
On-line secret sharing∗
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Abstract

In a perfect secret sharing scheme the dealer distributes shares to participants so that
qualified subsets can recover the secret, while unqualified subsets have no information on
the secret. In an on-line secret sharing scheme the dealer assigns shares in the order the
participants show up, knowing only those qualified subsets whose all members she have seen.
We often assume that the overall access structure (the set of minimal qualified subsets) is
known and only the order of the participants is unknown. On-line secret sharing is a useful
primitive when the set of participants grows in time, and redistributing the secret when
a new participant shows up is too expensive. In this paper we start the investigation of
unconditionally secure on-line secret sharing schemes.

The complexity of a secret sharing scheme is the size of the largest share a single participant
can receive over the size of the secret. The infimum of this amount is the on-line and off-line
complexity of the access structure, respectively.

For paths on at most five vertices and circles on at most six vertices the on-line and offline
complexity are equal, while for other paths and circles these values differ. We show that the
gap between these values can be arbitrarily large even for graph based access structures.

We present a general on-line secret sharing scheme that we call first-fit. Its complexity is
the maximal degree of the access structure. We show, however, that this on-line scheme is
never optimal: the on-line complexity is always strictly less than the maximal degree. On the
other hand, we give examples where the first-fit scheme is almost optimal, namely, the on-line
complexity can be arbitrarily close to the maximal degree.

The performance ratio is the ratio of the on-line and off-line complexity of the same access
structure. We show that for graphs the performance ratio is smaller than the number of
vertices, and for an infinite family of graphs the performance ratio is at least constant times
the square root of the number of vertices.

1 Introduction

Secret sharing is an important cryptographic primitive. It is used, for example, in protocols
when individual participants are either unreliable, or participating parties don’t trust each other,
while they together want to compute reliably and secretly some function of their private data.
Such protocols are, among others, electronic voting, bidding, data base access and data base
computations, distributed signatures, or joint encryptions. Search for (efficient) secret sharing
schemes led to problems in several different branches of mathematics, and a rich theory has been
developed. For an extended bibliography on secret sharing see [26].

Secret sharing is a method to hide a piece of information – the secret – by splitting it up
into pieces, and distributing these shares among participants so that it can only be recovered
from certain subsets of the shares. Usually it is a trusted outsider – the dealer – who produces
the shares and communicates them privately to the participants. Thus to define a secret sharing
scheme we need to describe what the dealer should do.

As schemes can easily be scaled up by executing several instances independently, the usual
way to measure the efficiency of a scheme is to look at the ratio between the size of the largest
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share any participant receives and the size of the secret. The size of the shares and that of the
secret is measured by their entropy, which is roughly the minimal expected number of bits which
are necessary to define the value uniquely. We shall use H(ξ) to denote the Shannon entropy of
the random variable ξ [14].

Let P denote the set of participants. We assume that both the secret ξs and the share ξi
assigned to a participant i ∈ P are random variables distributed over a finite range and all these
variables have a joint distribution. We further require that H(ξs) > 0 to avoid trivialities. The
dealer simply draws the secret and the shares randomly according to the given distribution, and
then distributes the (random) values of the shares to the participants. The complexity (or worst
case complexity) of the scheme S, denoted by σ(S) is simply the ratio between the size of the
largest share and size of the secret:

σ(S) =
maxi∈P H(ξi)

H(ξs)
.

The inverse of the complexity is dubbed as the rate of the scheme, in a strong resemblance to the
decoding rate of noisy channels.

We call a hypergraph Γ on the vertex set P an access structure. A subset of the participants is
qualified if it contains a hyperedge and it is unqualified otherwise. We say that the secret sharing
scheme S realizes Γ if the values of the shares of the participants in any qualified set uniquely
determine the value of the secret, but the shares of a set of the participants in an unqualified
subset are statistically independent of the secret. Clearly, the non-minimal hyperedges in Γ play
no role in defining which sets are qualified, so we can and will assume that the hyperedges in Γ
form a Sperner system [7], i.e., no hyperedge contains another hyperedge. We further assume that
the empty set is not is not a hyperedge as otherwise no scheme would realize Γ.

The complexity of Γ is the infimum of the complexities of all schemes realizing Γ:

σ(Γ) = inf{σ(S) : S realizes Γ},

this notation was introduced in [20]. By the result of Ito et al. [18], every non-trivial Sperner
system has a complexity, i.e., every access structure is realized by some scheme. The complexity
of their construction is the maximal degree of Γ. The degree of a vertex in a hypergraph is the
number of hyperedges containing it. The maximal degree of Γ, denoted by d(Γ), is the maximum
of the degrees of vertices of Γ. The complexity of the scheme realizing Γ can be reduced from
d = d(Γ) to d − (d − 1)/n, where n is the number of participants. Another general construction
for arbitrary access structure is given by Maurer [22]. It is, in a sense, a dual construction, and
its complexity is the maximal number of maximal unqualified subsets a certain participant is not
a member of. Both type of constructions show that the complexity of any access structure is at
most exponential in the number of participants. It is an open problem whether there exists an
access structure with σ(Γ) ≥ n.

A simple observation yields that σ(Γ) ≥ 1 for all access structures Γ with at least one hyperedge,
see, e.g., [9]. Access structures with complexity exactly 1 are called ideal. An intense research was
conducted to characterize ideal access structures. For example, results in [20] connect the problem
of characterizing ideal access structures to representability of certain matroids.

A widely studied special case is when all minimal qualified sets are pairs, that is, the access
structure is a graph. Stinson [25] showed that the complexity of a graph G is at most (d + 1)/2
where d is the maximal degree of the graph. This, together with the lower bound in [9] established
the complexity of both the path and the circle of length n > 4 to be 3/2. Blundo et al. in [5]
showed that the (d + 1)/2 bound is tight for certain d-regular graph families. Lower and upper
bounds on the complexity on graphs with a few nodes were investigated in [15]. The complexity
of trees was determined in [13] to be 2− 1/c where c is the size of the largest core1 in the tree. In
particular, the complexity of every tree is strictly less than 2.

On the other hand, based on the result of Erdős and Pyber [16], Blundo et al. [4] show that
the complexity of any graph G on n vertices is O(n/ log n). So far, however, no graph has been

1A core is a connected subtree such that each vertex in the core is connected to a vertex not in the core.
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found with complexity above Θ(log n). Such an example with the largest constant is from [11],
namely the edge-graph of the d dimensional cube. This graph is d-regular, has 2d vertices, and
the complexity is d/2.

1.1 On-line secret sharing

In the model discussed so far the dealer generates all shares simultaneously, and communicates
them to the corresponding participants. We call such schemes off-line. In the on-line share
distribution participants form a queue, and they receive their shares in the order they appear.
When a participant arrives the dealer is told all those qualified subsets which are formed by
this and previously seen participants. We often assume that the dealer knows the entire access
structure at the beginning but she doesn’t know the order in which the participants arrive or the
identity of the participant when he arrives. Still she has to assign a share to him and she cannot
modify this share later. In this respect on-line secret sharing resembles on-line graph coloring:
there the color of the next vertex should be decided knowing only that part of the graph which is
spanned by this and previous vertices.

On-line secret sharing is useful primitive when the set of participant is not fixed in advance and
shares are assigned as participants show up. The usual way to handle such cases is by redistributing
all shares every time a new participant shows up. Redistribution, however, has high cost, while
using on-line secret sharing can be cheap and efficient.

The on-line secret sharing of Cachin [8] and follow-up papers differ from our approach sig-
nificantly. Cachin’s model considers computationally secure schemes only, while our schemes are
unconditionally secure. On addition, it requires other authentic (but not secret) publicly acces-
sible information, which can (or should) be broadcast to the participants over a public channel.
In our schemes only information possessed by the participants is necessary to recover the secret.
We are mainly interested in proving lower and upper bounds on the complexity of such schemes
compared to the complexity of unconditionally secure off-line schemes, which are not touched in
[8] at all.

Dynamic access structures were investigated by Blundo et al. in [3]. Their model provides
unconditional security, and the dealer is able to activate a particular access structure out of a
given collection by sending an appropriate broadcast message to all participants. The dynamic
is provided by the dealer’s ability to choose from a range of possible access structures, while in
our on-line schemes it is the unpredictability of the order participants appear in which makes the
scheme dynamic.

1.2 Our contribution

On-line secret sharing appeared first in the conference presentation [12]. In this paper we give a
precise definition of this notion and define the on-line complexity o(Γ) of an access structure Γ as
the infimum of the complexity of of an on-line secret sharing scheme realizing it. We present a
general on-line secret sharing scheme that can realize any access structure. We call our scheme
the first-fit on-line secret sharing scheme on account of its similarity to the simplest on-line graph
coloring strategy.

Theorem 1.1 The on-line secret sharing scheme first-fit realizes any access structure Γ with
complexity d = d(Γ). In particular, o(Γ) ≤ d.

As usual, Pn denotes the path on n vertices, and Cn denotes the circle on n vertices. It is well
known that the complexity of Pn is 3/2 for n ≥ 4 and complexity of Cn is also 3/2 for n ≥ 5, see,
e.g., [9]. The following theorem separates the on-line and off-line complexities.

Theorem 1.2 (i) For paths Pn with n ≤ 5 and for the cycles Cn with n ≤ 6 the on-line and
off-line complexity is the same.
(ii) For paths Pn with n ≥ 6 and for cycles Cn with n ≥ 7 the on-line complexity is strictly above
the off-line complexity.
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(iii) The on-line complexity of both Pn and Cn tends to 2 as n tends to infinity. In fact,

2− 1
4n
≥ o(Cn+1) ≥ o(Pn) ≥ 2− 4

n
.

The gap between the on-line and off-line complexity can be arbitrarily large. Recall that, by
[13], the complexity of a tree is below 2.

Theorem 1.3 The on-line complexities of trees is unbounded. In particular, there exists an n-
vertex tree Tn with o(Tn) ≥ b

√
nc/2. Consequently the gap between o(Γ) and σ(Γ) can be arbitrarily

large.

The performance ratio tells us how much worse the on-line scheme must be compared to the
best off-line scheme. In particular the secret sharing performance ratio of Γ it is defined to be
o(Γ)/σ(Γ). The similarly defined quantity for on-line graph coloring is sublinear in the number of
vertices [19], and it is at least n/ log2 n for certain graphs with n vertices [23]. Our upper bound
on the secret sharing performance ratio of graphs comes from an upper bound of the on-line
complexity and the trivial lower bound of 1 for the off-line complexity:

Theorem 1.4 (i) Let d = d(G) be the maximal degree of the graph G on n vertices. Then o(G),
and therefore the secret sharing performance ratio, is at most d− 1/(2dn).
(ii) For some graphs on n vertices the performance ratio is at least 1

3

√
n.

Finally we show that the first-fit scheme is never the best on-line scheme. The gain, however,
can be exponentially small in cases when minimal qualified subsets are big.

Theorem 1.5 Let Γ be an access structure, d = d(Γ) be the maximal degree of Γ, n be the number
of vertices in Γ, and r ≥ 2 be an upper bound on the size of any hyperedge in Γ (thus r = 2 for
graphs). There is an on-line secret sharing scheme realizing Γ with complexity at most

d− 1
ndM + nd2 + n

where M = min(r · n2r−3, 3n−1).

1.3 Organization

The rest of the paper is organized as follows. In section 2 we give precise definition for the on-
line secret sharing. In section 3 we describe variants of our general first-fit scheme and prove
Theorem 1.1. In section 4 deals with the on-line complexity of paths and cycles and we prove
there Theorem 1.2(i). In section 5 we exhibit graphs with the on-line complexity close to the
maximal degree. These include the long paths and cycles proving Theorem 1.2(ii) and trees
proving Theorem 1.3. Finally, in Section 6 we show that the first-fit scheme is never optimal
proving Theorems 1.4 and 1.5.

2 On-line secret sharing schemes

Having defined off-line secret sharing schemes in the preceding section we define on-line secret
sharing here. On-line secret sharing relates to the secret sharing in the same way as on-line graph
coloring relates to graph coloring. Here the structure Γ is known in advance, and the participants
receive their shares one by one and the assigned share cannot be changed later on. Participants
appear according to an unknown permutation. When a participant p shows up, his identity (as a
vertex of Γ) is not revealed, only those qualified subsets are shown to the dealer which p is the last
member of (i.e., all other members arrived previously). Based only on the emerging hypergraph
(on the participants who have arrived so far) the dealer assigns a share to the new participant. At
the end the dealer will see a permuted version of the access structure Γ and the shares distributed
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must satisfy the usual properties: the collection of shares assigned to a qualified subset must
determine the secret, and the collection of shares of an unqualified subset must be independent of
the secret.

To formalize this concept, we assume all the shares that may be assigned to participants form
a large (predetermined) finite collection of random variables {ξα : α ∈ Ω}. As usual, these and
the secret ξs are random variables with a finite range and with a joint distribution. We assume
H(ξs) > 0. The dealer assigns one of the variables ξα to each participant as soon as he shows up.
The choice of the index α for a participant depends only on the emerging hypergraph, i.e., the set of
hyperedges consisting of this and earlier participants. In particular, assuming there is no singleton
hyperedge, the first participant always gets the same variable. Notice that the distribution process
does not depend on the values of the random variables, in fact one can visualize the process as
assigning variables to participants, and only after all assignments evaluating the variables according
to their joint distribution.

An on-line secret sharing scheme realizes the access structure Γ if at the end of the process,
provided that the emerging hypergraph is indeed a vertex-permuted copy of Γ, the shares of every
qualified subset determine the secret and the shares of every unqualified subset is independent
of the secret. Notice however that many sets of the random variables ξα get never assigned to
participants simultaneously, and those collections do not have to satisfy any requirement.

The complexity of the scheme S is the size of the largest share divided by the size of the secret:

σ(S) =
max{H(ξα) : α ∈ Ω}

H(ξs)
.

The on-line complexity o(Γ) of an access structure Γ is the infimum of the complexities of all
on-line schemes realizing Γ:

o(Γ) = inf{σ(S) : S is on-line and realizes Γ}.

By fixing the order of the participants, any on-line scheme can be downgraded to an off-line
scheme. Consequently the on-line complexity cannot be smaller than the off-line one: o(Γ) ≥ σ(Γ)
holds for any Γ.

3 First-fit on-line scheme

In this section we present a general on-line secret sharing scheme. We name it first-fit scheme
because of the analogy to the first-fit on-line graph coloring algorithm [23]. The analogy even
carries further. As first-fit on-line coloring is oblivious of the graph structure on the unseen
vertices, similarly our first-fit scheme works without the knowledge of the “global” access structure.
However, for our scheme to work the dealer must know the maximum degree d. For graphs we
present a version of the scheme later where the maximum degree does not have to be known. This
modified scheme has complexity d+ 1 instead of d given by the first-fit scheme.

For on-line schemes we distinguish the hyperedges containing a participant p as backward edges
and forward edges at v, with backward edges being those that are revealed when p arrives, and
the forward edges being those that will be revealed later.

Let us assume that d is the maximal degree of an unknown access structure. The first-fit
on-line secret sharing scheme works as follows. The secret is a uniform random bit s. When a
participant p arrives we consider each backward edge E at p in turn. For each participant q ∈ E
different from p we select a previously unassigned (random) bit given to q previously, and assign
it to the hyperedge E. We also give a bit to p which is also assigned to the hyperedge E. We
choose this last bit in such a way that the mod 2 sum of all bits assigned to E be the secret s.
Finally, if the number of backward edges at p is m < d, then we give d−m fresh uniform random
unassigned bits to p (in anticipation of the forward edges).

Proof (Theorem 1.1) To check that the above first-fit scheme is indeed a correct secret sharing
scheme realizing the access structure Γ, first we note that if the maximal degree is indeed d then
no participant runs out of unassigned bits.
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Second, the complexity of the scheme is d as each participants receives exactly d bits and the
secret is a single uniform bit. The participants in a hyperedge E can determine the secret by
adding mod 2 the bits which were assigned to E. All bits received by an unqualified set together
with the secret form a set of independent random bits. So the first-fit scheme realizes any access
structure of maximal degree (at most) d. �

We remark that the bound given by this theorem matches the complexity of the general off-line
secret sharing scheme of Ito et al. [18].

For graphs there is a modified version of the above first-fit scheme. The secret is still a uniform
random bit s, but each participant receives a share whose size is only one more than the number
of backward edges containing that vertex, i.e., edges which are revealed when the vertex arrives.
Thus the maximum possible share size is d+ 1, slightly worse than the d above. The advantage of
this modified scheme is that the dealer needs not to know the maximum degree d in advance. In
this modified scheme whenever a participant p arrives he receives a (fresh) uniform random bit bp
and furthermore for each earlier participant q such that pq is an edge, p also receives the bit s+ bq
(addition understood modulo 2). It is easy to check that this scheme realizes any graph. It is
interesting to note however, that we could not find any analogous scheme for general hypergraphs.

Yet another version of the first-fit scheme for graphs is when in the the above scheme we simply
do not give the new random bit bp to p whenever p has the maximum number d of backward edges.
This scheme to work we need to know d in advance. The advantage compared to the general first-
fit scheme is that most participants receive fewer than d bits, only participants with d or d − 1
backward edges receive a d bit share.

4 Paths and cycles

There are cases when the on-line and off-line complexity coincide. The simplest ones are covered by
the following claim. Let Γ be a hypergraph and S a subset of the vertices of Γ. The sub-hypergraph
of Γ induced (or spanned) by S is the hypergraph with vertex set S and with those hyperedges
of Σ that are contained in S. For simplicity we call induced sub-hypergraphs substructures. We
call a hypergraph Γ fully symmetric if each isomorphism between two of its substructures can be
extended to an automorphism of Γ.

Claim 4.1 For a fully symmetric access structure the on-line and off-line complexity are equal.

Proof Suppose we have an off-line secret sharing scheme realizing a fully symmetric access struc-
ture Γ consisting of the shares ξp for vertices p of Γ and ξs for the secret. We can use the very
same variables for an on-line secret sharing scheme as follows. We maintain an isomorphism α
between the emerging hypergraph and a substructure of Γ and give the next participant q the
share ξα(q). We keep ξs in its role as the secret. Before the first participant arrives α is empty.
As Γ is fully symmetric, whenever a new participant arrives and the emerging hypergraph grows,
we can extend α to this new vertex so that the value of α does not change on the older vertices
and α remains to be an isomorphism between the emerging hypergraph and a substructure of Γ.
At the end of the on-line process α becomes an isomorphism of the full access structure Γ. As
the off-line scheme realizes Γ, the constraints on qualified and unqualified subsets will hold in this
on-line scheme as well. �

Note that the strong symmetry requirement of Claim 4.1 seems to be necessary. The weaker
assumption that the automorphism group of Γ is transitive on the vertices and/or on the hyperedges
is not enough. As a counterexample, consider Cn, the cycle on n ≥ 7 vertices. Its automorphism
group is transitive on both the edges and vertices, but it is not transitive on certain isomorphism
classes of induced substructures. For example no automorphism brings a pair of second neighbors
to a pair of third neighbors, despite the fact that they induce isomorphic (empty) subgraphs. The
off-line complexity of Cn is 3/2, but the on-line complexity is strictly larger than this value (and
approaches 2 as n goes to infinity) by Theorem 1.2.
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Let Γ′ be a hypergraph obtained from Γ by replacing each vertex of Γ by a nonempty class
of equivalent vertices, and replacing each hyperedge with the complete multipartite hypergraph
on the corresponding classes. We call Γ′ a blowup of Γ. Note that σ(Γ′) = σ(Γ) since one can
assign the same random variable to all equivalent vertices in a class. We shall see later that the
on-line complexity of the blowup can be larger than that of Γ. Indeed, Lemma 5.3 implies that
the blowups of the simple graph G0 with three vertices and a single edge have unbounded on-line
complexity.

Claim 4.1 applies to the threshold structures, these are the complete uniform hypergraphs.
Among graphs it applies to the complete graphs and it also applies to the complete multi-partite
graphs with equal number of vertices in each class. All these access structures have complexity 1,
so their on-line complexity is also 1. The same is true for arbitrary complete multi-partite graphs
(the blowups of complete graphs) as they are induced subgraphs of some fully symmetric complete
multipartite graph.

With these preliminaries, we turn to the complexity of paths and circles. First we show that
the on-line complexity of short paths are circles are the same as their off-line complexity.

Proof (Theorem 1.2(i)) P2, and C3 are complete graphs, P3 and C4 are complete bipartite graphs,
so their on-line and off-line complexity are the same and equal to 1. C5 is neither complete, nor
complete bipartite graph, but it is fully symmetric. So its on-line and off-line complexities agree
by Claim 4.1. P4 is not fully symmetric, still its on-line and off-line complexities are both 3/2.
To see this notice that P4 is an induced subgraph of C5, so we have o(P4) ≤ o(C5) = σ(C5)
and it is well known that σ(P4) = σ(C5) = 3/2, see e.g., [9]. A similar argument shows that
o(P5) = σ(P5) = o(C6) = σ(C6) = 3/2 once we show the bound o(C6) ≤ 3/2. We show this by
presenting an on-line secret sharing scheme of complexity 3/2 realizing C6.

For our scheme we use random bits a, b, c, d, e, f and x, y, z whose joint distribution is
uniform on the values satisfying a+ b+ c+ d+ e+ f = x+ y + z = 0. Here and in the list below
summation is understood modulo 2. The random variables representing the shares and the secret
ξs are as follows

ξ1 = (a, b+ x, c),
ξ2 = (b, c+ y, d),
ξ3 = (c, d+ z, e),
ξ4 = (d, e+ x, f),
ξ5 = (e, f + y, a),
ξ6 = (f, a+ z, b),
ξ7 = (c, b+ c+ d+ x, e+ x),
ξ8 = (f + y, a+ b+ c+ y, b),
ξs = (x, y, z).

Note that the size of the secret is H(ξs) = 2, while the size of any share is 3, so the complexity of
the scheme is 3/2 as claimed.

Let A be the cycle on the six vertices ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6 in this cyclic order and B be the
cycle on the vertices ξ1, ξ2, ξ7, ξ5, ξ4 and ξ8 in this this cyclic order. We assign the variables to
participants such that at the end the assignment represents an isomorphism between the emerged
access structure and either A or B. Notice that if we succeed, then the conditions on qualified and
unqualified subsets are satisfied as both cycles A and B represent off-line secret sharing schemes
realizing C6.

We start with assigning shares to participants from the intersection of A and B (that is, we
assign one of ξ1, ξ2, ξ4 or ξ5 until we can). We choose the variables in such a way that at any time
the assignment represents an isomorphism between the emerging graph and an induced subgraph
of the intersection. We fail when either two adjacent edges appear in the emerging graph or three
vertices form an independent set. At that point we commit to either A or B and assign variables
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so that at the end we get an isomorphism to the selected cycle. We leave it to the reader to verify
that this works for every permutation of the vertices. �

5 The entropy method

In this section we prove lower bounds on the on-line complexity of access structures. We start
with recalling the so-called entropy method discussed, among others, in [9, 10] as that seems to be
the most powerful method for proving lower bounds for the off-line complexity. Then we extend
it to the on-line model.

Let us consider a secret sharing scheme with the set of participants being P . For any subset
A of P we define f(A) as the joint entropy of the random variables (the shares) belonging the the
members of A, divided by the entropy of the secret:

f(A) =
H({ξi : i ∈ A})

H(ξs)
. (1)

The so-called Shannon inequalities for the entropy, see [14], can be translated to linear inequalities
for f as follows.

a) f(∅) = 0,

b) monotonicity: if A ⊆ B then f(B) ≥ f(A),

c) submodularity: f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

Furthermore, if the scheme realizes an access structure Γ, then the conditions that qualified subsets
determine the secret, while unqualified subsets are independent of it imply further inequalities:

d) strict monotonicity: if A ⊂ B, A is unqualified but B is qualified, then f(B) ≥ f(A) + 1,

e) strict submodularity: if A and B are both qualified but A ∩ B is unqualified, then f(A) +
f(B) ≥ f(A ∩B) + f(A ∪B) + 1.

We call a real function f satisfying the conditions a)–e) above an entropy function for Γ. An
entropy function f is α-bounded if f(A) ≤ α for all singleton sets A. The entropy method can be
summarized as the following claim:

Claim 5.1 For any access structure Γ there exists a σ(Γ)-bounded entropy function for Γ.

Proof Let us consider a secret sharing scheme realizing Γ. Equation (1) defines the function
f and as discussed above it is an entropy function for Γ. By the definition of complexity it is
α-bounded for the complexity α of the scheme. In case the complexity σ(Γ) is not achieved as the
complexity of a scheme realizing Γ we use a compactness argument to finish the proof. �

The power of the entropy method lies in the fact that finding the smallest α such that an α-
bounded entropy function exists for a given Γ is a linear programming problem and it is tractable
for small access structures. This minimal such α, denoted by κ(Γ) in [20], is a lower bound on the
complexity σ(Γ).

Our next theorem gives the on-line version of the entropy method. It naturally extends to
on-line complexities of classes of access structures, a natural concept to consider, but we restrict
our attention to single access structure here. Let us denote the family of substructures of an access
structure Γ by S(Γ).

Theorem 5.2 (i) For every access structure Γ there exist a system {F∆ : ∆ ∈ S(Γ)} such that
F∆ is a non-empty collection of o(Γ)-bounded entropy functions of ∆ and they satisfy the following
extension property: if µ is an isomorphism from ∆1 ∈ S(Γ) to a substructure of ∆2 ∈ S(Γ) and
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f1 ∈ F∆1 , then there exists a function f2 ∈ F∆2 with f2(µ(A)) = f1(A) for any subset A of the
vertices in ∆1.
(ii) For an arbitrary substructure ∆ of Γ one has an o(Γ)-bounded entropy function f for Γ that
is symmetric on ∆, that is, for any automorphism µ of ∆ one has f(µ(A)) = f(A) for all sets A
of the vertices of ∆.

Proof For (i) let us consider an on-line secret sharing scheme of complexity α realizing Γ. For
∆ ∈ S(Γ) we consider all permutations of the vertices of ∆ and the shares assigned to them when
they arrived in that order. Each assignment yields an α-bounded entropy function for ∆ through
equation (1). We let F∆ be the set of these functions.

To show that the extension property holds assume µ is an isomorphism between ∆1 ∈ S(Γ)
and a substructure of ∆2 ∈ S(Γ), furthermore f1 ∈ F∆1 . Consider the permutation v1, . . . , vk
of the vertices of ∆1 yielding the entropy function f1 and let f2 be the entropy function for ∆2

obtained from a permutation of its vertices starting with µ(v1), . . . , µ(vk) followed by the rest in
an arbitrary order. After the arrival of the first k vertices the situation for the dealer is the same
as when the vertices of ∆1 arrived in the given order, so it distributes the same shares. After that
he distributes further shares, but by the definition in (1) this will not effect the required equality
f2(µ(A)) = f1(A) if A is a set of vertices of ∆1.

This finishes the proof of part (i) in case there is an on-line secret sharing scheme of complexity
o(Γ) for Γ. If no such scheme exists we use compactness again.

For part (ii) consider the sets F∆ and FΓ claimed in part (i) and pick an arbitrary entropy
function f0 ∈ F∆. Any automorphism µ of ∆ is an isomorphism between ∆ and a substructure
(namely ∆) of Γ, so we have an extension fµ ∈ FΓ with fµ(µ(A)) = f0(A) for all sets A of vertices
in ∆. Let f be the average of these functions fµ for the automorphisms µ of ∆. It is easy to see
that the linear constraints defining an entropy function are preserved under taking averages, so f
is also an entropy function for Γ and it is also o(Γ)-bounded like all the functions fµ. To see that
f is symmetric on ∆ consider an automorphism µ0 of ∆ and a set A of vertices of ∆ and notice
that f(A) is the average of fµ(A) = f0(µ−1(A)), while f(µ0(A)) is the average of the same values
fµ(µ0(A)) = f0(µ−1µ0(A)). �

Note that making an entropy function for Γ symmetric on Γ is possible for off-line secret sharing
schemes too. But using Theorem 5.2(ii) one can make the entropy function symmetric on a well
chosen substructure of Γ that may have much more automorphisms than Γ itself.

Theorem 5.3 Let the graph G consist of a star with d ≥ 2 edges and m isolated vertices. Then

o(G) ≥ d− d3 − d2

2m+ 2 + d2 + d
> d− d3

2m
.

Proof Let H be the empty subgraph of G induced by all vertices but the degree d vertex v, the
center of the star. Let f be the o(G)-bounded entropy function for G that is symmetric on H, the
existence of which is claimed by Theorem 5.2(ii). Note that, by symmetry, f(A) is determined by
|A| for sets v /∈ A, so for such a set of size k let us have f(A) = ck.

Let v1, . . . , vd be the neighbors of v and Vi = {v1, . . . , vi}. Let H be an arbitrary set of isolated
vertices. By strict submodularity (rule e) for 2 ≤ i ≤ d we have

f(H ∪ Vi−1 ∪ {v}) + f(H ∪ {vi, v}) ≥ f(H ∪ Vi ∪ {v}) + f(H ∪ {v}) + 1.

By submodularity (rule c) for 1 ≤ i ≤ d we have

f(H ∪ {vi}+ f(H ∪ {v}) ≥ f(H ∪ {vi, v}) + f(H).

By rules a and c we have
f(H) + f({v}) ≥ f(H ∪ {v}),

and finally by strict monotonicity (rule d) we have

f(H ∪ Vd ∪ {v}) ≥ f(H ∪ Vd) + 1.
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Adding all these 2d+ 1 inequalities one obtains

d∑
i=1

f(H ∪ {vi}) + f({v}) ≥ (d− 1)f(H) + f(H ∪ Vd) + d.

All terms except f({v}) involve subsets of H, so the formula simplifies to

dck+1 ≥ (d− 1)ck + ck+d + v − f({v}),

where k = |H|. Introducing δi = ci+1 − ci we can rewrite our inequality as

(d− 1)δk ≤ δk+1 + δk+2 + · · ·+ δk+d−1 + d− f({v}).

Here k = |H| is arbitrary in the range 0 ≤ k ≤ m. When we add the m + 1 corresponding
inequalities most δi cancel. Using the bounds 0 ≤ δi ≤ c1 (coming from monotonicity and
submodularity) on the remaining terms δi we obtain(

d

2

)
c1 ≥ (m+ 1)(d− f({v})).

Finally as f is o(G)-bounded we have c1 ≤ o(G) and f({v}) ≤ o(G) yielding the bound on o(G)
stated. �

We use this Theorem to prove Theorems 1.2(iii) and 1.3.

Proof (Theorem 1.2(ii) and (iii)) For part (iii) notice that the graph G consisting a P3 component
and bn/2c−2 isolated vertices is an induced subgraph of Pn−1, which is also an induced subgraph of
Cn. Thus we have o(Cn+1) ≥ o(Pn) ≥ 2−4/n, where the last inequality comes from Theorem 5.3.
The upper bound on the on-line complexity of cycles comes from our general observation that first-
fit is never optimal, as stated in Theorem 1.4(i). The proof of this latter statement is postponed
to Section 6.

The lower bound proved in general establishes o(Pn) > 3/2 = σ(Pn) for n ≥ 9. To find the
exact threshold as claimed in part (iii) its enough to prove that o(P6) > 3/2 as the longer paths and
cycles contain P6 as an induced subgraph. For this we use Theorem 5.2(ii) with the subgraph H of
P6 induced by the first, second, fourth and fifth vertex of the path. Notice that the automorphism
group of H has order 8. Linear programming shows that there is no α-bounded entropy function
on P6 that is symmetric on H with α < 7/4, thus the theorem tells us that o(P6) ≥ 7/4. In the
Appendix we give a direct proof of this fact. �

Proof (Theorem 1.3) Consider the graph G consisting of a d-edge star and m isolated vertices
and the tree T obtained by adding a vertex to G and connecting it to the center of the star and
and to the isolated vertices. Clearly o(T ) ≥ o(T ). Choosing d = b

√
nc and m = n− d− 2 the tree

T = Tn has n vertices and the lower bound from Theorem 5.3 give is as claimed. �

6 Not so tight bounds on on-line complexity

Stinson proved in [25] that the (worst case) complexity of any graph is at most (d+ 1)/2 where d
is the maximal degree. This bound was proved to be almost sharp by van Dijk [15] where for each
positive ε he constructed a graph with complexity at least (d+ 1)/2− ε. Later Blundo et al. [5]
constructed, for each d ≥ 2, an infinite family of d-regular graphs with exact complexity (d+1)/2.

Theorem 1.1 claims that the on-line complexity is at most d for a degree d graph, and from
Theorem 5.3 it follows that this bound is almost tight, namely, for each positive ε there is a d-
regular graph with on-line complexity at least d− ε. In fact, the graph family defined in [5] works
here as well, as these d-regular graphs have no triangles and have arbitrarily large independent
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subsets. These graphs also show that the on-line and off-line complexity can be far away, which
is the conclusion of Theorem 1.3. The performance ratio for these graphs, however, is less than 2.

In this section we show that the bound d is never sharp for on-line complexity. In other words,
the on-line complexity of any access structure is always strictly less than the maximal degree. We
prove this result for graph-based structures, and only indicate how the proof can be modified for
an arbitrary access structure.

The idea is that during the secret distribution we maintain some tiny fraction of joint infor-
mation among any pair of the participants. This joint information then can be used to reduce
the number of bits the most heavily loaded participant should receive. We shall use a technique
extending Stinson’s decomposition construction from [25].

Let G be a graph. A star is a connected subgraph of G in which all vertices with a single
exception has degree one. The high degree vertex of the star is its center. If the star has only two
vertices (i.e., it is an edge), then its center can be any of the endpoints. The non-center points of
the star are its leaves.

A star k-cover of G is a collection S of (not necessarily distinct) stars S = {Sα} such that
every edge of G is contained in at least k of the stars. The weight of the cover S, denoted as w(S),
is the maximal number a vertex of G is included in some star (either as a center or as a leaf):

w(S) = max
v∈G
|{Sα ∈ S : v ∈ Sα}|.

Lemma 6.1 (Stinson, [25]) Suppose S is a star k-cover of G. Then the complexity of G is at
most w(S)/k.

Proof Let F be a large enough finite field. We describe a secret sharing construction in which the
secret is a k-tuple of elements of F, and each share is a collection of at most w(S) elements from F.
Let V be the k-dimensional vector space over F. Pick the vector vα ∈ V for each Sα ∈ S so that
any k of these vectors span the whole V . (This can be done if the field F has at least |S| many
non-zero elements.) The set of vectors together with their indices will be public information, and
they do not constitute part of the secret. The secret is a (random) vector s ∈ V . For each star
Sα in the cover the dealer chooses a random element rα ∈ F, and tells rα (with its index) to the
leaves of Sα, and she tells rα + 〈s,vα〉 to the center of Sα where 〈s,vα〉 denotes the inner product
of these vectors.

Obviously, in this scheme every participant receives at most w(S) field elements. The secret
consists of k independent field elements (each coordinate of s is chosen uniformly and indepen-
dently), thus the complexity of the system is w(S)/k, as was claimed. Also, it is clear that every
edge can recover the secret: as the edge e is covered by at least k stars, the two endpoints of e can
recover the inner products 〈s,vα〉 for k distinct α’s. As these vα vectors span the whole space V ,
from these inner products they can recover s as well.

On the other hand, any unqualified subset of the vertices receives independent (from each other
and from s), or identical, random elements from F, thus their joint shares gives no information
about the secret, as required. �

Leg G be a graph with maximal degree d. We describe an on-line secret sharing for the scheme
determined by G. Suppose the next vertex to be dealt with is v. We call edges connecting v to
points which have received there shares (appeared before) as backward edges, and call other edges
starting from v as forward edges. In our construction the secret will be a vector s, and its entropy
will be denoted as H(s). In the sequel we will speak about this entropy as the “number of bits.”

First we give a construction in which the size of the share of a vertex v is d ·H(s) if v has
exactly d backward edges (and consequently has no forward edges); otherwise this size will be at
most (d− 1/2) H(s).

The construction uses the idea from the proof of Lemma 6.1. As we proceed, we will maintain
a star 2-cover of the part of G we have seen so far. Each vertex v will have a set of potential or
finalized star leaves, and will have several star centers as well.

Recall that the next vertex we have to assign the share is v. When we see v we know its
backward degree (and all of its backward neighbors), but don’t necessarily know its forward
degree.
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Case 1: v has no backward edges.
Add a center ctr1v and d (potential) leaves denoted as leafiv for 1 ≤ i ≤ d to v. These “potential”
vertices will be leaves in a star 2-cover of G. As in Lemma 6.1, pick and assign fresh random field
elements for each potential leaf together with an index for the star they will be a member of, and
pick a random number rα and assign the value rα+ 〈s,vα〉 to the center ctr1v, where α is the index
of the star with center ctr1v in the cover.
Case 2: the backward degree of v is m > 0 which is strictly less than d.
Add m centers ctriv for 1 ≤ i ≤ m, and d (potential) leaves leafiv to v. In this case we added
m + d ≤ 2d − 1 new vertices to v. For each backward edge vw, connect the next unused leaf
leafiv of v to ctr1w (and assign the appropriate random value from the field to v). For the first
backward edge vw connect ctr1v to the first unused leaf leafjw at w (this also determines the index
of the covering star with center ctr1v); for other backward edges vw′ connect the next center ctriv
to the next unused leaf of w′, creating m− 1 individual edges as stars having center at v. For the
remaining d−m potential leaves assign fresh random field numbers.
Case 3: the backward degree of v is exactly d.
In this case add d leaves and d centers to v. Connect the leaves to the first centers at the endpoints
of the backward edges; and connect the new centers to the next unused leaves at the backward
edges.

The construction to work we need to check certain details. First, as the total degree of any
vertex is at most d, a vertex with m backward edges can have at most d−m forward edges, thus
during the construction they will always have the required unused “leaf.” Second, as can easily
be checked, each edge is covered by two stars. Third, we should fix the field F, the vector space V
and the vectors vα in advance. To do so, we should have an a priory upper bound on the number
of covering stars. As each edge is covered twice, the number of stars cannot exceed n2 where n is
the number of vertices in G. Thus F could be any finite field with more than n2 elements, V be a
2-dimensional vector space over F, and vα be n2 vectors from V such that any two of them spans
V . Fourth, v receives at most (2d − 1) elements of F when the backward degree of v is strictly
smaller than d, and exactly 2d field elements when its backward degree is exactly d. As the secret
can be considered as two independent field elements, the share size for a former vertex is at most
(d− 1/2) ·H(s), and is d ·H(s) for the latter ones, as has been claimed.

To push the complexity strictly below d we need to decrease the information given to vertices
of backward degree d at the expense of adding further information to all other vertices.

Theorem 6.2 Let G be a graph on n vertices with maximal degree d ≥ 2. The on-line complexity
of G is at most d− 1/(2dn).

Proof We modify the above construction to achieve the lower complexity. Let k be a large
integer to be chosen later. We execute in parallel k copies of the secret distributing procedure
above. Namely, each covering star will be replaced by k such stars, resulting in a 2k-cover of G.
Thus the vector space V should be 2k-dimensional, and vα ∈ V be k · n2 vectors such that any
2k of them span the whole space V .

Furthermore, for each vertex pair {v, w} of G, independently whether they form an edge or
not, we assign d independent random field elements, independent of each other and of all other
choices.

Suppose v is a vertex of backward degree m < d. Then v is assigned d · k (potential) leaves
leafi,jv where 1 ≤ j ≤ k, and k or m · k potential centers ctri,jv for 1 ≤ j ≤ k depending on whether
m is zero or not (Cases 1 and 2 above). For each j the covering stars will be built according to
the rules discussed above, which also determines the shares v receives. Beyond these shares, v
also receives the d(n− 1) field elements along with their labels assigned to those vertex pairs v is
a member of.

Next suppose v is a vertex with backward degree exactly d (Case 3). In this case v receives
k · d leaves but only k · d − 1 centers. The leaves are connected to the appropriate centers at the
endpoints of the of the backward edges. All but one of the centers at v is connected to the next
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unused leaf at the corresponding level at the endpoint of the backward edges, creating k · d − 2
single edge stars. Let x and y be the endpoints of the two backward edges which now are covered
only 2k − 1 times. Let r be the next random field element which is shared by x and y. The last
center at v is connected to these elements, and v receives the field element r + 〈s,vα〉 where α is
the index of the next free star cover index.

As the maximal degree is d, the vertex pair {x, y} can occur at most d times in this process,
thus there will always be a new shared field element.

It is clear that during the process every graph edge is covered exactly 2k times. Also, the
secret can be written as 2k independent field elements. A vertex with less than d backward edges
receives at most d(n− 1) + (2d− 1)k field elements, and a vertex with exactly d backward edges
receives 2dk − 1 field elements. Thus the complexity of the scheme is

2dk − 1
2k

= d− 1
2k

if d(n− 1) + (2d− 1)k ≤ 2dk − 1, which is the case when k = dn. This proves the theorem. �

As the complexity of any nontrivial access structure is at least 1, from Theorem 6.2 it follows
immediately that the performance ratio is at most d−1/(2dn) for any graph-based structure with
maximal degree d. This was claimed as part (i) of Theorem 1.4.

A generalization of Theorem 6.2 for arbitrary access structures was stated as Theorem 1.5.
In the construction we will use a bound on the number of elements in minimal qualified subsets.
When Γ is graph based, this bound is 2, but in general it can be any number r ≤ n. As usual, d
denotes the maximal degree of Γ.

The first obstacle is that Stinson’s Lemma 6.1 does not generalize for arbitrary access structure.
It remains true when Γ is almost disjoint, i.e., any two minimal qualified sets have at most one
joint member. Rather, we can start from the observation that fixing any participant v ∈ P ,
there is an off-line scheme for a single secret bit, where v gets one random bit, and every other
participant receives at most d bits. Performing all of these schemes in parallel as v runs over all
participants and using Stinson’s trick, we get an off-line scheme where the secret is n bits, and
each participant’s share is 1 + (n− 1)d bits, thus the complexity is d− (d− 1)/n.

Using this off-line scheme, we can built an on-line one where every participant with less than
d backward hyperedges gets at most (d − 1/n) H(s) bits of share, while those with d backward
hyperedges receive dH(s) bits, and the secret s is an n-tuple of field elements form a large enough
finite field.

Finally, we need to lower the load on participants with d backward hyperedges. Let v be such
a participant, and A be a minimal qualified set v is in. Then v gets a field element so that the
sum of this and other elements preassigned to other participants in A yields a secret value. Now
v’s load can be lowered if he can receive the same field element for two different minimal qualified
subsets A1 and A2. Thus we need randomly assigned numbers to A1 − {v} and to A2 − {v} so
that their sum be equal. Such a thing can be found if for all disjoint subsets U and V of the
participants with |U | < r, |V | < r we maintain d such sums, plus d further random values to be
used in A1 ∩A2 − {v}. These random field elements will be assigned (with appropriate labels) to
members of U and V .

Let M be the number of the (U, V ) pairs a particular participant is in either U or V . An
easy calculation shows that M ≤ min(r · n2r−3, 3n−1). Then each participant, except for those
with backward degree d, will receive d(M + d) extra field elements. If we execute k copies of the
on-line scheme in parallel, then participants with less than d backward degree receive at most
k · (dn− 1) + d · (M + d) field elements; those with exactly d backward degree receive k · (dn)− 1
field elements. The secret in this case will be kn field elements, thus the complexity of the scheme
is d− 1/(kn) if

k · (dn− 1) + d · (M + d) ≤ k · (dn)− 1
d · (M + d) + 1 ≤ k.

Choosing the smallest possible value for k gives the complexity in Theorem 1.5.
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Appendix

We give a direct proof of the fact that the on-line complexity of the path P6 is at least 7/4. We
are using the technique discussed in Section 5. Let us denote the vertices of P6 in this order by a,
b, x, a′, b′, and y, and let the subgraph H be induced by the edges ab and a′b′. The automorphism
group of H has order 8. Following Theorem 5.2(ii), let f be a H-symmetric function for P6. We
need to show that f takes a ≥ 7/4 value on some singleton.

Our starting point is the inequality

f(aa′b′)− f(a) ≥ 3.

This is well-known generalization of the inequality from [4], and follows from the fact that a is not
connected to any vertex of the spanned path xa′b′y.

Strict submodularity and strict monotonicity yields

f(bx) + f(xa′) ≥ f(ba′x) + f(x) + 1
f(ba′x) ≥ f(ba′) + 1.

Using these together with f(b) + f(x) ≥ f(bx), f(x) + f(a′) ≥ f(xa′) we get

f(b) + f(a′) + f(x) ≥ f(ba′) + 2. (2)

As f is H-symmetric, f(aa′) = f(ab′) = f(ba′), and f(a) = f(b) = f(a′) = f(b′), furthermore, by
submodularity,

f(aa′) + f(ab′) ≥ f(a) + f(aa′b) ≥ f(a) + (f(a) + 3).

Plugging this into (2), we get

f(b) + f(a′) + f(x) ≥ 2 +
2f(a) + 3)

2
,

from where f(a) + f(x) ≥ 7/2. Therefore either f(a) or f(x) is at least 7/4, as was required.
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