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Abstract:  In our  age  information  is  an  important  asset.  We 
need  systems  in  which  costumers  can  securely  store  
information, ensi\uring that is persists, contunuously available,  
and is kept confidental. We discuss how such a systems might  
work,  what  are  the  ingredients,  and  enlist  some  interesting  
unsolved problems.
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1. INTRODUCTION

Information is an important asset.  Companies, individuals 
might  have  tremendous  problem  when  losing  valuable  data. 
Data recovery could cost a whole fortune. Thus storing copies 
of the most valuable data chunk in several remote places is an 
everyday solution. Commercial IT companies offer data storage 
services with high level guarantees. Using such services seems 
to  be  a  good  solution.  Nevertheless,  there  are  some  basic 
requirements such and arrangements must meet:

1) Diversity: never rely on a single service. If  you use a 
single storage server, you lose your data if that server crashes of 
becomes  unavailable.  Rather  you  should  use  a  multitude  of 
servers.

2)  Security: never trust any third party. Never store your 
valuable data without encryption, and especially don't let any 
third party store it where you have no control over who sees the 
data.

3)  Cost-effectiveness: minimize your cost by minimizing 
the amount of  data  you store.  Arrange the data so that each 
external server stores the minimal possible amount of data.

We  discuss  how such  a  service  can  work,  what  are  the 
ingredients,  and  how  to  combine  them.  We  enlist  some 
interesting problems as well. For an introduction for an existing 
system, see Wylie et al (2000).

2. BASIC INGREDIENTS

Distributing information and later recovering it from some 
of  the  share  is  the  topic  of  secret  sharing.  It  has  a  huge 
literature, see, e.g., Blakley (1979) .Shamir (1979), Krawczyk 
(1993). In the simplest case, discovered by Shamir (1979), the 
secret is split into  n pieces so that the secret can be recovered 
form any  k of them. In this case the secret is an element of a 
finite field, and the  shares are the computed as the value of a 
secret random polynomial at certain public values. During the 
reconstruction phase  the  polynomial  is  recovered  via 
interpolation  from  the  available  shares,  and  the  secret  is 
computed as the value of the polynomial at zero.

Such  threshold  schemes  come  very  handy  when  using 
information storage. We split the information into n parts to be 
stored at n different companies. The data can be recovered from 
any  k  of  the  shares,  thus  even  only  k  of  the  servers  are 
available, the data still can be recovered.

Furthermore,  the  above  threshold  secret  scheme  has  the 
following security advantage: even if k-1 of the servers collude 
and put together their shares, they have no information on the  
secret. This strong guarantee comes at a certain cost, namely all 

shares  must  be  at  least  as  long  as  the  secret  itself.  In  the 
threshold  case,  fortunately,  this  length  is  the  minimal 
theoretically possible.

Using  Shamir's  threshold  secret  sharing  scheme our  first 
and second goal is achieved, but the third is not. If we want to 
recover the data from k shares, then theoretically the share can 
be as short as 1/k of the length of the data. For example, simply 
split  the  data  into  k pieces  bitwise,  namely  the  first  chunk 
contains the first,  k+1, 2k+2, etc bits, the second chunk the 2, 
k+2, 2k+2, etc, and the k-th chunk contains the k-th, 2k, 3k, etc 
bits. It is clear that each chunk contains 1/k of the original one, 
and the original data can be recovered from them.

In this way we have cost-effectiveness,  but we have lost 
both diversity  and security.  It  is  even not clear  how can we 
reach diversity: we want to recover the data from any k shares, 
not only from a particular k shares.

Fortunately  Shamir's  original  idea  works  here  as  well. 
Suppose the data is not the value of the polynomial at  zero, 
rather  the  polynomial  itself.  If  the  secret  data  is  the  k 
coefficients  of   a  degree  k-1  polynomial,  then  it  can  be 
recovered from arbitrary  k values it takes by using Lagrange 
interpolation. 

Thus we have both diversity and efficiency.  What is still 
missing  is  security.  Using the above  method,  each share,  or 
even a combination of several shares reveal a lot of information 
about the secret. Is there anything we can do?

Using the ideas from Krawczyk (1993)  before distributing 
the data we use a strong encryption and the encrypted data is 
distributed among the data storage servers. Even if all of them 
collude, they can recover the encrypted data only, which has no 
use without knowing the encryption key.

To  recover  our  data  we  do  need  the  secret  key,  thus  it 
becomes a very valuable and important data, thus it should be 
stored securely at several places. However, as the key is at most 
several thousand bits long, opposed to the data, which could be 
several tera or petabytes, effectiveness is much less an issue for 
the key.

Summing  up:  the  proposed  secure  information  storage 
consists of the following parts:

1. a secure encryption system which using a secret key  K 
can safely encrypt the whole data.

2.  a  perfect  secret  sharing  scheme  which  distributes  the 
secret key and leaks no information 

3. a ramp secret sharing scheme which distributes the data, 
this  scheme  might  leak  out  data  as  long  as  the  encryption 
scheme is safe.

In the next section we look in more detail these ingredients 
and their interplay.

3. ENCRYPTION SYSTEM

To ensure maximal security, an encryption scheme should 
be  used  which   allows  random  access to  the  data.  Very 
probably not all data will be required at once, and modifying 
data  at  particular  location  will  be  necessary.  Such  a  system 
could be, e.g., AES with a key which is derived from the master 
key  K and  the  actual  location  of  the  block  to  be 



encrypted/decrypted inside the whole data. Such method is used 
when  encrypting  the  content  of  a  hard  drive.  A  particularly 
useful method to “tweak” a block cipher for this purpose was 
designed by Phillip  Rogaway in  2003,  see  Rogaway (2004), 
and is called XEX mode. A variation, which uses two different 
keys  rather  than  a  single  one  was  named  XTS  and  was 
approved  as  the  IEEE  1619  standard  for  cryptographic 
protection  of  data  on  block-oriented  storage  devices  in 
December 2007.

The  encryption  works as follows. The  E
K

(m) is a secure 

block cipher using secret key  K. The data is split into chunks 
and each chunk will be accessed incrementally. In practice, the 
chunk size can vary from 16k to a few megabytes. Let N denote 
some physical  address  identifying  a  chunk,  and  let  i be  the 
sequence number of the next block (thus i=0 for the first block, 
i=2  for  the  next,  etc.).  Then  first  create  a  chunk  key  L as 
follows: 

L = E
K2

(N)

where  K2 is the so-called secondary key. This  L has the same 
length as the block size of the block cipher. Using L new keys 
are generated for each block. For the first block this is the same 
as  L, for each subsequent block the previous key is multiplied 
by  a  primitive  element  of  the  finite  field  of  which  L is  a 
member. Denoting this primitive element by  a, the  block  key 
of the i-th block is

Δ = a
i
 L

Encrypting the content M of the i-th block is done as
C = E

K1
(M+Δ)+Δ 

where the addition is bitwise modulo 2, and K1 is the primary 
encryption  key.  Generating  the  next  block  key  from  the 
previous one is a fast and efficient, and is negligible compared 
to the execution of the encription itself.  In fact,  it  is  a mere 
multiplication by a constant (predetermined) value over a finite 
field. This multiplication can even be speed up by choosing an 
appropriate base. In Rogaway (2004) paper it is shown that if E 
is resistent to chosen ciphertect attack (CCA-secure), then so is 
this  scheme.  Thus  if  we  have  confidence  in  the  underlying 
block cipher, then this encryption scheme which makes random 
access possible within the stored data is secure as well.

4. SECRET SHARING SCHEMES

As discussed above, secret sharing scheme is used both for 
storing the master  key and the data  itself.  In  both cases  the 
simplest,  and  the  most  popular  arrangement  is  Shamir's 
threshold scheme: any k shares out of n determine the secret.

The security of the two schemes should be different. While 
the data ‒ being encrypted ‒ is not sensitive, the key is sensitive. 
Thus, we should use the strongest possibility, namely any k-1 of 
the shares should give no information on the secret value at all.

As indicated in the introduction, Shamir's secret sharing is 
based on polynomial interpolation. In the stronger case suppose 
that the secret to be distributed is an element of the finite field 
F.  Label  all  units  who will  receive  some share  by  different 
elements of the field, for simplicity we indicate these elements 
as  small  integers.  To  distribute  the  secret  sϵ  F,  choose  a 
random polynomial of degree k-1:

p(x)= a
k -1

x
k -1

 + a
k – 2

x
k - 2

 + . . . + a
1
x + a

0

in a way that the value of the polynomial at 0 is the secret itself. 
Unit i will receive the share p(i).

As any degree  k-1 polynomial is determined uniquely by 
the  k values  it  takes  at  k different  places,  thus  p(x)  can  be 
determined uniquely  by the shares of  k units.  But can it  be 
done efficiently?

The  key  observation  is  the  so-called  Lagrange 
interpolation  theorem. Suppose  the  polynomial  is  given  at 

places  b
1
,  b

2
,  .  .  .,  b

k
.  Then  it  is  easy  to  come  up  with  a 

polynomial of degree k – 1  which takes 1 at, say, b
1
, and zero 

at all other places. As it is zero at k – 1  places and it has degree 
k – 1, it should be of the form

p
1
(x) = c (x – b

2
)  (x – b

3
) ... (x – b

k
)

The constant c should be chosen so that p
1
(x) have value 1 at b

1 

i.e. c is just the reciprocal value of
(b

1 
– b

2
)  ( b

1
 – b

3
) ... ( b

1
 – b

k
).

We can define the polynomials p
2
(x), . . . p

k
(x) similarly. Now 

the polynomial
p(x) = v

1
 p

1
(x) + v

2 
p

2
(x) + . . . + v

k 
p

k
(x) 

takes the value v
1
 at  b

1
, v

2
 at  b

2
,,  etc, and v

k
 at  b

k
.,  thus we 

have recovered the randomly selected polynomial. To get the 
secret, one has to replace 0 here to get

secret = v
1
 p

1
(0) + v

2 
p

2
(0) + . . . + v

k 
p

k
(0).

As can be seen,  there is no need t  compute the polynomials 
p

i
(x) only the value they take at zero. Knowing all the b

i 
 values 

beforehand, these values can be precomputed. Recovering the 
secret is thus a simple linear combination of values in the field 
F.

Recovering the secret will be done (hopefully) rarely, and it 
is only as a safety device. Don't forget: your data is worth a 
single penny only if  you know the secret  key to recover the 
data. Storing the master key (or keys) by secret sharing makes 
key loss a negligible possibility. Secret sharing also ensures that 
to recover the key at least k shares are necessary, thus if at most 
k  –  1  of  the  external  companies  collude,  they  can  get  no 
information on the key. Choosing the value of k appropriately is 
a  matter  of  trust  which  should  be  balanced  between  the 
possibility of data theft and data loss.

Once master key is available, we can start recovering our 
data. In this case – being the data encrypted – there is no need 
for high secrecy. In this case we can focus on efficiency. 

Once  again,  we  consider  the  scenario  when  we  want  to 
recover our data from any k of the external units. It is clear (but 
a strict proof can be quite involved) that we cannot do better 
than to store at least 1/k of the data at each unit. The question 
is: can we do it in a way so that we can recover the whole data 
from any k of them? The answer is yes, and the method used is 
the ramp secret sharing indicated in the title of this paper.

In a  ramp  sharing we do not require that unqualified sets 
should have no information on the secret value (which is a very 
important  property  when  the  encryption  key  is  distributed), 
rather we focus on efficiency, i.e.,  store the smallest possible 
amount of material.

We  shall  use  Shamir's  original  idea  with  a  little  twist. 
Namely,  in this case  the  distributed value will  be the  whole 
polynomial,  and not its  value at  a certain point.  As we have 
seen above, the polynomial can be recovered from any k values 
it takes somewhere. The method is as follows.

Choose the finite field F to have size, say 2
128

 which means 
that each element of  F  is a 128-bit binary number. Take the 
next  k elements of the data stream, and consider them as the 
coefficients of the polynomial

p(x)= a
k -1

x
k -1

 + a
k – 2

x
k - 2

 + . . . + a
1
x + a

0

Compute the value of this polynomial at 1, 2, ..., N – 1, and N, 
where N  is the number of units we want to distribute the data 
among.  Then  send  these  values  to  the  corresponding  units. 
Observe, that for each block of k 128-bit number, we send one 
128-bit number to each unit, thus each of them will receive only 
1/k part of our data. 



To recover the  data we connect to  k units with labels say 
b

1
,  b

2
,  .  .  .,  b

k
.  We can recover  any block of  length  k.  We 

request the data from which was generated from this particular 
block.  Say,  we receive the 128-bit  numbers  v

1
,  v

2
,  .  .  .  ,  v

k
. 

Using these values we can recover the polynomial p(x) as
p(x) = v

1
 p

1
(x) + v

2 
p

2
(x) + . . . + v

k 
p

k
(x) 

and the coefficients of  p(x) give us the numbers in the requsted 
block.

Observe,  again,  that  similarly  the  case  above,  we  can 
precompute  the  polynomials  p

i
(x)  thus  recovering  the 

coefficients of p(x) requires computing k linear combinations of 
the returned values.

5. IMPROVEMENTS

The method outlined in the above uses the specially tailored 
Shamir's secret sharing. There are other efficient secret sharing 
schemes which can be fit to a more refined requirement. This 
happens,  e.g.,  when we have more storage servers  available, 
and might weight them. Very probably they do not offer the 
same  level  of  services,  they  have  different  prices,  and  have 
different reliability. Or simply we trust one service better than 
others. Thus we might need to store more data on one server 
than the other. How can we balance the distribution? 

There is an extensive literature to that type of questions in 
case of  perfect secret sharing, see, e.g., Csirmaz (2008) for a 
comprehensive overview of the topic.  For  ramp schemes we 
know very little. The main unsolved question can be formulated 
as  follows:

Given  n servers and we enlist those subsets which should 
recover the secret data. Also, each server has a price tag which 
tells  the  storage  cost  per  unit  data  on  that  server.  Find  an 
algorithm which  minimizes  the  total  cost  of  distributed  data 
storage.

As  additional  requirements,  we  can  prescribe  certain 
untrusted coalitions, i.e. coalitions of servers which should not 
be able to recover the secret.

It is clear, that if  k servers should recover the secret, then 
one  of  them should  store  at  least  1/k part  of  the  secret.  In 
Shamir's  scheme  this  lower  bound  is  attained,  in  fact  every 
server stores just as much as 1/k part of the total data. If one 
server offers half price on storage, is there any way we could 
put more load on that particular server without giving it extra 
power as well?

5. CONCLUSION

We  have  outlined  how  secure  distributed  data  storage 
should work.  It  uses data encryption and secret  sharing.  The 
latter one is used for two purposes: first to distribute the secret 
key used during encryption and decryption, second to distribute 
the encrypted data. While we have a good understanding how 
secret  sharing  works when  the secret  key  is  distributed,  and 
unqualified coalitions should not gain information on the data, 
our knowledge is less vague for the other case. The simplest 
secret sharing, namely Shamir's threshold  scheme works well 
and is theoretically the best possible, but it is not scalable, and 
cannot handle different prizing models. 
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