g(λ′1) only for x <
λ1, and the value g(λ′2) for a < x < λ1.

By assumption µ1 is equal to either λ1 or λ′1, and µ2 is one of λ2 and λ′2.
We also know that g(µ1) = g(µ2) which is possible only if µ1 = λ1 and µ2 = λ2
as required.
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Let PQRS be an extremal quadrangle so that each vertex is an internal
point on the corresponding side of the square. We claim that either at P and R,
or at Q and S the two edges starting from a vertex share the same slope (but
this can be different for the two vertices).
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Figure 10: An extremal quadrangle

Suppose this is not the case. Let the slopes of PS and PQ be λ1 and λ2,
and the slopes of RS and RQ be µ1 and µ2, respectively, and suppose λ1 6= λ2.
As PQRS is an extremal quadrangle, we can apply lemma 4 for P and R
yielding g(λ1) = g(λ2) and g(µ1) = g(µ2). The slopes at S are 1/λ1 and 1/µ1,
respectively. We can apply lemma 4 also at these points, but in this case the
value of a should be be replaced by 1/a:

g1/a(1/λ1) = g1/a(1/µ1), and g1/a(1/λ2) = g1/a(1/µ2).

Now it is easy to see g1/a(1/x) = −ha(x), thus h(λ1) = h(µ1) and h(λ2) = h(µ2)
also holds. By lemma 5 then λ1 = µ1 and λ2 = µ2. This shows that at S and
at Q the edges share the same slope.

In this case if we move the vertices so that the edges remain parallel to their
original position, the perimeter of the rectangle does not change. Thus we can
push at least one vertex into the corner, reducing this case either to 3.1 or to
the case of a single diagonal.

7 The triangle case

The only remaining group with infinitely many candidates is 3.1, when two
vertices of the inscribed triangle are internal points on two sides of the square.
This group is, in fact, empty; however we show only that it might contain a
single candidate. Our starting point is figure 8. We choose v2 = 1, and plot
those pairs (t, v), where the difference function

D(t) =

√
v2

a2
+ a2t2 +

√
1

a2
+ a2(1− t)2 −

√
v2 + t2 −

√
1 + (1− t)2

12



has zero t-derivative. In section 6 we saw that this is the case exactly when
ga(v/t) = ga(1/(1− t), which can be written in an equivalent form of

h1/a(1− t) = h1/a(t/v).

Denote by H(a) the set of pairs (t, v) in the unit square for which ha(1 − t) =
ha(t/v). On figure 11 we can identify this situation twice: once for CBAP from
we get (AQ,AP ) ∈ H(1/a), and for CDAQ from which we have (AP,AQ) ∈
H(a). Thus in an extremal configuration the (t, v) pair should be an element of

-
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Figure 11: The triangle case

H(a) as well as the mirror image of H(1/a) across the diagonal. We shall see
that these sets have at most a single internal point in common.

The point (t, v) is in H(a) if either 1− t = t/v, or α and β are two different
values with h(α) = h(β), and 1− t = α and t/v = β.

In the first case (t, v) is on an arc of a hyperbola, and is above the diagonal
t = v. In the second case for each value of t we have at most one corresponding
value for v, and as h is analytic, this implicit function is analytic, too. As h(x)
tends to −1 + 1/a at the infinity, α and β can take all values above ξ, where
h(ξ) = −1 + 1/a. One of α and β is smaller than a, and the other one is bigger,
as can be seen on figure 2. Consequently the implicit function is defined on the
interval 0 ≤ t < 1 − ξ. This interval is empty if ξ ≥ 1, which can only happen
when a > 1 and h(1) ≥ 1/a − 1, that is, when a > 3.0491 . . .. Otherwise the
function is convex from below; we show only that it is below the tangent line
drawn at (0, 0).

Indeed, for a given t let the corresponding values be α(t) and β(t), then it
is easy to see that

dv

dt
=

1

β(t)
+

t

β2(t)
· h
′(α(t))

h′(β(t))
.

As t increases from 0 to 1 − ξ, α(t) decreases, and β(t) increases. As α(t) and
β(t) are on different sides of a, h′(α(t)) and h′(β(t)) have different signs. Thus
the derivative dv/dt is always smaller than 1/β(0), which is the slope of the
tangent at t = 0. From here our claim follows easily. The value β0 = β(0) is
the only other place where h(β0) = h(1), and either β0 < a < 1, or 1 < a < β0.
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Figure 12: The set H(a) for a = 0.8 and a = 1.2

Consequently, for a > 1 the tangent separates the curve and the hyperbola
arc, while for a < 1 it does not, and the curve must have a point on the hyperbola
(but not necessarily for v < 1). The point (t, v) is also on the hyperbola if, and
only if, α(t) = β(t), that is, when t = 1− a.

Next superpose H(a) and the mirror image of H(1/a) as on figure 13, and
look for the common points of the two sets. The hyperbolic arcs are separated
by the diagonal from (0, 0) to (1, 1); the curve of H(a) is below the tangent line
starting from (0, 0) with slope 1/βa(0), and the curve of H(1/a) is above the
line with slope β1/a(0). Thus β1/a(0) > 1/βa(0) proves that these curves have
neither common points. The only possibility left is that the hyperbolic arc from
H(1/a) and the curve from H(a) (or vice versa if a happens to be bigger than
one) intersect, as indicated on the picture. As the pair (t, v) is on the hyperbolic
arc, the slopes are equal. Thus in an extremal configuration either the angles
6 DPC and 6 QPA are equal, or 6 PQA and 6 CQB are equal.

Thus we have to prove that β1/a(0) > 1/βa(0). Denote these values by β′

and β, respectively. Then h1/a(β′) = h1/a(1), that is, ga(1/β′) = ga(1), and,
of course, aha(β) = aha(1) (see figure 13). As in the proof of lemma 5 we use
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Figure 13: Superposing H(a) and H(1/a) for a = 0.8
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Figure 14: Triangle with equal slopes at P

that the function g(x)−ah(x) is strictly decreasing for a < 1, yielding 1/β′ < β
immediately; or strictly increasing for a > 1, yielding the same relation. Thus
1/β < β′, as was claimed.

We have seen that in the case of an extremal triangle PQC, either the slopes
of PC and PQ are equal, or the slopes of PQ and QC are equal. Supposing
that the first case holds, reflect CP across AD. The perimeter of the triangle
is the same as the total length of the segments C ′Q and QC. Thus an extremal
triangle yields an extremal two-segment graph C ′QC, where the points C and
C ′ are fixed, and Q runs on the side AB. The problem is the same as finding the
extremal two-segment function f with v1 = v1 = v = 1/2. From lemma 4 we
know, that this happens if, and only if, the slopes λ1 = v/t, and λ2 = v/(1− t)
satisfy ga(λ1) = ga(λ2). Definitely this is the case if t is the midpoint – then the
triangle degenerates to the diagonal AC. For any fixed v there are at most two
other values of t, symmetrical to the midpoint, when this condition holds. This
follows from the lemma below, as the condition for extremality can be written
as h1/a(t/v) = h1/a((1− t)/v) and t/v + (1− t)/v = 1/v is fixed.

Lemma 6 Suppose α and β runs over all values 0 < α ≤ a ≤ β such that
ha(α) = ha(β). Then α+ β takes every value at most once.

Proof Recall that 0 < ξ < a is the only place where h(ξ) = ha(ξ) = −1 + 1/a.
As the possible values of α is the interval (ξ, a], the claim follows immediately,
when we show that for all corresponding (α, β) pairs h′(α) +h′(β) has the same
sign. Indeed, if α travels backward from a towards 0, then β will go always
faster (or slower) than α. Thus their midpoint will always travel away from a
(or toward the origin), and thus cannot take the same value twice.

As h′(α) = h′(β) = 0 when α = β = a, the sum h′(α) + h′(β) never changes
sign if it does not take the value 0 anywhere else. Would this be case, we would
have two different values α and β with h(α) = h(β) and h′(α) + h′(β) = 0. But
this is impossible if for appropriately chosen constant c, the function

F (x) = h(x)− c · h′2(x)
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is either increasing or decreasing on the whole interval ξ < x < +∞, that is,
the derivative of F (x) has the same sign. In what follows we argue for the case
a < 1. The derivative of F (x) is

F ′(x) = h′(x) (1− 2c · h′′(x)) ,

and h′(x) takes zero at x = a only: it is negative for x < a, and positive for
x > a. Thus the second factor must change sign in the interval (ξ,+∞) at x = a
only. It implies that c must be chosen so that 1− 2c ·h′′(a) = 0, and the lemma
is proved if we can show that h′′(x) crosses the line y = h′′(a) only at x = a
in the interval (ξ,+∞). The function of h′′(x) is depicted on figure 15, from

0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

Figure 15: h′′(x) for a = 0.8 and a = 1.2

where it is clear, that this happens if, and only if, h′′(ξ) < h′′(a) for a < 1, and
if h′′(ξ) > h′′(a) for a > 1.

Unfortunately we were not able to find an easy argument for this fact, but
it has been checked by distinguishing several intervals for a. The check always
went by finding an η < ξ for which h′′(η) < h′′(a).

We remark, that ξ = ξ(a) has the asymptotical value 0.5a
√

2a− 3a2 when
a tends to zero, and 0.5

√
2a− 3 when a tends to infinity.

8 Conclusion

Let the sides of the rectangle ABCD by AB = CD = a, and BC = DA = 1/a
with a > 1. The linear transformation ϕa maps ABCD into the unit square.
The (closed) convex set K is inscribed into ABCD if K has points on all sides
of the rectangle. We wanted to know how much the perimeters of K and K ′ =
ϕa(K) might differ, namely we were looking for the values

M(a) = sup
K

perimeter(K)− perimeter(K ′)

m(a) = inf
K

perimeter(K)− perimeter(K ′).

We have shown that the supremum and the infimum is actually taken by convex
polygons, and then reduced the possibilities to members of 19 classes. By a more
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detailed investigation we eliminated several of them, and showed that in the rest
it is enough to consider only a finite number of candidates. For the classification
we refer to figure 5; the only unlisted possibility is the diagonal.

Cases in the first row has been eliminated. Case 4.2 has four candidates.
By lemma 3 the angles at the “base” are equal and determined uniquely. One
of the two slopes of the segments at the right hand side vertex is thus fixed.
Lemma 4 says that then the other slope can assume only two different values.
This gives two candidates; other two come when the configuration is “flipped
over” the diagonal.

Case 4.3 has also four candidates. As we have two internal vertices, two
applications of lemma 4 yields four possibilities. However the slopes of the
segments starting from the bottom vertex must be different. Would they be
equal, we can shift it to the right without affecting perimeters, arriving at a
configuration which is covered either in case 4.6 or in case 5.2.

Cases 4.4 and 4.7 were ruled out; there are four candidates in 4.5, and two in
4.6. By lemma 6 and the discussion before the lemma we have four candidates
for 3.1 depending on where the slopes are equal. By the same lemma case 3.2
has also four candidates: the “peak” of the triangle can be either at the middle
of the side, or at a uniquely determined point.

Altogether, for a fixed value of a the number of candidates is at most 27.
We used a computer program [3] to pick up the extremal configuration among
the candidates. For large values of a, not surprisingly, both M(a) and m(a) is a
little bit less than 2a. The maximum M(a) is taken by the diagonal, and m(a)
is taken by the parallelogram from case 4.6; edges are part of the longer sides of
the rectangle. As a gets smaller than 3.048 . . ., the maximal difference is taken
over by the “flipped” 4.6 parallelogram. From this point on both extremal cases
remain parallelograms. As they are coming from case 4.6, by lemma 3 the slope
of the parallelogram satisfies g(λ) = 1− a, which is exactly the condition given
in Theorem 1. For maximum the diagonal takes over the parallologram when
the slope from g(λ) = 1 − a would yield a point outside of the rectangle. This
happens when λ ≥ a2, i.e. when g(a2) ≤ 1 − a, which proves the last claim in
Theorem 1.

The values of M(a) and m(a) are plotted on figure 16. When a is smaller
than 1.178 . . ., then m(a) becomes negative. This means that the “rounder”
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figure has larger perimeter; however the maximal increase is the quite small,
around 0.015.

Results of the computer run show that each configuration can be locally
extremal with two exceptions: the triangle case 3.1 never yields a configuration
which cannot be improved by slight move of the vertices; and the same is true
for case 4.3 when the second pair of slopes are equal.

Restricting ourselves for the triangle case only, extremal configurations show
a greater variety. For large values of a, the maximum is taken by the diagonal.
As a goes below 3, the maximum is taken by a triangle from 3.3, and when
a is below 1.83, it changes to 3.2 with the third vertex at the midpoint. The
minimum is always taken by a triangle from 3.2, however for a > 2 the third
vertex is at the “tilted” position; for a < 2 it is the midpoint. As a goes below
1.14, the minimum becomes negative as well, but remains above −0.0124, which
is slightly larger than the absolute minimum −0.015.
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Appendix: The background

The need of estimating the perimeter of a rounded convex body arose in connec-
tion with a construction in [1]. After several reductions we faced the following
problem. Given are a d-dimensional centrally symmetric convex body K of vol-
ume 1 (the “unit ball” of some norm), and two (small) positive real numbers σ
and ε as parameters. We had to construct (convex) bodies A1, A2, . . . so that

(i) all Ai have volume ≤ σ,

(ii) with Bi = Ai + εK, all Bi are pairwise disjoint, and are inside K,

(iii) the utilization, i.e. the total volume of all Ai is as large as possible.

Using Minkokwski’s inequality we have derived the upper bound σ(σ1/d + ε)−d

on the utilization. For a lower bound we used the following construction. First,
enclose K in a rectangular parallelepiped choosing the first two facets perpen-
dicular to the diameter of K, and continuing recursively. This way the volume
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of the parallelepiped is at most d!. Next, use an affine transformation ϕ which
maps this parallelepiped into a cube of the same volume. We will do the con-
struction using K ′ = ϕK rather than K as ϕ preserves volume, Minkowski-
sum, and convexity. Observe that K ′ can be enclosed into a cube of side length
(d!)1/d ≈ d/e.

Pack the space with cubes Ci of size length η = σ1/d + 2ε(d!)1/d. Ai will be
the cube of volume σ centered within Ci. Clearly Ai+εK

′ ⊆ Ci, thus conditions
(i) and (ii) hold. To get an estimate on the utilization we need to estimate how
many of the Ci’s are inside K ′.

The diameter of Ci is
√
d times of its side length. Thus either all points of

Ci are inside K ′, or, if it has a point inside K ′, all points of Ci are closer to the
surface of K ′ than

√
d η. As K ′ is convex, the total volume covered by cubes

lying totally inside of K ′ is at least

1− η
√
d ∂K ′

where ∂K ′ is the surface of K ′. This gives the following estimate for the uti-
lization, i.e. to the total volume of the Ai’s:

σ · 1− η
√
d ∂K ′

ηd
≈ σ

(σ1/d + c1εd)d

(
1−
√
d(σ1/d + c1εd)∂K ′

)
,

for some constant c1, which, up to certain error terms, agrees with the upper
bound.

As K ′ is a kind of “rounded” version of K, namely the bounding box of K is
transformed into a cube, we expected the ∂K ′ be smaller than or equal to ∂K.
By the result of this paper, this is not the case even in dimension 2. It would be
very interesting to know what happens in higher dimensions, especially whether
∂K ′/∂K can be bounded from below by a constant depending on the dimension
only.
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