László Csirmaz

CEU & Rényi Institute

Secret Sharing on infinite graphs

2006, NyírCrypt

Definition: a Perfect Secret Sharing on the graph G is a joint distribution

$$\underbrace{\xi_{v_1}, \xi_{v_2}, \dots, \xi_{v_n}}_{\text{vertices}}, \underbrace{\xi_s}_{\text{secret}}$$
, where:

- ξ_v is the *share* of $v \in V$,
- each edge can recover (=determine) the secret s,
- $A \subseteq V$ is independent $\Rightarrow \{\xi_v : v \in A\}$ and ξ_s are independent as random variables.

Definition: R(G), the worst case information rate of G is

$$\mathsf{H}(A) = \mathsf{entropy} \ \mathsf{of} \ \{\xi_v : v \in A\}$$

 $\frac{\mathsf{H}(\xi_v)}{\mathsf{H}(\xi_s)} = \text{how many bits should } v \text{ remember.}$

$$R(G) \stackrel{\text{def}}{=} \min_{\text{scheme } v \in V} \frac{H(\xi_v)}{H(\xi_s)}$$

Claim: $R(G) \ge 1$ if G is not empty.

Claim (Shamir): $R(K_n) = 1$.

Theorem (Stinson): $G_i \subseteq S$, S_i is on G_i ; S_i assigns $S_i(v)$ bits to $v \in V$. Each edge is covered $\geq k$ times. Then there is a scheme which assigns

$$\frac{1}{k}\sum \mathcal{S}_i(v)$$
 bits to $v.$

Claim: If G' is a spanned subgraph of G, then $R(G') \leq R(G)$.

Generally not true for arbitrary subgraphs.

Definition: rate for infinite graphs:

 $R(G) \stackrel{\text{def}}{=} \sup \{ R(G') : G' \text{ is a finite, spanned subgraph of } G \}.$

Claim: $R(K_{\infty}) = 1$, R(star) = 1.

Proof: secret $s \in \{0, 1\}$,

random $r \in \{0, 1\}$

Claim: If degree $\leq d$ then $R(G) \leq (d+1)/2$.

Proof: Cover G with starts from each vertex. Edges covered twice; each vertex gets $\leq d+1$ bits.

Corollary: $R(honeycomb) \leq 2$.

Claim: $R(lattice) \leq 2$.

$$s \in \{0, 1\}, r \in \{0, 1\}$$

Claim: $R(triangle) \leq 3$.

Proof:

Claim: $R(path) \leq 1.5$.

Proof: Each edge is covered twice, each vertex gets 3 bits:

Claim: $R(3-dim lattice) \leq 3$.

Proof:

Faces of these cubes: each edge is covered twice; each vertex gets 6 bits. ■

Claim: $R(d\text{-dim lattice}) \leq d$.

Proof: Consider 2-faces. ■

Claim: $R(rake) \le 2$.

Proof:

Lower Bounds

Reminder: $H(A) = \text{entropy of } \{\xi_v : v \in A\}$

Use known linear inequalities (LP problem)

Example: For $G = \overset{a}{\bullet} \overset{b}{\bullet} \overset{c}{\bullet} \overset{d}{\bullet}$ we have $H(b) + H(c) \ge H(bc) \ge 3$ as:

$$\begin{array}{ccc} \mathsf{H}(abcd) & \geq & \mathsf{H}(ad) + 1 \\ \mathsf{H}(ad) + \mathsf{H}(ac) & \geq & \mathsf{H}(abcd) + \mathsf{H}(a) \\ \mathsf{H}(acd) + \mathsf{H}(abc) & \geq & \mathsf{H}(abcd) + \mathsf{H}(ac) + 1 \\ & \vdots & & \\ & \mathsf{etc.} \end{array}$$

Claim: R(path) = 1.5

Proof: Contains • • • • as spanned subgraph. ■

Rake₂:

Theorem: $R(Rake_k) = 2 - 1/k$.

Proof: \leq by example. Summing up all k sharings below, 1 bit is missing at every bottom node:

Theorem: R(honeycomb) = 2.

Proof: Contains the infinite rake as a spanned subraph:

Theorem: R(lattice) = 2.

Proof: The rake can be embedded, too:

Theorem: R(d-dim lattice) = d.

Proof (idea): Vertices of the cube are split as $L_k^d \cup R_k^d$; both are independent.

$$(*) \sum_{v \in \mathsf{cube}} \mathsf{H}(v) \geq f(L_k^d, R_k^d) + \left(d - \frac{1}{2}\right) k^d (1 - o(1))$$

f(,) is a smart expression which allows to prove (*) by induction on k and d. Finally

$$f(L_k^d, R_k^d) \ge \frac{1}{2}k^d. \quad \blacksquare$$

Problems

- 2 ≤ R(triangle lattice) ≤ 3. Exact value?
- Investigate other nice infinite graphs.
- For the rake R is **not local**, i.e. the sup is not taken. The 2-dimensional lattice **is** local, as R(_____) = 2. What happens in higher dimenions? Is the honeycomb local?
- Limits of the entropy method: for this graph the best lower bound is 7/4. Is it the truth?