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Definition: a Perfect Secret Sharing on the
graph G is a joint distribution

§v1>§v2‘ar~-,€v@, ¢&s , Where:
vertices secret

e £, IS the share of v € V,

e each edge can recover (=determine) the
secret s,

e ACV isindependent = {& :v € A} and &
are independent as random variables.

Definition: R(G), the worst case informa-
tion rate of G is

H(A) = entropy of {& :v € A}

H(&v)
H(&s)

— how many bits should v remember.

def . H(&w)
R(G) = scrpelgwe rfpea‘}( H(&s)




Claim: R(G) > 1 if G is not empty. n

Claim (Shamir): R(Kp) =1. n

Theorem (Stinson): G, C S, S; is on G;; S;
assigns S;(v) bits to v € V. Each edge is

covered > k times. Then there is a scheme
which assigns

1
EZSi(’U) bits to v. n

Claim: If G' is a spanned subgraph of G,
then R(G") < R(G). n

Generally not true for arbitrary subgraphs.

Definition: rate for infinite graphs:

R(G) det sup { R(G") : G’ is a finite, spanned
subgraph of G}.



Claim: R(K) =1, R(star) = 1.

Proof. secret s € {0,1},
random r € {0, 1}

Claim: If degree < d then R(G) < (d+1)/2.

Proof. Cover GG with starts from each vertex.
Edges covered twice; each vertex gets < d+41
bits.

Corollary: R(honeycomb) < 2.

Claim: R(lattice) < 2.
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Claim: R(triangle) < 3.

Proof:
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Claim: R(path) < 1.5.

Proof: Each edge is covered twice, each ver-

tex gets 3 bits:
i
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Claim: R(3-dim lattice) < 3.

Claim:

Proof:

Claim;

Proof:
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Faces of these cubes:
each edge is covered
twice; each vertex
gets 6 bits. n

R(d-dim lattice) < d.

Consider 2-faces. n

R(rake) < 2.
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Lower Bounds
Reminder: H(A) = entropy of {&, : v € A}
Use known linear inequalities (LP problem)

Example: For G =2 b ¢ d e have
H(b) + H(c) > H(bc) > 3 as:

H(abcd)
H(ad) + H(ac)
H(acd) + H(abc)

H(ad) + 1
H(abcd) + H(a)
H(abed) + H(ac) + 1

=~ VIV IV

etc.

Claim: R(path) =1.5

Proof: Contains e—e—e—e as spanned sub-
graph. n

Definition: Rakeg: I I I L U
2 k—1 k
Rakes:




Theorem: R(Rake,) =2 — 1/k.

Proof.: < by example. Summing up all k
sharings below, 1 bit is missing at every bot-
tom node:
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k
> H(A;) > H(A1A7...Ap) + k-2
1=1

H(AlAl...Ak) > k41 N

Theorem: R(honeycomb) = 2.

Proof: Contains the infinite rake as a spanned

subraph: )W\



Theorem: R(lattice) = 2.

Proof: The rake can be embedded, too:

Theorem: R(d-dim lattice) = d.

Proof (idea): Vertices of the cube are split
as L{ U RY; both are independent.

() X H@) > ff, RD+(d- 5) k1-o(1))

veECcube

f(,) is a smart expression which allows to
prove (x) by induction on k£ and d. Finally

1
FLE, RY) > Ekd. "



Problems
2 < R(triangle lattice) < 3. Exact value?
Investigate other nice infinite graphs.

For the rake R is not local, i.e. the sup
iIs not taken. The 2-dimensional lattice iIs

local, as R( ) = 2. What happens

in higher dimenions? Is the honeycomb
local?

Limits of the entropy method: for this

graph the best lower bound is 7/4. Is it
the truth?
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