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ON A GENERALJIZATION OF THE GAME GO-MOKU, I1

by
L. CSIRMAZ and ZS. NAGY

Abstract

Two players, I and II play the following game. They pick alternately the points of a set A
until either all elements of A have been chosen or ¢ moves have been made. The first and every
limit move (if any) is I's turn. T wins if he picks all elements of some set of the winning family
F < P(A), otherwise the winner is II. If the elements of % are finite and I has a winning strategy,
then I has a winning strategy in finitely many moves. The cases when the elements % are count-
able are discussed in details. Various consistency results are given for undetermined and deter-
mined games. Several interesting problems are stated.

We study here another possible generalization of this well-known Oriental game,
This part of our paper can be read independently from the previous one [1], but we
do not repeat here the motivation behind our concepts.

1. Definitions

Our set theoretical notation will be standard. Ordinal numbers are denoted by
a, B, etc. cardinal numbers by x, A. If 4 and B are sets, then 4B denotes the family
of functions from A to B, and, by definition;, [A*={Xc4: |X|=x}, [d]<*=
={Xc4: |X|<=x}. In this paper the inclusion 4B allows the sets 4 and B to be
equal.

The game we are going to deal with is denoted by (4, %)%, and consists of the
board A4, the family of winning sets % cP(A), and the ordinal «. The game is
played by the players I and II as follows. The players pick elements of A alternately,
every element can be picked at most once. I starts and every limit step (if any) is
I's turn. The game ends if either all elements of A4 have been chosen or if & moves
have been made.

The winner is I if he picked all elements of some X¢, otherwise the winner
' is 1L
The game (4, #) denotes the game (4, #)41". In this paper under the word
“game” we always mean game of this type.
The notion of strategy, that of a play according to a strategy can be found in

[6]. A game is undetermined if neither I nor II has a winning strategy, abbreviated
as WS.
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2. Basic results

We start with some trivial observations.

Prorosition 2.1. If I has a WS in (A, F) and A0 A, FDF, o= then
I has a W in (A;, ). Moreover, if Il has a WS in (A, 77)* then he has a WS in
4, F).

Now suppose that I has a WS in G=(4, #). Then there exists a least «€On
such that I still has a WS in (4, )% and a least cardinal s, such that I still has a WS
in (4, #') for some F’'c[F]*. Let us say that ¢=ord (G), and x=card (G).

ProrosITiON 2.2. For every ordinal o there is a game G, and for every cardinal
% there is a game G, such that ord (G,)=o and card (Gy)=x.

Proor. We construct a game (A4, #)* such that | |=|«|, I has a WS in it but II

has a WS in
N AFY if p<u;
() UA,F)Y f FcF, F £F.

Let A={P;, Qy: f<a} and let the elements of & be {P,:y=p}U{Q;} for
each f<o and the set {P,:y<a}. 1 can win only by picking the points P, in suc-
cession, so the game (A, %) has all the properties required.

ProrosiTion 2.3, card (G)*=ord (G).

ProoF. For every fi<ord (G) there is a play of length f which is not a win for I.
Obviously, we may assume that II kills at least one winning set by his every move,
i.e. card (G)=|f|. From this the proposition follows immediately.

REMARK. The proof shows that if ord (G) is not a cardinal number then
card (G)* =ord (G), and the game defined in the proof of 2.2 gives examples where
card (G)<ord (G).

PrOBLEM. Is card (G)*=ord (G) always true?
PROPOSITION 2.4, 2loM@®] =card (G).

ProOF. Let a=ord (G), and G*=(4, %)*. 1 hasa WS in G* so we may assume
Fc[A]="%]. This strategy is function F' from ®A=U{f4: f<a} to A, which gives
the response of I to the series of moves (b,: y<f) of II for every f<o. Now there
is a subset B A, |B|=2!*l which is closed under F, i.e. whenever b,eB for y<f,
then F((b,: y=<p))€B. This means that FIB is a I-WS in (B, # N\ P(B))*. There-
fore, by 2.1, I has a WS in (4, ZNP(B)), ie.

card (G) = |FNP(B)| = |“B] = 2%,
REMARK. Let A be the points of a normal binary tree of height «, % be the fam-
ily of the (maximal) branches. If G=(4, %) then ord (G)=«and card (G)=2%.
Therefore the inequality in 2.4 is sharp.
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3. Games with finite winning sets

In this section we discuss the games with finite winning sets.

THEOREM 3.1. Let FC[A]=? and suppose I has WS in G=(A, F)*. Then there
is an FCF, |Fy|<w and n€w such that I wins the game (A, )"

Proofr. Let § be a I-WS, and let ff<a be an ordinal. The sequence
s={(a,: y=p)e |

is a partial play according to S, if a,=S(sty) for every even ordinal y. We identify
S with the tree whose nodes are the partial plays (excluding the empty sequence),
and s<gr iff 5 is a proper initial segment of 1. We assume, that every branch in this
tree has a highest node in some even level, and climbing on a branch I covers some
clement of & only at the last node (i.e., if I wins, the strategy ends).

Now let s be a node of §, Sts is the subtree above (and including) s. If the level
of s is even then it induces a subgame Gts as follows. Let s=(a,:y<f), f even,

A :A—{ay: ?<JB}
F ={X—{o,: y<p}: Xe&F and XN{a,: y<p and y is odd} = 0}.

Then Grs=(A’, F')*~F. Obviously, Sts is a I-WS for Gts, and if we replace Sts
by any I-WS for Gts, the resulting tree is a I-WS for the game G.
We shall prove the existence of a I-WS in which all of I’s moves belong to the
same finite subset of the board. The existence of this strategy implies the statement.
The proof is by induction on the height of the tree .S which will be denoted by 5.

Case 1. h=0. The statement is true because I wins by his (unique) move.

Case 2. O<h<w. his even, so h=2. Let {s,} be the set of nodes at level 2.
Because height (Sts,)=h—2, we may apply the induction assertion for the game
Gits,. Changing the subtrees Sts, to these strategies, we get that in every Sts, only
finitely many points are engaged to I. In particular, let BC A4, |B|<w be the set of
I-engaged points in Stsp,. Now for every y, if s,(1)¢ B then replace Sts, by Sts,.
I'he resulting tree S* is good because B is finite and therefore only finitely many
S1s, remain unchanged. S* is not necessarily a I-WS because it may require I to
pick the same element twice, but it can be turned into a strategy easily (Fig. 1).

Case 3. h=w 1is a successor. Let f<h be the maximal limit ordinal below h
und let s€S be a node of height . By Case 2 we may assume that Sts is a good
strategy, i.e. there is a finite %,c % such that I covers one of them totally. U%,
{4 linite and there is a y<p such that the elements of this finite set picked by I
during the first § moves, were picked before the y-th move. Let sty=t, and then
we may replace St by Sts (Fig.2).

This transformation can be done for the remaining nodes of height f, and we
pet finally a tree $* of height =f which is a I-WS, and the induction assertion can be
npplied.

C'ase 4. h is a limit. Let the node s be a *-node if the height of the tree Sis is h.
I'or example the root of S is a *-node and the predecessors of a *-node are *-nodes,
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Fig. I Fig. 2

too. Suppose that in some branch of § the limit s of *-nodes is not a *-node. Then
height (Sts)<h, and by the induction assertion, S'ts can be supposed to be good.
Then, as in Case 3, this S}s can be lowered in place of some *-node of this branch.

Similarly, if no successor of a *-node is a *-node, then we apply the induction
assertion on these successors and just as in Case 2 we may replace Sts by a good
subtree.

Therefore applying these steps sufficiently many times, we may achieve a I-WS
tree S* in which the limits of *-nodes are *-nodes and every *-node has a *-node
successor. It means that if there are *-nodes in S* then there is a cofinal branch of
“-nodes. But this is impossible, because a I-WS has no cofinal branch (of limit lenght).
Therefore the root of S$* is not a *-node. i.e. height (S*)<h, and we are done.

THEOREM 3.2. Let FC[A)<®, then the game (A, FY is determined.

PROOF. Suppose that I has no WS. Then 11 can make a move such that I still
has no WS. This strategy is a WS for 1I. We have only to check that at limit moves I
still has no WS. If he has, then, by the previous theorem, he has WS in some finite
part of the game, therefore he has a WS before this move, a contradiction.

4. Games with countable boards

While we have a nice compactness theorem for finite winning sets, we cannot
hope for one in general, as the following example shows. ‘

ExAMPLE 4.1. Let & c[w]®, |#|=2“ be the (maximal) branches of a binary
tree of height w, such that U% =w. Then I hasa WS in (w, &) but II wins the games
(w, ) with F'SZ, and (4, P(ANF) with ASw.

There exist undetermined games. The following example is due to RALPH
MCKENZIE.
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TueorREM 4.2. Let Uc P(w) be a non-trivial ultrafilter on w. The game (v, U )
is undetermined.

PROOF. Suppose first that II has a WS. At the end of the game either I or II (but
not both) pick all the points of some element of U, therefore this strategy ensures
[T to cover an element of U. But also I can play by this strategy, and so he too covers
an element of U, a contradiction.

Now assume that I has a WS, and let them play three instances of this game, see
the figure. Let the first move of I be i,. II may manage, that after the first @ moves
every square is occupied and in every column (of three squares) except for the i,-th
one, at least one square belongs to him. If T has played by his strategy in each of the
rows then the sets of squares occupied by I in the rows are elements of U, i.e. their
intersection is infinite, a contradiction.

0 A e B
1 i 1 P
1 1|1
|1 I !
Fig. 3

In both examples the set of winning sets has cardinality 2. This cannot be im-
proved as the following theorem shows.

THEOREM 4.3. Martin’s axiom implies that if FClwl]?, |F|<2° then Il has a
WS in (w, F).

PROOF. In fact, we show that I1 may kill all of the winning sets in the first w
steps.

Let m(x)=min (x, k) for x,k€w, and in general let
/71 (OO o T T (Xi=1))-

Let to=U{w:i<n} and f:20-w (new) be a partial strategy for II, i.e.

S (Xos ooos Xi-1)) 6 {Xq, ..., X;—,}, etc., such that J=fom, for some k€w. Obviously,

the set P of these strategies is countable, therefore the partial ordering fi=f, iff

hiDfe for f, fu€ P satisfies c.c.c. Given FeZ, the subset

Dp = {feP: (Vg€ ) (Fi€w) f(gH)E F)

is dense, and by Martin’s axiom there is a chain G&P such that GNDp=0 for
every FeZ. Now UG is the strategy whose existence was stated.
On the other hand we have the following

THEOREM 4.4. Con (ZFC+2°=w,+ “there is an F Clw]®, |[F|=w, such that
/I has no WS in the game (w, F g

11*
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ProoF. It is well-known that 2°=wm, is consistent with the existence of a non-
trivial ultrafilter generated by w, clements [2]. Let & C[w]®, |#|=w, be the set of
generators, and suppose that % is closed under finite intersections. We claim that II
has no WS in (w, ). Indeed, otherwise after the game the set X of the points occu-
pied by II intersects every element of #. Similarly, I can also play by this strategy
therefore the set w— X of the points occupied by I intersects every element of & as
well. But either X or w— X is an element of the ultrafilter, i.e. contains some FeF
and then the other one cannot have a common point with F.

ProBLEM. Is it con31stent that 2°=w, and for some J’C[w]“ \F|=mw,
I has a WS in (w, &

5. Large games

So far we have dealt with games on countable boards, let us take a step ahead.
For boards of cardinality w, we have some results similar to that of Section 4.

ExampLE 5.1. Let FC[w,]?, |#|=2° be the (maximal) branches of a normal
Aronszajn tree such that U% =w,;. Then I has a WS in (w,, #) but II wins the
games (wy, ') with F'SF and (4, P(A)NF) with A4S w,.

A version of Theorem 4.4 is true in this case.

THEOREM 5.2. Con (ZlC+2"—w2+“(he;e is an FC|w))?, |F|=w, such that
1 wins the game (wy,F)").

ProoF. The result Con(ZFC+2°= @+ ) is from [3], where 4 is the follow-
ing combinatorial principle:

“There exists a sequence (S,:oa-=<w,,o is limit) such that US,=« and for
every Xe€[w,]”t, there exists a limit ¢<w, such that S,cX.”

The family & ={S,} evidently works.

ProBLEM. Is it true (in ZFC) that there is an & Clw]?, |#|=w, such that
(e, #) is a win for 1?

If the cardinality of the board and that of the family of the winning sets do not
exceed %, and the length of the game is <3 then the strdtegxes can be formulated in
V,, therefore we have

PROPOSITION 5.3, Let % be a weakly compact cardinal, J’C{a{]“ |F | =%, a<unt.
If I has a WS for (x, F)* then there are F'CF, |F'|<x and h<x such that I wins
(¢, )™

The following construction is an unpublished result of A. HAINAL.

THEOREM 5.4. Let V=L, x=w, x regular and not weakly compact. Then there
exists an F C[x]° such that I wins (x, F)*, but

() I wins (%, F') if F'cF,|F'|<x;
(ii) 1 has no WS in (», F)* if the regular cardinal ’<x.

Proor. (ii) follows from (i) and from the following lemma.
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LEMMA 5.5. Let ‘=w be any regular cardinal, and suppose that I has WS in
(A, F)-. Then there is a BCA, |B|=2%= 3 2" such that I still has WS in

<A
(B, P(B)NF Y. :

ProOF of the lemma. A I-WS is a function from £4=U{*4: <A1} to 4, choose
B as the closure of any point of 4 with respect to this function.

As for (i) of Theorem 5.4, let Scx be a stationary set consisting of c-limits
only such that for every limit &=z, SM¢ is not stationary in £ but S is stationary in
%, and let (X,:a€S) be a ()s-sequence [4].

If we fix for every «€S such that UX,=o a cofinal subset F, of X, of type w,
the family % of these F,’s will do.

Indeed, let I pick the elements of some closed unbounded set C of »x. (He can
do it by simply picking the smallest unpicked element above the set of previously
picked ones.) Then, by ()s, the set {o€S: X,=CNSNa} is stationary in %, and so
is its intersection with C, i.e.

A= {eeSNC: X,=CNSNa}

is stationary, too. Now for some a€4, UX,=a otherwise there would be a regressive
function on 4 which is impossible. But o€.S, therefore o is an w limit and F,cX,C
cCNS. So F, is covered by I, i.e. I wins the game.

Now let {<x and Fy={Fe#F:Fc{}. We claim that II wins the game
(&, F:), hence (i) follows. Instead of this we prove the following statement.
Let a<pf<ux,o and B be limit ordinals, o, $¢S, and &, ,={FN(x, f): FeF
and a<U F<p}. Obviously, the elements of &, ; are countably infinite sets, and
Fo,:=F. 11 wins the games (f—a, #, ,), this will be proven by induction on f—a.

If f—a is countable, then &, ; is countable, too. (Different elements of &, ,
have different suprema.) Let II sort the elements of %, ; in order type w and at his
i-th move pick an element of the i-th set.

If f—a=w, then SN is not stationary in f, i.e. there is a strictly increasing
continuous sequence (x;: £ =y) suchthat x,=0o, x,=f, X; 4, — Xy <f—afor { <=y and
x4 S. Now if FEZ, , then UFES, ie. x;<UF<x,,, forsome <y, therefore for
some F'E€SF, F'cF and |F—F'|<w. Because xgy;—Xz;<f—a, II can play

XE,JC‘E.'.].’

independently in each of these intervals by his previously defined strategy.
By this theorem, if ¥'=L then for every not weakly compact » there exists an
Fc[x]° such that card ((x, F)*)=x.

ProBLEM. Is it consistent that for every % C[w,]®, card ((wy, F)°2)<w,?

6. A topological game

Let (x, ) be a Hausdorff topological space, T P(X) be the family of open sets
in X. The game (X, ) is the open-dense game. I wins if he covers an open subset of
\', and IT wins if he covers a dense subset of X. If X containsanisolated point then I
has a WS, he has only to pick that point. However, 1. JuHAsz made the following
uhservation,
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THEOREM 6.1. Suppose X is a locally compact Hausdorff' space with no isolated
points. Then II has a WS in the game (X, 7).

PrOOF. Let ¥t be the family of open sets G which have the following property.
Every non-empty open subset of G has cardinality equal to that of G. ¢ is evidently
a m-base, take a maximal disjoint subfamily * of G. U%* is dense in X therefore I1
can play independently in each element G of ¥*, because if II wins all of these games
then he wins the whole game, too.

Now if Ge%™ then G is locally compact (endowed with the subspace topology),
therefore the weight of G is at most |G|, see [5]. Let the base {G,: x<|G|}, 0+G,CG
witness this assertion, then |G,|=|G| because GE€%*c%. Then, at his a-th move
(in G) I1 can choose an element of G,, which ensures him the win.

On the other hand we have succeeded in proving the following theorems.

THEOREM 6.2. Assume CH. There is a O-dimensional Hausdorff topology © on ®
such that the game (w, t) is undetermined. '

Proor. Let S; and S) for u<w, be the possible strategies of I and II on o
respectively. We define the sets B,, 7,, X, and Y, for o<, by induction on « such
that

(i) B,c[w)? |B,|=w is a base for a T,-, O-dimensional topology on ®, and
BycB, if f<y.

(ii) 7, is the topology induced by B,.

(i) X,, Y,Cw, X, is dense in 74 if f<a«, and is open in 7, if f=a. Moreover
Y,NZ is infinite for every ZeB, if o, f<w,.

(iv) IfI plays by the strategy S}, then II has a counterplay such that he covers Y, ;

(v) if II plays by the strategy SY then I has a counterplay such that he cov-
ers X,.

By these conditions the topology t=U {r,: x<w,} satisfies the requirements of the
theorem.

Now let 7_, be the topology of the dense linear ordering without endpoints on
o (i.e. the subspace topology of the rationals) and let B_, be a countable base for it.

Suppose we have defined By, 1, X;,Y; for f<«, and let B= U{B;: f<a}
and t=U{t;: f<a}. Observe that t is generated by the countable base B, and there
is no isolated point in 7. Therefore II has a counterplay against the a-th strategy S!
of I playing which he covers such a set ¥, which has the following property. For
every ZeB,Z(Y, is infinite, in particular ¥, is dense in .

Similarly, I has a counterplay against the strategy SI' of II playing which he
covers such a set X, which has the following property. The sets X,NZNY, and
(0—X,)NZNY, are infinite for each Z€B and f=c. Finally, let B,={X,NZ,
(w—X,)NZ: ZeB}. The validity of the conditions (i)—(v) for o can be checked
easily.

THEOREM 6.3. There is a 0-dimensional Hausdorff topology © on w without isolated
points such that I wins the game (w, 7).

Proor. By Zorn’s lemma there is a maximal O-dimensional T,-topology 7 on 4
without isolated points where |4|=w. We claim that there is no XcA4 such that
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both X' and A—X are dense in 7. Assuming the claim false, we find that U {X, A—X}
constitutes a subbase for a 0-dimensional T,-topology ¢ on 4. Of course ¢,
o7t and T is maximal, therefore ¢ contains an isolated point p€A. It means that
for some Ger, either GNX={p} or GN(A—X)={p}. Let g€G and G’¢r
be such that ¢€G’ and pd G’. Then 0#G'NGEr and either G'NGNX or
G'NGN(A—X) is empty which contradicts to the denseness of X and A4—X.

Let (4, ') be a disjoint copy of (4, 7) and let I and II play on the topological
sum of these spaces. By the previous remark, II cannot cover dense subsets in both
of these spaces if I plays as follows. If II picked a point in A, I picks the same point
in A’, and if II picked a point in 4, I picks the same point in A.
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