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ON A GENERALIZATION OF THE GAME GO-MOKU I

by
M. AJTAL L. CSIRMAZ and ZS. NAGY

Abstract

We investigate the winning and drawing strategies in the generalized Go-moku games which
are defined in 1.1. It is proved that every open game is equivalent, in a certain sense, to some gen-
cralized Go-moku. We give an example of a recursive game in which player I has a winning strategy
but has no recursively enumerable one. Examples are constructed for non-determined games of
length 0420 and w-2 under certain set-theoretical assumptions. Finally, we determine the possible
minimal lengths of winning strategies.

0. Introduction

The well-known game Go-moku [5] is played on an infinite chessboard. Two
players, I and II, occupy the squares alternately. The winner is the player who
has first 5 or more adjacent squares in a row, horizontally, vertically or along either
diagonal. An easy argument shows (see, e.g., Proposition 2.1 below) that II cannot
have a winning strategy (WS in the sequecl) and either I has a WS or II has a drawing
strategy (DS), i.e., a strategy which allows II to play indefinitely.

As far as our knowledge goes, it is not known which is the case in Go-moku,
It is not even known whether a WS of I, if any, can be boundcd in time. In other
words, assume that I has a WS. Is there a natural number 1 such that I can win
before his n-th move? The best available result is in [6, pp. 257—258]:

THEOREM 0.1. If the game Go-moku is played on countably many boards (i.e.,
at every step the player chooses a board and occupies a square on it) and 1 has a WS
then 11 does not have arbitrarily long counterplay. (A WS can always be bounded
in time.) [

The game n-Go-moku is a slight modification of the original game. The win-
ner is required to have at least n adjacent squares. It is an easy exercise to prove the

PROPOSITION 0.2. 1 wins 4-Go-moku in at most 6 moves. ]
2 On the other hand we succeedcd in proving (cf. [1])
THEOREM 0.3. For n=38, I has no WS in n-Go-moku.

PRrOOF (Sketch). We describe a strategy of IT which prevents I from occupying
9 adjacent squares. Divide the board into pieces of size 5% 5 along the border-lines
of the squares. Let II play independently in each of these pieces. (If there is no more
room for his move, occupy a square in any other piece.) The goal of II in each of
these pieces is to prevent I from occupying either a full row, a full column, or one
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of the ten diagonals shown in Fig. 1. It can be checked that II can achieve his goal.
I cannot have 9 or more adjacent squares because their intersection with some piece
would be a part which I was prevented from occupying. [

Fig. 1

We know nothing about the missing cases 5=n=8".
These results led to some generalizations of the game Go-moku, one of which

is discussed in detail here. For other generalizations, see our forthcoming paper.

1. Definitions

Our set-theoretical notation will be standard. Ordinal numbers are denoted by
«, f, etc., ® d:notes the first infinite ordinal as well as the cardinality of countable
sets. The cardinality of the continuum is denotcd by 2. Sequences are enclosed
between angular brackets ( and ), for example the empty sequence is denoted by £ %

The family of all finite 0—1 sequences is denoted by 22, and 2 is the family
of 0—1 sequences of length @. If 0€2 then o|n€ 22 is the unique initial segment
of o of length n. Let s and ¢ be sequences; the relation s<t holds if s is a proper
initial segment of .

1.1. A-games

The A-game [A, F]* consists of the board 4, the family F of nonempty finite
subsets of 4 which are the winning sets, and the ordinal number o which is an upper
bound for the length of the game.

A-games are playcd by two players, I and II. They occupy elements of A4 alter-
nately. Every element can be chosen at most once. I begins and every limit step
(if any) is I’s turn. The game erds if either I or II occupies all elements of some
X€F (covers X), the winner is the one who does it. The game er.ds if all elements
of A have been chosen or if & moves have been made. In these cases the game is a
draw. If «=w, the game is said to be finite.

1 R. K. Guy kindly informed us that Andreas BRouwer and others can prove Theorem 0.3
for n="7 and n=8.
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1.2, B-games

The Wegame [A, F°, F']* consists of 4 and « as above, and of the families F°
and F1 ol finite subsets of A. B-games are playcd by I and II as follows. First I
chooses an element of {0, 1} which we d:note by k. After this they occupy elements
ol A alternately, starting with I if £=0, ard with II if k=1. The title of the player
who starts picking is W, the other’s is B (from white ard black). Every limit step
(il uny) is I's turn. The game ends if either I covers some element of F¥, or II covers
some element of F'=k; the winner is the one who does it. The game ends if all cle-
ments of A4 have been chosen or if @ moves have been made. In these cases the game
I8 0 draw. If @ =, the game is said to be finite.

1.3. Positional games

Positional games contain (at least an evidently equivalent form of) every infinite
two-person game of perfect information of length w where the families of the winning
positions of both players are open sets [4]. The components of a positional game are
i sequence of sets (4;: i€w), and two disjoint sets Fy, and Fp of finite sequences
such that {ay, ay, ..., @€ Fy, U Fy implies a;€ 4; (i=k). We assume that no sequence
in Iy U Fy is a proper initial segment of any other element.

Two players, W and B take turns alternately. First W picks a,€ 4, then B picks
i€ Ay, again W picks a,€ 4,, etc. W wins if {a,, a,, ..., ak)e Fy, for some k, B wins
i (ag, ay, ..., q )€ Fy for some k€w, otherwise the game is a draw.

E vndmtly, every finite 2 and B-game can be transformcd into a positional
gime. This transition can be done by a recursive function.

1.4, Snub-games

Let G be any positional game. The snub-G snub-game is playcd by I and II as
follows. First I chooses who he wants be: W or B. If he chooses W, he b-gins the
pame G as Wand 11 plays as B. Otherwise II begins the game as W and I plays as B.
I'he other moves go by the rules of G. The winner of the game G is the winner of
the game snub-G.

1.5, Strategies, equivalent games

The notion of strategy and that of play according to a strategy is discussed in [8].
I'he strategy S'is a I-winning strategy, I-WS in short, if every play according to S
i% a win for I. The strategy S is a I-drawing strategy, I-DS, if every play according
fo & is cither a win for I or is a draw. Similarly, for II-WS, II-DS, etc.

The winning strategy S is a-bounded, if there is a y<a such that every play
necording to S ends before the y-th move. In case of 2A- and B-games, the I- -winning
srategy S is bounded in space, if there is a finite subset of the board such that in
every play according to S, I occupies elements of this subset only. Hence boundcd-
fess in space implies w-boundcdness.

A game is determined if either both players have DS or one of them has WS.
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Let the games G, arnd G, be played, say, by I and II. We say that G, is equiv-
alent to G, if there are recursive functions ¢, and ¢4 (in the sense of [3]) such that

() @i(G)=G1—;, (i=0,1);

(i) if S is I-WS (I-DS, II-WS, II-DS) in G; then ¢,(S) is a I-WS (I-DS, II-WS,
II-DS) in G,_; (i=0, 1).

Obviously, every finite 9[- and B-game is equivalent to some positional game.
Equivalent games are equidetermined.

2. Basic results

Prorosition 2.1. In A-games 11 has no WS.

ProOF. Suppose the contrary and let S be a II-WS. Let I play by S as follows.
Choose any f,64 (an “imagined” element) and let I’s first move be the answer by
S to this imagined move. If [I’s answer is not the imagined element, answer I simply
by S. If it is, drop #, as an imagined clement, choose an entirely new one and regard
it as the move of the other. At limit steps I always has to choose a new imagined
element. Now just the strategy ensures I to cover a winning set before II could do it,
which is a contradiction. [

The same argument as above shows that

ProposiTION 2.2, In U-games, B-games, and snub-games 11 has no WS. If 11
has DS then 1 has DS, too. [

REMARK. This proposition remains true even if we allow the winning sets to
be infinite.

ProrosiTiON 2.3. Positional games are determined.

Proor. This is the GALE—STEWART result for open games [4]. If T has no WS,
IT make a move such that I still has no WS. Since if I wins he wins after finitely many
moves, this strategy is a DS for II. [

COROLLARY 2.4. Finite W and B-games as well as snub-games are determined.
In these games 1 always has DS. B

PROPOSITION 2.5. Even in the case of finite W-games, the existence of a I-WS
does not imply the existence of an w-bounded WS'; the existence of an w-bounded 1-WS
does not imply the existence of a space-bounded WS.

Proor. We give two examples which witness the assertions. Let first B, and
B, for n=2 be the set of nodes of the trees shown in Fig. 2.
Let F;= {the full branches of B;}, for example, every element of F; consists of four
ncdes. T has WS in [\ B;, |J F;]® because I can win in B;, but II may postpone his
i=1

i=1

defeat for n moves by threatening in B,.
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Fig, 2

In the second example let the board be A={R}U{Pi: icw, j=7}, and let
Ay ={R}YU {Pi: i<k, j=7}. The winning sets are

] {RSPB:P;.}? {RsP(S»P;‘,:P;S}: {R,P&,PQ,P.;,P%}, {R’P;h ésP&:Pé}
anc
{Pi, Pi, PL, P} forall i=jcw

(see Fig. 3). I wins this game playing as follows. Start with occupying R. The response
of IL is an element of som~ A,, then pic~ P§ Pk, P¥, Pk in succession. On the other
hand II has counterplay in every A4, picking first either R or Pt x

Fig. 3

We define the rank of I-WS of finite U-games as follows. Winning strategies
can be regard:d as trees, the root is I's first move, the edges starting from the root
are labelled by the possible moves of II, the nodes at the other end are I's responses
by the strategy, etc. To each node » assign the least ordinal which is greater than
the ordinals assigned to the successors of ». This definition is sound because these
trees are well-founded. The ordinal assigned to the root is the rank of the strategy.
For example a I-WS is w-bounded if and only if its rank is less than o.
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The rank of a finite 2(-game is the infimum of the ranks of I-winning strategies.
So the rank of the first example in Proposition 2.5 is w. The construction described
in the proof of Theorem 4.6 gives

PROPOSITION 2.6. For every ordinal « there is a finite N-game of rank =o. §

3. Equivalence of finite games

In Section 1 we have remarked that every finite 2(-game is equivalent to some
positional game. The converse cannot be true because there are positional games
where 11 has WS. But in view of 2.4 we may hope for

THEOREM 3.1. Every snub-game is equivalent to some finite N-game.

Proor. The theorem is an immediate consequence of Lemmas 3.7 and 3.8
below. [

To describe the construction we shall need the following structure.

DerINITION 3.2. Let I be an index set. The broom associated with I' is the
7-tuple (B, B, B, C°, C1, D°, D*) where B is a set, C” and C* are functions from
I’ to finite subsets of B, and the others are families of finite subsets of B.

The set B consists of the points of the handle H={U, ¥y, V;, ¥,} and of
the points of the broomcorn J={X¢: j=8, acl'}, see Fig. 4. The elements of
B°URBY are the winning sets, B® consists of the subsets {X§, X¢}, {X& X¢, X¢},
{xg, Xg, X3, X&), {Xt, X§, Xg, X¢, X¢} and {X{, X§, X¢, X§, X¢, U} for all acl,
ard B! contains all two-element subsets of A and all 8-clement subsets of J. The
values of functions C° and C?! are the choosing sets C°(a)={X¢, X§, X2, X¢, U}

and C'(a)={X¢, X§, X§, X¢, X¢} for all acI'. Finally, the elements of D° and D! are
the validating sets, D° contains the two-element subsets {U, V,}, {U, V;}, {U, V3},
and D! contains the one-clement subsets {Vy}, {V1}, (Vo) B

Fig. 4

Studia Scientiarum Mathematicarum Hungarica 14 (1979)




tegies.
cribed

some
sames

d 3.8

is the
from

nd of
its of
, X5}
acl’,
. The
%, U}
)1 are
r, V2}:

GENERALIZATION OF THE GAME GO-MOKU I 215

LEMMA 3.3. Let (B, B°, B, C°, C*, D° D'y be the broom associated with T'. The
B-game [B, B®, BY|® has the following property. Either one of the players can win, or
they cover the choosing sets C°(a), C(a) for exactly one a€I” and W covers a validat-
ing set from D° in the first 11 steps. In the latter case B has a two-step threat playing
which he can cover a validating set from D'. Except for
this, no player has a realizable two-step threat. U

Proor. B threatens a two-step victory in the handle
so W always has to counterthreaten, Therefore # must
pick X¢, X¢, X8, X¢, U and one of ¥ys in succession
for some a€I', because W cannot counterthreaten more
than & times. Then B picks a free element of the handle
which forces W to pick the remaining point.

After these steps B has no more two-step threat
whilst ¥ has a lot. But W cannot cover more choosing
set and cannot threaten more than three times because
then W loses the game. [

V,
A simplified version of brooms for the case I'={0, 1} z .
is the brush as follows. Fig. 5

DEFINITION 3.4. A brush is the 7-tuple (B, B°, B, C° C%, D° DY. The set B
consists of 5 points, Uand ¥V, (j=3), see Fig. 5. The family B° consists of {U, V,, ¥4},
{U, Vo, V3}, and {U, V3, V,}. The family B! contains {U}, {V;, V;}, and {V;, V,).
The functions C° and C* are defined as Dom (C%)=Dom (CY)={0, 1} and

CoO) =C' () ={V, ¥} C°(1) =CH0) = {1, Va})
Finally, D°=D" and they contain the subsets {V,, V,} and {V;, V,}. §
The properties of a brush are the same as of a broom, furthermore

Lemma 3.5. After playing off a brush, all the points are occupied and no player
has any threat.

We interpret playing off a broom as W’s choosing exactly one €T, and playing
off a brush as B’s choosing either 0 or 1.

Brooms (and brushes as well) can be fitted together to form an w-long sequence.
The winning sets of the i-th member of the sequence are validated by the correspond-
ing validating sets of the (i—1)st member. So the players are forced to play off
these brooms in sequence, exchanging the role of W and B at every new broom.
A bit more formally,

DEFINITION 3.6. Let (B;, BY, B}, C?, C}, D}, D}Y be brooms (brushes) asso-
ciated with I';(={0, 1}) for i€w and let D°,=D';=0. The w-broom (w-brush)
is the triplet (B, B®, B} such that for k=0, I

B* = {XUY: XeD§ and Y€BLY or XeDYk and Y€BY, ico). J

After these preliminaries we turn our attention to the proof of Theorem 3.1.
We start by
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LeMMA 3.7. Every snub-game is equivalent to some Jinite B-game.

Proor. Let the positional game G be given by the sets A; (icw) and by the
winning sets Fy, and F,. Let (B, B", B') be the w-broom built from the brooms
%,=(B,, B}, B}, C?, Cl, DY, D}) associated with the sets A;. We are going to define
a B-game G* which is equivalent to the game snub-G. The board of G* is B. For
every finite sequence s={(a,, a, ..., a,) such that ;¢ 4; let

8§ = CY(ap) UCI(apVU...UCk(a,)
S; = C(ag) UCl(a)U...UCL*(a,)
with k=0 if n is even and k=1 if » is odd. Now let
FO = B°U{S?: seFy}
Fl= B'U{S}: s€ Fp).

We claim that the games snub-G and G*=[B, F°, F']* are equivalent. (i) of the
definition is evidently true. (ii) follows from the fact that the players in G* are forced
to simulate the game G. I’s choosing to be W in G corresponds to I's choosing the
winning sets F° in G* (i.e., being W in G*, too). In G* W is forced to start to play off
the broom %, (otherwise he loses the game). So first the players play off the broom
2, and player W covers some CY(a,) with ay€ Ay, 1.e., W chooses this a,. Moreover
they validate the winning sets of the broom 2, by some validators in D§ and D2
so next they have to play off %,;. Here player B covers some CP(ay), ie., B chooses
a,€4,, and so on. If any player does not follow this simulation, he loses.

Last, the winning sets of the form S¥ ensure in G* the victory to that player
who wins in the snub-G' game. J

LeMMA 3.8. Every B-game of limit length is equivalent to some N-game of the
same length. If f is a limit ordinal then B-bounded strategies are preserved.

PROOF. Let the B-game be G=[B,, F{, F}J* and let [B,, F{, F{]* be a new
instance of G. Our aim is to construct an A-game G*=[4, F]* in which the players
are forced to simulate G. B, and B, will be subsets of 4. The elements of ()
amplified with some validating sets are among the winning sets of G*. These validat-
ing sets are subsets of the finite set A4 —By—B,. We demand these sets to have the
following property. Both players must be able either to win or to cover some validat-
ing set within finitely many moves. Moreover, if a player validates (the elements of)
F, the other must not be the first occupying any element of B,. If he validates Fl,
the other must have no more than one occupied element in B, .

This property ensures the portability of WS and DS from G* to G and back.
We describe here a structure satisfying this. It consists of 10 points, Uy and V, ; ,
for i, j, k=0, 1. There are two F? validating sets (Fig. 6)

DE = {Um Vk,o,o: Vk,l,ﬂs V1—k,o,1}
and
Dy = {Uua Vk,0,09 Vk,l,ﬂa V1-k,1,1}

and there is one £} validating set
Di = {ts, Vk,o,l: Vk,l,l}

Studia Seientiarum Mathematicarum Hungarica 14 (1979)
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Fig. 6

for k=0, 1. The only two-element winning set in F is {U,, U,}. If I’s first move is
U, we interpret it as I's choice k=0 in the game G. Otherwise II’s first move is U,,
therefore we may assume that in the first two moves they occupy U, and U,. Other
winning sets in F are

{Uo, Vi 0, Vija} for i,j=0,1

and those among the sets

{U1= VO,O,kls VO,l,Rz’ Vl,O,k;;v Vl,l,kd}

which do not contain D? or Dj.

Let A={U,, V; ;}UB,UB, and let F consist of the 14 winning sets defined
above and of the sets DYUX, D{UX, DU Y with X¢ F{ and Y€ F} for k=0, 1.

It is easy to check that for G*=[4, F]* the (ii) of the definition of the equiv-
alence holds and (i) is trivial. [

This proves Theorem 3.1, too.
The following lemma is about the converse of 3.8.

LEMMA 3.9. Suppose that there is a recursively definable choice function on the
board of the M-game G=[A, FI*. (This is the case if A is an ordinal number.) Then G
I equivalent to the B-game G*=[A, F, FI*. Moreover, -bounded strategies are pre-
served for every ordinal 5.

Studia Scientierum Mathematicarum Hungarica 14 (1979)
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Proor. Both Iand Il can carry strategies recursively by the method of “imagined
elements” as was described in 2.1 because there is a recursive choice function on A
which gives imagined elements whenever they are necessary. [

We mention here a rather surprising consequence of these lemmas.

CoROLLARY 3.10. There is a finite -game [w, F1® such that

(i) every element of F has fewer than 100 elements;

(il) Fis recursive, i.e., there is a recursive procedure which decides whether a given
Jinite subset of w is an element of F or not;

(iti) every play ends before the 100th move, no matter how the players play;

(iv) (as a consequence of (iii)) player 1 has WS, but

(v) I has no recursively enumerable WS.

Proor. We define a positional game G as follows. Let @ be the set of all for-
mulas of the ZF set-theory and let ¥ < @ be the ZFC-provable formulas. Obviously,
both ¢ and ¥ are countable and, by Godel’s theorem, ¥ is not recursive. The game
starts by W’s saying 1 (if he does not say 1, he loses). Then B says a formula @€ @,
W says a proof from ZFC, and finally B says a proof from ZFC, too. W wins if
cither he has proved ¢ or neither he nor B proved ¢. Otherwise the winner is B.

Obviously, W has WS in G because if a formula is provable, he can prove it.
On the other side I has no recursively enumerable WS. Supposing it were so, there
would be a recursive function which assigns a proof to every provable formula, i.e.,
@ would be recursive, a contradiction.

Because ¥ has WS in G, W has WS but has no recursively enumerable W$ in
snub-G. Making the transformations as was described in 3.8 and 3.7 we get the
desired game.

4. Infinite games

In this section we study the determinacy and boundedness of 2-games [4, F]*
with limit o >a. If |4|<w or [F|<w then the game is equivalent to [4, F]" for some
n<w so we can assume |4|=w and |F|=w. In these latter cases, however, the study
of B-games gives all the information as was shown in Lemmas 3.8 and 3.9 because
the cardinality of the boards and that of the families of winning sets are preserved.

First we recall here the basic properties of w-brushes (see Definition 3.6).

LemMA 4.1. Suppose that the B-game [A, F°, FY)* with «=w contains the w-brush
(B, B", BY) (i.e., BC A, B°CF° B1CF!) and there is no two-step threat but in the
w-brush. Then the players are forced to play off the elements of the w-brush in the
first o moves so that
(i) after these moves every point of the w-brush is occupied;
(ii) the choosing sets CMd;), C}(d;) (d;€ {0, 1}) are covered in succession;
(iii) the value of the digit d; is chosen by B if i is even and by W if i is odd in
possession of full information about the previous digits and no information
about the rest of the digits.

Let s=(dy, dy, ..., d,) be any finite 0—1 sequence (i.e., s€ 2.2) and let
Oy =U{CYd): i =n} () =U{Ci(d): i = n}.
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In the w-brush either one of the players may win before the w-th step or there is exactly
one a€©2 such that every (o|n)y is covered by W and every (a|n)g is covered by B. J

This lemma says that an w-brush forces the players to play an infinite 0--1
game [4].

THEOREM 4.2. There is a non-determined N-game the board of which has car-
dinality at most 29 such that some player may win before the (w+20)th step.

Proor. By the remarks at the beginning of this section, it is enough to give a
B-game with these properties. The non-detcrminacy means, by Proposition 2.2,
that I has no DS, i.e., if either player W or player B plays by a strategy, he loses.

Now it is well-known that there are non-determined 0—1 games [4], let the
family of sequences Cc®2 witness it. Of course, the cardinality of C is =2 We
build a B-game G as follows. We start with an w-brush. If the players in the first
@ moves encode a sequence o€ C then player W may win within 9 moves (no matter
whether T or 1T is acting as #) and if they encode a sequence o ¢ C then player B
may win. This property ensures the non-determinacy of G, otherwise some player
would be able to win the 0—1 game with C by a strategy.

We call the reader’s attention to the problem of the w-th move. It can be taken
by either W or B and we may assume the worst, i.e., it is the turn of the one who
is going to lose.

Summarizing, let (B, B°, B') be an w-brush, (s), and (s)p for s€ 22 be the
subsets of B as d=fined in 4.1. For every o€ C we take two instances of a game simi-
lar to the second example in Proposition 2.5 with boards 4% and A4%. Let the ele-
ments of A, be R and P} (i€w, j=T) and let the clements of the family F:' be
{R, Pé,Pi}U(U’If).W, {R, P§, P3, Pi}U(alD)y, {R, P, P, Pi, P{}U(cli)y ~ and
{R, P{, Pi, P§, Ps}U(o|i),, for all i€ w. (The branches of the i-th tree over the sequence
o are validated by the i-th cut of ¢.) Let moreover the elements of the family FX'
be {Pi, P, P, Pj} for all i=sjew. Let A=U{4%: o€C, =0, 1}.

The board of G is AU B, the family of W-winning sets is

Fr=BOJ| {F¥": geC, 1=50,1}
and the family of B-winning sets is
Ft = BtUJ{F*": o€C, 1=0, 1}U {six-element subsets of A}.

We leave to the reader to check that the B-game [4AUB, 9, F1]@*% has all the
described properties. [

This construction cannot give a nondetermined 2[-game with countable board
because every 0—I1 game with countable winning set is determined. The following
theorems deal with the case of countable boards.

THEOREM 4.3. If there is a Ramsey cardinal then every U-game [w, F1°* is de-
termined.

Proor. The existence of a Ramsey cardinal implies that every Z} game is de-
termined [7]. It is easy to check that the family of w-long plays after which I can
win within finitely many moves forms a 2] set. By the assumption this set is de-
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termined, i.e., either I has a strategy to remain in it, in which case I has a WS, or II
has a strategy to avoid it, which means a DS for II. J

The axiom of constructibility V=L implies the existence of a non-determined
21 game [9]. The existence of a non-determined X} game, however, seems not to
imply the existence of a non-determined [w, F]“* game. But the construction can
be carried over.

We proceed with two lemmas.

LEMMA 4.4, Let W and B play two instances G and G of an unsymmetric game
[2] as follows. First W chooses a finite 0—1 sequence sy€ 2.2 then B chooses a digit
1,640, 1} and a finite 0—1 sequence 5y. W responds by choosing a digit 1,¢ {0, 1}
and a finite 0—1 sequence s,, etc. Thus the players form two infinite 0—1 sequences,
O=8" 1y 7. and §=58"1y"§5," 1., where ™ denotes concatenation.

Let C< @2 be uncountable and containing no perfect subset. If W plays by a strat-
egy, then B has a counterplay such that ¢ C and a€ C. If B plays by a strategy then W
has a counterplay such that o€ C and ¢ C.

Proor. Assume that W plays by a strategy S, the other case is similar. The
moves of ¥ in G depend not only on the moves of B in G but on the moves in G,
too. In view of this, we define countable sets X,, ¥, for n€w by induction which
satisfy the following conditions. The elements of X, are sequences of the form

<t05 ED: fl: tls 515 fﬁs el tn—le Su—ls in)

where #;, 7;.,€{0, 1} and 5,€ 22 for i-<=n such that 7;,, is the response of W by S
to the sequence of moves fy, §o, ty, §, ..., 13, §; of B. Y, is a subset of ®2 and for
every t€“2—Y, and for every t,€{0, 1} (i<n) there is exactly one sequence

<f0, g[)» fla veey 'ri‘l—].! §n—1, fll>€A/H

with the given digits ¢; such that §,~#7...75,17 1, <7.
Let X,={{)}, ¥,=0 and suppose that X,,, ¥, are defined and have the described
properties. Then for every

s = <l(]s 50, ila LEir ) fn—-ls En—ls ZH>€XH

and 7, {0, 1} let X, ., contain the sequences

O

sty (1—041) Thia

8"t =80, 1—Ta) Best
where 10,,, 1, ., ... are the corresponding responses of W by the strategy S. Let
Y, .1 contain the elements of ¥, and the infinite sequences

B v He T =1, 1B, )

with the above notations for every s€X,, #,€{0, 1}.
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, or 11 Obviously, X, ., and Y, are countable if X, and Y, were, and they have the
described properties. Therefore U{Y,: n€w} is countable, C is not, so there is a
tc C for which t¢ Y, for every ncw.

;I]];‘Lm;: Because X, ., is an end-extension of X, we can define a “strategy” S of B as
& follows. Given 1€ {0, 1} for i<n, let S(%,, ..., t,_,) be the only sequence for which
{ <t0: g(tﬂ)’ fla tl’ S(tﬂ, r1): ?23 oo Iy S(Im ninng z‘ra--l): f">€_X"
anc
gan]’e E(ro)ﬁf; AN AS(tU’ ey tll—l)ﬁfll -< T.
1 digit Playing by this “strategy” S in G, B forces G¢ C independently of his moves in G.
ences, ~ Now we turn our attention to G. Every move ; of Bin G determines uniquely
S in G (via S) so it determines uniquely W’s response s;,; in G. This means that
strat- we may forget about G totally and the strategy S reduces to a strategy S’ for W
hen W in G only. Now the outcomes of plays according to S’ form a perfect subset of 2.
C contains no perfect subset so B can choose a counterplay which lead out of C.
Combining this counterplay with S we are done. [
. The
in G, LeMMA 4.5. Assume V=L. There are finite trees TO and T* (trees in the set-
which theoretical sense, see [3]) for every s€ 2.2 such that (i) and (i) below are satisfied.

() If s, 1€ 2.2 and s<t then T} is an end-extension of T}.
By (i), T,=U{T!: s<c} is a tree of height =w for every a¢©2.
(i) Let W and B play an infinite 0—1 game and let o€ 2 denote the resulting
. sequence. If W plays by a strategy then B has a counterplay such that either W picks
by S only 1 and B picks only O after finitely many moves, or T® is well-founded and T*
d for is not. If B plays by a strategy then W has a counterplay such that either B picks only

1 and W picks only O after finitely many moves, or T+ is well-founded and T is not.

Proor. V=L implies that there is a II] subset Cc“2 of cardinality 22 without
a perfect subset [9]. Given any II} subset Cc“2 one can assign finite trees 7, to
every s€ 2 such that U{7;: s<o} is well-founded if and only if ¢€C, see [10].
By these facts and by the previous lemma, we are done if we can code the twofold
unsymmetric game G of Lemma 4.4 in a single 0—1 game G*.

But this latter task is easy. Enumerate all finite 0—1 sequences. Say W (or B)
wants to choose in G some finite sequence s. Suppose s is the n-th in the enumera-
tion then W (or B) chooses n consecutive 1’s followed by a 0 in G*. The single moves
in G correspond to single moves in G*. Clearly, every position of G* determines
uniquely the status of the simulation and every play in G* corresponds to some
play in G except for those where W or B picks only 1 after finitely many turns. [

ribed

THEOREM 4.6. Assume V=L. There is a non-determined N-game [w, F]*2.

PROOF. As in the proof of Theorem 4.2, we shall make a B-game G with these
properties. We start with an w-brush (B, B%, BY) and let (s), and (s), for s€ &2
. Let be the subsets of B as defined in 4.1. We define the remaining part of G with the

\
|
|
|
: |
{0, 1) What is more, B forces to form always the same sequence ¢=r1.
\
help of the previous lemma. There are two essentially different cases. J

Case A. The players in the first @ moves encode an exceptional sequence 7. |
For k=0, 1 let C*c“2 be dsfined by

(do,dy, ... )€C* iff dyy =k, dyy,=1—k for every i=i,. i
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Obviously, t€C'UC?, C°UC? is countable, and 7€ C° if B plays by a strategy,
7€ CLif W plays by a strategy. Let 4}, F&!, F&' (/=0 1) be as in the proof of 4.2, let

Ak =U{4d,: o€Cx 1=0,1} (k=0,1)
be the boards for the exceptional cases, and let
E* = U{Fi%t: geCk, 1 =0, IJUU(FE!: 0eC% 1=0, 13U
U {21-element subsets of A}

be the W winning sets for k=0, and the B winning sets for k=1. The boards are
countable, and this part of the game has the following properties.

Suppose W plays by a strategy (the other case is quite similar). If they encode
a sequence t€ C* then B can win at his fifth move in 4j. Moreover, B has a three-
step threat in A} so either W loses or W has to threaten to win within three steps.
(Remember, the w-th step is W’s turn.) Well, I/ cannot threaten in A}, and cannot
threaten in the remaining parts of the game. So W must play in A}. But B can fend
off every threat in A% and after 21 pairs of moves B wins eventually.

If the encoded sequence t¢ C°UC! (observe, € C° cannot occur if B plays
properly) then W’s moves in A}, as before, do not count and there can be at most
21 of them. The W’s moves in AL, however, cause a little problem. Here W wins
after his 21-st move but he gives B ten free moves.

Indeed, W can threaten at his every other move only, and B can fend these
threats off by one move. So B must be able to win at the other parts of the game
with 10 free, but not necessarily consecutive moves.

Case B. Otherwise. Let T be the trees for s€ &2, /=0, 1 the existence of which
was shown in Lemma 4.5. Let 7° and 77 be disjoint trees of height @ such that
every node has countably many immediate successors. If » is a ncde in 7" then p(v)
denotes its immediate predecessor and /(v)€w denotes its height: if » is the root
then A(v)=0, otherwise h(v)=h(p@))+1.

We may assume that 7} are embedded in 7" so that 7" is an end-extension of
T!and T!NT!'=T, where r is the longest common initial segment of s and ¢. There-
fore for each node » of T' we can define a sequence s'€.22 such that »€ 7| if and
only if si=s or s}<s.

Replace each node » in 7" by a broom associated with the set of immediate
successors of ». These brooms will be fitted together in such a way that the players
must climb on branches of the trees (Fig. 7). First B has a threat in 7° and W can
fend this off only by occupying a “validated” edge starting from the root of T°.
Doing so W has a threat in 7" and B fends it off occupying a “validated” edge of
T1, etc. The validatings are done at the first o steps. If they encode in the w-brush
the sequence o€ ®2 then the valid edges are just that of the subtrees To= U {T}: s<ah
Now it is clear that if 7° is well-founded and 7% is not then W cannot fend all the
threats of B off because W “runs out” of his tree eventually. It means that B wins
within finitely many moves. Similarly, if T} is well-fourdcd and 79 is not, then
W can win within finitely many moves. The exact definition of this part goes as
follows.

Let T' be the trees and s the sequences as discussed above. Let % ,=
={By o Blus B o3 CLos Clvs Plss D} ) be the broom associated with the immediate
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successors of the node » of 7", Let
Ay =U{B,,: vis a node of T, I =0, 1}

the board for the main case. We recall that for any node », p(v) denotes its only
I

immediate predecessor and /2(v) denotes its height. Let, by definition, Cf ,,(©)=0 if
v is the root of T (i.e., if p(») does not exist) and let

HE — {{0} if I=1 and v is the root of T°
"o 7 LU{Dk,,: w is a node of 7" and h(w)=h(v)—I} otherwise.

We define the families M, for every node » of 7% and k, [=0, 1 as follows.
Mg, = {XUY UCE, ) @ U(sD)y: XEB,, YEHTL,)
M?, = {XUYUC} ,(,,(¥): XeB},, YEHD,}
M}, = {XUY UC} ;) (v): X€B;,, YEHD,}
Mi,, = {XUY UCY, ,,, @ U(s))p: X€BY,, YEHS,).

Finally, let
M*=U{Mf,: v is a node of T, 1=0, 1}

be the W winning sets for k=0 and the B winning sets for k=1.

The main part (4,,, M°, M*) has the following properties. The board, A4, is
countable. We assume that always W picks the first element of 4,,. At any moment,
both W and B have one or two-step threats so any free move means victory imme-
diately or at the next move. If ¥ plays by strategy then B may win within finitely
many moves, and if B plays by a strategy then W may win within finitely many moves
(but only if W starts picking the elements of A4,,).

This main part cannot be put over an w-brush because there are two-step
threats in it. By Case A, it must not contain even a four-step threat. And, what
is the worst, it cannot be assumed that W starts picking the points of 4,,. To solve
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these problems, we double the main part and put a little “prelude” before them
as it was done in Lemma 3.8. Doing so we increase the size of the winning sets and
assure that W starts picking.

Let (4, M°, MYy and {4y, N°, N*) be two disjoint instances of the main part,
U, and Uy be disjoint 8-element sets. The family of i-element subsets of U is denoted
by [U]. Let

F = AMUANU UMU UN

be the board, and let

F° = [UyPU[U,PU{XUY: XeM° and Y€[Uy]* or XeN° and Ye[UylY}
Fl1={XxUY: Xe[Upylt, Ye[UxU
U{XUY: XeM?! and Y€[Uy]* or Xe N and Y€[Uy]'}

be the W winning and B winning sets. Every winning set in F°U F* has at least
five elements. Now suppose W plays by a strategy, i.e., B is going to win. If W picks
an element of AU Uy (4yU Uy) then B picks simply an unoccupied element of Uy,
(Uy). Then B either wins or validates just one of the parts A, or Ay. Clearly, 8
free moves mean a victory for B during this prelude and 4 free moves do the same
during the continuation.

At last if B plays by a strategy then the w-th move belongs to B. If the first
move of B in Fis an element of A, U Uy (AyU Uy) then W starts picking elements
of Uy (U,y). W either can pick 5 elements of this (which means a victory because B
has no 5-element winning set here), or B picks elements of Uy only, i.e., W can start
playing in Ay.

Summarizing, the B-game [BUAYUALUF, BOUEU F°, B'UE*UF']°? is a
non-determined B-game the existence of which was stated. [

In the last section of our paper we deal with the possible lengths of 2-games
in which I has WS.

PROPOSITION 4.7. Let a=w:f+n (n€w) be an ordinal. Suppose there is an
A-game [A, FI* in which 1 has WS but has no o-bounded W'S. Then the following cases
cannot occur:

(i) n=0 and n is even,
(i) p=0and n=1;
(iii) B is a limit ordinal and n=3.

PROOF. I cannot win after II’s move so (i) follows. If I wins by occupying an
clement at limit step then I can occupy that element before, which proves (ii). Now,
suppose I wins by his second move after a limit step. He can do it only if he has a

“yalid” ¥ as shown in Fig. 8. This ¥ became valid previously.
Since B is a limit ordinal, I has a limit step before the (w - f)-th
when this ¥ is valid, here I can occupy the bottom of the ¥ and
win. [

THEOREM 4.8. For every ordinal o not excluded in 4.7 there is
Fig. 8 an N-game [A, F1* such that T has WS but has no o-bounded WS.
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Proor. Let ¢ be any ordinal and let é=w - f+n (n€w). & is even (odd) if n is
even (odd). We define the -train (T, 79, T*) for every odd ordinal é. The elements
of T are the points P; for §<¢. T° contains the subsets {P;, Ps,,} where 6+1<§&,
0 is even, and if n=S5 then the subset {P,.p.;: k<n, k is even} and if n=3 and
B=y+1 then the subset {P,.,, Py.g, Py.psz). Finally, T* contains the subsets
{P,, Ps} where 6=y+1<¢ 6 is even and y is odd. The train is led by
the 6-point engine E. The points of E are U, V; for i=2, see Fig. 9. Let
U={Uy,, Uy, Uy} and V={V,, V3, V,).

U U U, B P R

( L] . L

I XD

“W %% R B §K

T SR A P o
E T

Fig. 9

Now let « be given and f, n be defined by a=w-f+n. We give the A-games
which satisfy the requirements. The easy work of verification is left to the reader.
We distinguish three cases.

Case A: o is finite. This case is trivial.
Case B: a=w - ff+n is infinite, »n is odd and either #=3 or n=3 and f=7y+1.

Let E be the engine, (T, T° T*) be the u-train. The board of the A-game is
EUT and the winning sets are {U,, ¥y}, {Uy, Uy, V1}, {U,, Uy, U, V), UUX for
all XeT° and YUY for all YeT* I may win picking Uy, U, U, Py, Py, ... in
succession. If I does not do so, II can cither win or make a draw.

Case C: «is a limit. Let a=sup {o: i€I}, o;=cw+ f;+n; such that n; is odd and
n;>3. Let (T;, T¢, T}') be the a-train, E be the engine and (B, B°, B, C°, C1, D°, D')
be the broom associated with the index set 7, and R be an entirely new point. The
board of the A-game is EUBU{R}U|J{T;: i€I}. The winning sets are {U,, V,},
{Us, Uy, i}, {Uy, Uy, Uy, Va), VU{R), the sets UUX and VUY for all XeB?
and Y€ B, and the sets

vuct(ihUxUY for XeD', YeT?

rucliuxuy for XeD YeT}
for all i€ 1.
After playing off the engine, I has to pick the point R, and II may choose any
train to play in. Therefore there are plays of length at least «;, i.e., I has no «-bounded
WS. On the other side I can obviously win before the a-th step. [
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The cardinality of the boards in these constructions is equal to the cardinality
of & if « is infinite. This is the smallest possible value if o is not a successor cardinal.
If ¢ =x* where % is an infinite cardinal then the lower bound is x. We can construct
9l-games [x, FI** where I has WS but has no »*-bounded WS, but the construc-

tion is too difficult to give here.
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