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Polymatroids

The ground set N is any finite set, N = {1, 2, . . . ,N}.
The rank function f assigns non-negative values to the
subsets I ⊆ N, that is, f : 2N → R≥0.

〈f ,N〉 is a polymatroid if it satisfies the Shannon inequalities:

f (∅) = 0,

f (A) ≥ f (B) if A ⊇ B,

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

〈f ,N〉 is a matroid if f (A) is integer, and f (A) ≤ |A|.
〈f ,N〉 is entropic if f (A) = H(ξA), where (ξi : i ∈ N) are
discrete random variables with some joint distribution.

Pointwise limit of entropic polymatroids are almost entropic.
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Regions

The rank function f is a vector indexed by non-empty subsets of N.

HN ⊆ R2N−1 is the region of polymatroids.
– a full-dimensional closed convex pointed cone.

Hent
N ⊆HN is the entropy region.

cl(Hent
N ) is the pointwise closure of Hent

N .

Theorem (Zhang–Yeung 1998, Matúš 2007)

cl(Hent
N ) is a convex full-dimensional cone in R2N−1.

The interior of cl(Hent
N ) is entropic.

Hent
2 = cl(Hent

2 ) = H2.

Hent
3 6= cl(Hent

3 ) = H3.

Hent
N 6= cl(Hent

N ) 6= HN for N ≥ 4.

cl(Hent
N ) is not polyhedral for N ≥ 4.
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The boundary of the entropy region

Definition

Hk
N ⊆Hent

N is the subregion where the distribution (ξi : i ∈ N) has
alphabet size k .

Facts

Hk
N is closed; Hk

N ⊆H
k+1
N ; and Hent

N =
⋃

k H
k
N .

Research Problems

1 For fixed N, is the convergence Hk
N →Hent

N uniform?

2 Give an estimate for the thickness of Hent
N −Hk

N (in different
metrics) as a function of k.

3 Give a description of cl(Hent
N )−Hent

N in the case N = 3.
Where is it fractal-like?
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Searching for new entropy inequalities

Known methods to get new entropy inequalities are:

1 Zhang–Yeung method (1998)

2 Makarychev et al. technique (2002)

3 Matúš’ polymatroid convolution (2007)

4 Maximum entropy extension (2014)

Equivalence of #1 and #2 for balanced inequalities was shown by
Tarik Kaced (2013).

Research problem

Show that methods #3 and #4 are actually stronger than the
other two.

We focus on method #1, others raise similar issues.
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3 Matúš’ polymatroid convolution (2007)

4 Maximum entropy extension (2014)

Equivalence of #1 and #2 for balanced inequalities was shown by
Tarik Kaced (2013).

Research problem

Show that methods #3 and #4 are actually stronger than the
other two.

We focus on method #1, others raise similar issues.



L. Csirmaz: Multiobjective optimization and the entropy region 8 / 29

Zhang–Yeung method

In nutshell

1 Start with a pool of some (at least four) random variables;

2 split the random variables into two sets: ~x1 and ~y ,

3 make an independent copy ~x2 of ~x1 over ~y to get the new
pool of random variables 〈~x1,~x2, ~y〉;

4 iterate steps 2 and 3 several times;

5 collect the constraints:
– Shannon inequalities for the final variable set;
– equalities among entropy values expressing:

all conditional independence; identical distribution of
(~x1, ~y) and (~x2, ~y); symmetry of ~x1 and ~x2 over ~y ;

6 extract all consequences for the original variables.

Numerically intractable even for three full iterations.
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Zhang–Yeung method

Remedy (Dougherty et al)

discard some of the copied variables in ~x2; and/or

glue together some variables in ~x2.

Example copy string with three iterations, initial random variables
abcd and auxiliary variables rstuv:

rs=cd:ab; tu=cr:ab; v=(cr):abtu

The set of constraints is composed of

all Shannon inequalities,

all conditional independence, and

equality arising from identical distributions and symmetry,

written for entropies of the subsets of the initial and auxiliary
variables (abcd+rstuv).
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Zhang–Yeung method – geometrical view

Given a copy string for initial variables abcd, we use the notation

x ∈ Rp for the entropies of subsets of abcd (p = 15);

y ∈ Rm for the vector of all other entropies;

M(x, y) for the collection of constraints.

M(x, y) is linear and homogeneous, thus can be written as

Px + My ≥ 0

for some p × n and m × n matrices P and M determined by the
copy string.

P =
{

(x, y) ∈ Rp+m : x ≥ 0, y ≥ 0, Px + My ≥ 0
}

is the feasible region, a convex pointed polyhedral cone;

Q =
{
x ∈ Rp : for some y ∈ Rm, (x, y) ∈ P

}
is the projection of P, a convex, pointed polyhedral cone. ⇒
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Geometrical view

⇒ P =
{

(x, y) ∈ Rp+m : x ≥ 0, y ≥ 0, Px + My ≥ 0
}

,

Q =
{
x ∈ Rp : for some y ∈ Rm, (x, y) ∈ P

}
.

Linear consequences of Px + My ≥ 0 are the non-negative linear
combinations of the rows of (P,M). Such an inequality bounds Q
iff in it all y coordinates are zero. Thus the collection of linear
inequalities bounding Q – the dual cone of Q – is

Q◦ =
{

PTv ∈ Rp : v ∈ Rn, v ≥ 0, MTv = 0
}
.

Observations

a) If x ∈ Rp is entropic, then for some y ∈ Rm, (x, y) ∈ P.
Therefore the entropy region is contained in the projection Q.
b) The “strongest” entropy inequalities which can be extracted
from a copy string are the extremal rays of Q◦.
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Creating new information inequalities

In theory it is as easy as . . .

1 Choose your favorite copy string.

2 Generate the matrices (P,M) describing the linear homoge-
neous constraints arising from your copy string.

3 Compute the extremal rays of Q◦ using your favorite
computer algebra package.

In practice there are annoying nuisances . . .

1 When things get interesting, M becomes really large
(over 28000 Shannon inequalities just for 4+7 variables).

2 Even if the size is not a problem, M is highly degenerate
(hated by all packages).

3 The computational problem is numerically unstable
(and integer arithmetic takes ages).



L. Csirmaz: Multiobjective optimization and the entropy region 12 / 29

Creating new information inequalities

In theory it is as easy as . . .

1 Choose your favorite copy string.

2 Generate the matrices (P,M) describing the linear homoge-
neous constraints arising from your copy string.

3 Compute the extremal rays of Q◦ using your favorite
computer algebra package.

In practice there are annoying nuisances . . .

1 When things get interesting, M becomes really large
(over 28000 Shannon inequalities just for 4+7 variables).

2 Even if the size is not a problem, M is highly degenerate
(hated by all packages).

3 The computational problem is numerically unstable
(and integer arithmetic takes ages).



L. Csirmaz: Multiobjective optimization and the entropy region 13 / 29

Improving the performance

Use what is known about H4

Where to look:

[1] Frantisek Matúš and Milan Studený,
Conditional independencies among four
random variables I,
Combinatorics, Probability and
Computing, no 4, (1995) pp. 269-278.
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Entropy expressions

Fix four random variables as a, b, c , d .
For any subset J of abcd , J also denotes its entropy, H(J).

Definition

For any permutation of the variables a, b, c, d we define

(a, b)
def
= a + b − ab; ⇐ mutual info

(a, b | c)
def
= ac + bc − abc − c ; ⇐ cond. mutual info

(a, b | cd)
def
= acd + bcd − abcd − cd ;

(a | bcd)
def
= abcd − bcd ; ⇐ cond. entropy

[abcd ]
def
= −(a, b) + (a, b | c) + (a, b | d) + (c , d). ⇐ Ingleton

The Ingleton expression is symmetric in ab and cd :

[abcd ] = [
y
bacd ] = [ab

y
dc ] = [

y
ba

y
dc ].
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Why Ingleton is so important

Definition

⊂ cl(Hent
4 ) where all six Ingleton expressions are ≥ 0;

ab ⊂ cl(Hent
4 ) where [abcd ] ≤ 0, i.e., this Ingleton is violated;

ac ⊂ cl(Hent
4 ) where [acbd ] ≤ 0; etc.

Theorem (Matus – Studeny, 1995)

cl(Hent
4 ) = ∪ ab ∪ · · · ∪ cd .

Any two of , ab, . . . , cd have disjoint interior; common
points are on the boundary of .

is a full dimensional closed polyhedral cone, bounded by the
six Ingleton, and certain other Shannon facets.

Internal points and vertices of are linearly representable.

ab, . . . , cd are isomorphic; isomorphisms are provided by
permutations of abcd.
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If . . .

If we know ab, then

we know everything.∗

∗at least about cl(Hent
4 ).
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The case of five variables

Research problem

Give a similar decomposition of the 31-dimensional cone H5.

H5 has a 120-fold symmetry;

it has 117978 vertices [2];

the vertices fall into 1319 equivalence classes[2] (into 15
equivalence classes in case of four variables);

the linearly representable core of H5 is known precisely[3].

[2] M. Studený, R. R. Bouckaert, T. Kočka:
Extreme supermodular set functions over five variables

[3] R. Dougherty, C. Freiling, K. Zeger:
Linear rank inequalities on five or more variables
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Natural coordinates

ab ⊂H4 is contained in the simplicial cone determined by these
facets (proved in [1]):

1. [abcd ],

2., 3. (a, b | c), (a, b | d),

4–7. (a, c | b), (b, c | a), (a, d | b), (b, d | a),

8., 9. (c , d | a), (c , d | b),

10. (c , d),

11. (a, b | cd),

12–15. (a | bcd), (b | acd), (c | adb), (d | abc),

Natural coordinates

Use the facet equations as the coordinates for the entropies.
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Entropy inequalities in natural coordinates

There are six natural coordinate systems corresponding to the six
non-equivalent Ingleton expressions. Each entropy inequality can
be written using any of the natural coordinates.

General form of a linear inequality

λ1[abcd ] + λ2(a, b|c) + λ3(a, b|d) + · · ·+ λ15(d |abc) ≥ 0. (1)

Claim

1 λ2 ≥ 0, λ3 ≥ 0, . . . , λ15 ≥ 0.

2 The Ingleton coeff is > 0 in some natural coordinate system.

3 Can be strenghtened by setting λ12, λ13, λ14, λ15 to zero.

Proof.

1 (1) must hold for the entropic vector (0, . . . , 0, 1, 0, . . . ).

2 If not, then all points satisfying (1) are in .

3 Equivalent to balancing (1).
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What we’ve had

, and what we’ve got

⇒ x ∈ Rp are the entropies of abcd ,

y ∈ Rm are all other entropies,

the constraints are given by the matrices (P,M),

P =
{

(x, y) ∈ Rp+m : x ≥ 0, y ≥ 0, Px + My ≥ 0
}

,

Q =
{
x ∈ Rp : for some y ∈ Rm, (x, y) ∈ P

}
.

Q◦ =
{

PTv ∈ Rp : v ∈ Rn, v ≥ 0, MTv = 0
}

,

The gains are

1 the first (Ingleton) coordinate in Q◦ can be fixed to be 1;

2 the last four coordinates in Q◦ can be requested to be zero.

These conditions can be moved from P to M to get (P∗,M∗).
The relevant part of Q◦ with coordinates λ2, . . . , λ11 is

Q∗ =
{

PT
∗ v ∈ R10 : v ∈ Rn, v ≥ 0, MT

∗ v = eIng
}

. ⇒
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The optimization problem

⇒ Q∗ =
{

PT
∗ v ∈ R10 : v ∈ Rn, v ≥ 0, MT

∗ v = eIng
}

,
where eIng is the Ingleton unit vector.

Observations

a) If λ ∈ Q∗, then λ ≥ 0.
b) Q∗ is upward closed: if λ ∈ Q∗, and λ ≤ λ′, then λ′ ∈ Q∗.

The vertices of Q∗ are the coefficients of the “strongest” entropy
inequalities which can be extracted from the copy string,

and the vertices of Q∗ are the solutions of

Multiobjective optimization problem

Find the minimum of: PT
∗ v ∈ R10 ⇐ 10 objectives

subject to: v ≥ 0, and MT
∗ v = eIng ⇐ constraints
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Benson’s outer approximation algorithm

The problem is to find the vertices of the polytope

Q∗ =
{

PT
∗ v : v ≥ 0, MT

∗ v = e
}
.

Benson’s idea: Given the internal point xi ∈ Q∗, and the external
point xo /∈ Q∗, find

maxµ

{
0 ≤ µ ≤ 1 : µxo + (1− µ)xi ∈ Q∗

}
.

a) This is an n + 11-dimensional LP problem.
b) The (dual of the) solution gives a proof for maximality, which is

a facet of Q∗ separating xi and xo .

The algorithm

Use this idea to get all facets of Q∗, maintaining the vertices of
the approximating polytope bounded by the facets obtained so far.
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Some results for Dougherty et al out of 133

Copy string Size of M∗ Vertices Facets Time

r=c:ab;s=r:ac;t=r:ad 561×80 5 20 0:01
rs=cd:ab;t=r:ad;u=s:adt 1509×172 40 132 6:19
rs=cd:ab;t=a:bcs;u=(cs):abrt 1569×178 47 76 6:51
rs=cd:ab;t=a:bcs;u=b:adst 1512×178 177 261 17:40
rs=cd:ab;t=a:bcs;u=t:acr 1532×178 85 134 18:27
rs=cd:ab;t=(cr):ab;u=t:acs 1522×172 181 245 22:58
r=c:ab;st=cd:abr;u=a:bcrt 1346×161 209 436 29:18
rs=cd:ab;t=a:bcs;u=c:abrst 1369×166 355 591 38:59
rs=cd:ab;t=a:bcs;u=c:abrt 1511×178 363 599 1:04:32
rs=cd:ab;t=a:bcs;u=s:abcdt 1369×166 355 591 1:07:01
rs=cd:ab;t=a:bcs;u=(at):bcs 1555×177 484 676 1:39:30
rs=cd:ab;t=a:bcs;u=a:bcst 1509×177 880 1238 4:30:26
rs=cd:ab;t=a:bcs;u=a:bdrt 1513×177 2506 2708 5:11:25
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Running time vs. vertices + facets
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Some results with five auxiliary variables

Copy string Size of M∗ Vertices Facets Time

rs=cd:ab;tu=cr:ab;v=(cs):abtu 4055×370 19 58 1:10:10
rs=ad:bc;tu=ar:bc;v=r:abst 4009×370 40 103 3:24:37
rs=cd:ab;t=(cr):ab;uv=cs:abt 3891×358 30 102 3:34:31
rs=cd:ab;tu=cr:ab;v=t:adr 3963×362 167 235 9:20:19
rs=cd:ab;tu=dr:ab;v=b:adsu 4007×370 318 356 13:20:08
rs=cd:ab;tv=dr:ab;u=a:bcrt 4007×370 318 356 14:34:42
rs=cd:ab;tu=cs:ab;v=a:bcrt 4007×370 297 648 22:02:39
rs=cd:ab;t=a:bcs;uv=bt:acr 3913×362 779 1269 37:15:33
rs=cd:ab;tu=cr:ab;v=a:bcstu 3987×362 4510 7966 427:43:30
rs=cd:ab;tu=cs:ab;v=a:bcrtu 3893×362 10387 13397 716:36:32

Using five auxiliary variables, more than 260 new entropy inequal-
ities were generated. One of them is

2[abcd ] + (a, b | c) + 3(a, c | b) + (b, c | a) + 3(c , d | a) ≥ 0.
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Thank you for your attention
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